INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES

Size: px
Start display at page:

Download "INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES"

Transcription

1 INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES: Using carbon-fiber-reinforced grids in walls and other components Sami H. Rizkalla, PhD, North Carolina State University Gregory Lucier, PhD, North Carolina State University Dillon Lunn, PhD, North Carolina State University Larbi Sennour, President, CEG-TX, CEG International Harry Gleich, Vice President of Engineering, Metromont Co. John Carson, Exective Director, AltusGroup,Inc Dr. Sami Rizkalla is the Distinguished Professor of Civil Engineering and Construction, Director of the Constructed Facilities Laboratory, and Director of the NSF I/UCRC - Center for the Integration of Composites into Infrastructure (CICI) at North Carolina State University, Raleigh. His research interest is in the design, construction, and behavior of reinforced concrete and prestressed concrete structures and bridges. During the last thirty years, his research has focused on the use of high performance concrete and fiber reinforced polymer (FRP) materials for the construction, repair, and strengthening of structures and bridges. His current research interests include diagnostics and prognostics of structures and bridges using non-destructive monitoring systems. Introduction Fiber-reinforced polymer (FRP) materials have gained acceptance for civil engineering infrastructure as a result of substantial research and development efforts over the past 20 years. The most common use of FRP in infrastructure is for repair and strengthening of existing structures. FRP is an attractive choice for these applications since it is often cost-effective, easy and quick to install, and does not significantly affect the mass or geometry of a structure. Due to its high strength-to-weight ratio and non-corrosive nature, FRP is well-suited for use as internal reinforcing for concrete structures. Its use as reinforcing bars or prestressing strands in new construction has thus far been limited; however, recent advances in the precast concrete industry have enabled more widespread use of FRP in new construction with a variety of new applications emerging. This paper briefly reviews the history of the use of FRP as internal reinforcement in concrete structures and presents recent innovative developments on its use for the precast concrete industry. Early Applications Using FRP for internal reinforcement in precast concrete structures has been demonstrated to be effective in a variety of field applications. In 1993, bulb-tee bridge girders pre-tensioned with carbon FRP (CFRP) tendons were used in the construction of the Beddington Trail Bridge in Calgary, Canada, as shown in Fig. 1(a). These tendons were the first application of FRP materials in the precast industry in North America [1]. The CFRP tendons were instrumented with fiber optic sensors to continuously monitor the condition of the bridge. Field testing, shown in Fig. 1(b), of the bridge showed no signs of degradation of the girders after 15 years in service. 55

2 FACADE T E C T O N I C S Journal: Number 8: February 2013 Conference Proceedings a b Figure 1: (a) Bulb-tee girder prestressed by CFRP (b) Field tesing. In 1997, harped CFRP strands and CFRP stirrups were used to fabricate prestressed Type 6 AASHTO girders for the Taylor Bridge in Headingly, Canada, as shown in Fig. 2. The deck of this bridge was also reinforced with CFRP bars. This bridge received the PCI Harry H. Edwards Industry Advancement Award. Due to the lack of existing design codes at the time, an extensive experimental research program was conducted to evaluate the flexural behavior of prestressed concrete girders fabricated using CFRP reinforcements. Since then, a number of design guidelines have been published, including the American Concrete Institute design guidelines for the use of FRP as reinforcement and prestressing [2, 3]. Figure 2: Type 6 AASHTO girders with CFRP reinforcement for Taylor Bridge. FRP Grid FRP materials are manufactured in a variety of forms including sheets, plates, reinforcing bars, and grid. With FRP bars, increasing the diameter of the bar has the tendency to reduce their overall effectiveness due to the shear lag mechanism required to activate all the fibers within the bar cross-section. Consequently, the recent trend has been to reduce the size of bars such as the small diameter strands used in a grid configuration shown in Fig. 3, which utilize the fibers more effectively. Figure 3: FRP grid. Precast Double-Tees In the last few years, small diameter CFRP grid has been effectively used as reinforcement for the top flange of precast double-tees, which are commonly used for parking structures. The use of CFRP grid as reinforcement for the flange of double-tees prestressed with steel strands is shown in Fig. 4. The 56

3 flange section of the double-tee is often subjected to chloride penetration which can corrode internal steel reinforcement. The non-corrosive CFRP grid can mitigate this problem. The use of CFRP grid also facilitates production of doubletees in long casting beds by allowing for greater efficiency and reduced production time. The process includes: (1) placing and stressing the steel strands in the casting bed, (2) placing self-consolidating concrete (SCC) in the bed, and (3) using a special machine to place the CFRP grid at a specific depth in the flange to provide optimum performance and efficiency, as shown in Fig.5. Figure 4: Precast double-tee cross-section using FRP grid for flange reinforcement. Figure 5: Precast double-tee fabrication (courtesy of Metromont Corporation). To evaluate the performance of CFRP grid-reinforced flanges, full-scale precast double-tees were tested under uniform pressure as shown in Fig.6 [4]. A special chamber was used for testing, as shown in Fig.7. This chamber provided adequate capacity to create a uniform applied pressure greater than the flexural strength of the double-tee. The beams were subjected to the sustained factored load for 24 hours, as required by the load test requirements of chapter 20 of the ACI building code [5]. After successfully resisting the sustained load, each double-tee was tested monotonically to failure. The double-tees were also tested under a concentrated load as shown in Fig.8, with the results satisfying the recommendations of the PCI Design Guidelines [6]. 57

4 FACADE T E C T O N I C S Journal: Number 8: February 2013 Conference Proceedings Figure 6: Precast double-tee testing chamber (Cross-section). Figure 7: Precast double-tee testing chamber. Figure 8: Precast double-tee concentrated load test. Precast Concrete Sandwich Panels Load-bearing sandwich panels are typically used in building envelopes to support both lateral loads due to wind or seismic events and gravity loads. The wall panels typically consist of two concrete wythes separated by a rigid foam core. FRP grid shear connectors have recently been used to replace steel pin connectors and solid concrete zones to establish the composite action of the two concrete wythes and reduce thermal bridging. It has been shown that solid concrete zones equaling 1 percent of the panel surface area, or steel pin connectors equaling an area of 0.1 percent of the panel surface area can reduce the insulation properties (R-value) of a wall panel by up to 40 percent [7]. On the 58

5 other hand, FRP grid shear connectors have a low thermal conductivity and can be used to produce sandwich panels that are both structurally and thermally efficient. The shear connectors are formed by cutting and placing the orthogonal grid in such a way that the fibers are oriented at a 45 degree angle in order to develop the shear truss mechanism as shown in Fig.9 and Fig. 10. Figure 9: Load-bearing precast concrete sandwich panels: cross-section. Construction of the panels consists of: (1) casting the bottom layer of concrete, (2) placing the insulated rigid foam with FRP grid, and (3) casting the top layer of concrete as shown in Fig.11. An embedment of the grid into the concrete wythes from both sides of 3/4 in. was found to be adequate. Full-scale panels were tested under a gravity loading acting on the corbels, as shown in Fig. 12. In addition, reverse-cyclic wind load was applied to the panels at levels equivalent to 50 years in service. The behavior indicated that the FRP shear truss provided adequate composite action at both service and ultimate load levels [8]. a b Figure 10: FRP grid shear connectors: (a) grid configurations, (b) orientation of fibers. 59

6 FACADE T E C T O N I C S Journal: Number 8: February 2013 Conference Proceedings Figure 11: Load-bearing precast concrete sandwich panels: under construction. Currently, detailed design guidelines are being developed that use test results from a comprehensive experimental program of double-shear specimens. Each double-shear specimen is subjected to shear forces, as shown in Fig. 13, and represents a segment of a sandwich wall panel. The composite action and shear flow capacity of the wall segments were examined, as affected by the spacing of the grid, the thickness of the foam, and the type of foam [9]. In addition, some segments were tested under a sustained load for up to one year to determine the safe stress level that can be resisted under sustained loading, as shown in Fig. 14. a b Figure 12: Load-bearing precast concrete sandwich panels: (a) Loading conditions (b) Test setup. 60

7 Figure 13: Precast concrete sandwich panels: double-shear test setup Figure 14: Precast concrete sandwich panels: sustained load test setup Architectural Cladding FRP grid has also been used for architectural cladding. For architectural products, uniformity of color, crack mitigation, and thermal efficiency are primary considerations. Architectural products also must provide sufficient structure to resist wind pressure. The two concrete wythes in the selected architectural cladding panel are separated by an insulating foam core layer and connected by a CFRP shear grid similar to that used for composite wall panels. CFRP grids are also used as the secondary reinforcement for the exterior architectural diaphragm to prevent cracking induced by temperature and shrinkage. The use of non-corrosive CFRP materials prevents staining and cracking of the architectural finish which can occur due to corrosion and expansion of conventional steel reinforcements. The performance of the architectural panels was evaluated using the test setup shown in Fig.15, which involved building a chamber around the panel and supporting the panel in a fashion similar to practice. Each panel was subjected to cycles of positive and negative pressure, successfully sustaining the full factored loading in both directions without cracking [10]. Figure 15: Insulated architectural cladding: (a) schematic of test setup (b) full-scale test setup. 61

8 FACADE T E C T O N I C S Journal: Number 8: February 2013 Conference Proceedings Piles Currently there is an attempt to use FRP grid to replace steel spiral reinforcement for piles as shown in Fig.16. The grid is to provide confinement of the concrete core. Private testing by the Florida Department of Transportation indicated that the behavior was satisfactory. Work in this area is ongoing. Figure 16: Prestressing and FRP grid for confinement of piles. Conclusions This paper briefly reviewed the history of the use of FRP as internal reinforcement in concrete structures, and discussed several recent developments related to the use of FRP in the precast concrete industry. The favorable mechanical, chemical, and thermal properties of FRP reinforcement enable the production of increasingly sustainable, durable, and structurally efficient precast products. These recent advances have led to growing acceptance of FRP within the precast industry and also within the wider engineering community. 62

9 References [1] Rizkalla, S.H. and Tadros, G. (1994). A smart highway bridge in Canada. Concrete International, 16(6), [2] ACI Committee 440. (2006). Guide for the design and construction of structural concrete reinforced with FRP bars 440.1R-06. Farmington Hills, MI: American Concrete Institute. [3] ACI Committee 440. (2004). Prestressing Concrete Structures with FRP Tendons 440.4R-04. Farmington Hills, MI: American Concrete Institute. [4] Lucier, G., Rizkalla, S., Sennour, L. and Gleich, H. (2010). Behavior and design of full-scale precast double-tees reinforced with CFRP, Proceedings of the 3rd fib International Congress, Chicago, IL, USA. [5] American Concrete Institute. (2008) Building code requirements for structural concrete (ACI ) and commentary. Farmington Hills, MI: American Concrete Institute. [6] Precast/Prestressed Concrete Institute. (2004). PCI design handbook: Precast and prestressed concrete (6th ed.). Chicago: Precast/Prestressed Concrete Institute [7] Eina A., Salmon, D.C., Fogarasi, G.J., Culp, T.D. and Tadros, M.K. (1991). State-of-the-art of precast concrete sandwich panels. PCI Journal, 36(6), [8] Frankl, B., Lucier, G., Hassan, T. and Rizkalla, S., Behavior of Precast, Prestressed Concrete Sandwich Wall Panels Reinforced with CFRP Grid", PCI Journal, volume 56, Number 2 Spring 2011, pp [9] Bunn, W.G., Lucier, G., Rizkalla, S. and Sennour, L., "Composite and Thermally Efficient Precast Concrete Sandwich Panels Using CFRP Grid", Proceedings of the 6th Advanced Composite Materials in Bridges and Structures (ACMBS), Kingston, Ontario, May 22-25, [10] Rizkalla, S., Lucier, G. and Dawood, M., Innovative use of FRP for the Precast Industry, Advances in Structural Engineering Journal, Vol. 15, No 4,

Presentation in support of

Presentation in support of Presentation in support of Proposed Acceptance Criteria For Continuous or Semi- Continuous Fiber-Reinforced Grid Connectors used in combination with Rigid Insulation in Concrete Sandwich Panel Construction

More information

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer Journal of Civil Engineering and Architecture 9 (2015) 1034-1046 doi: 10.17265/1934-7359/2015.09.003 D DAVID PUBLISHING Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced

More information

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS Gary Klein, Gregory Lucier, Sami Rizkalla, Paul Zia and Harry Gleich Biography: Gary Klein, FACI, is Executive Vice President and

More information

Precast Wall Panel Design. By Edward Losch, PE, SE

Precast Wall Panel Design. By Edward Losch, PE, SE Precast Wall Panel Design By Edward Losch, PE, SE What is a Precast Concrete Sandwich Wall Panel? Typical Precast Concrete Sandwich Wall Panel Long-Line Form Wythe(s) Prestressed Trucked & Erected (Non-loadbearing)

More information

Site Director: Dr. Sami Rizkalla Associate Director: Dr. Rudi Seracino Date: February 1 st, 2011

Site Director: Dr. Sami Rizkalla Associate Director: Dr. Rudi Seracino Date: February 1 st, 2011 Site Director: Dr. Sami Rizkalla Associate Director: Dr. Rudi Seracino Date: February 1 st, 2011 AltusGroup, Inc. Freyssinet, Inc. Fyfe Company, LLC Grancrete, Inc. Martin Marietta Composites Nippon Steel

More information

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter Benefits of using.7 in. (18 mm) diameter strands in precast, pretensioned girders: A parametric investigation Jessica Salazar, Hossein Yousefpour, Alex Katz, Roya Alirezaei Abyaneh, Hyun su Kim, David

More information

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES

STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) LAMINATES Composites in Construction 2005 Third International Conference, Hamelin et al (eds) 2005 ISBN xxxxx Lyon, France, July 11 13, 2005 STRENGTHENING STEEL-CONCRETE COMPOSITE BRIDGES WITH HIGH MODULUS CARBON

More information

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP

DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP ------------ DESIGN GUIDELINES FOR BRIDGE DECK SLABS REINFORCED by CFRP and GFRP Tarek Hassan 1, Amr Abdelrahman 2, Gamil Tadros 3, and Sami Rizkalla 4 Summary The use of carbon and glass fibre reinforced

More information

North Mountain IMS Medical Office Building

North Mountain IMS Medical Office Building North Mountain IMS Medical Office Building Phoenix, Arizona Michael Hopple Technical Assignment 1 October 5 th, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari,

More information

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES IV ACMBS MCAPC 4 th International Conference on Advanced Composite Materials in Bridges and Structures 4 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes

More information

Investigating Composite Action at Ultimate for Commercial Sandwich Panel Composite Connectors

Investigating Composite Action at Ultimate for Commercial Sandwich Panel Composite Connectors Utah State University DigitalCommons@USU Civil and Environmental Engineering Faculty Publications Civil and Environmental Engineering 217 Investigating Composite Action at Ultimate for Commercial Sandwich

More information

Characterization of Mechanical Properties of Composite Materials for. Infrastructure Projects

Characterization of Mechanical Properties of Composite Materials for. Infrastructure Projects Characterization of Mechanical Properties of Composite Materials for Infrastructure Projects PI: Ayman M. Okeil, Ph.D., P.E. Department of Civil and Environmental Engineering Louisiana State University

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

Designing for the Future with Composites

Designing for the Future with Composites C-Grid Reinforcement: Innovative Composites Solution for Eliminating Corrosion in Concrete Construction and Repair John Carson Executive Director-AltusGroup, Inc Designing for the Future with Composites

More information

Fatigue and Overloading Behavior of Steel Concrete Composite Flexural Members Strengthened with High Modulus CFRP Materials

Fatigue and Overloading Behavior of Steel Concrete Composite Flexural Members Strengthened with High Modulus CFRP Materials Fatigue and Overloading Behavior of Steel Concrete Composite Flexural Members Strengthened with High Modulus CFRP Materials M. Dawood 1 ; S. Rizkalla 2 ; and E. Sumner 3 Abstract: Due to corrosion and

More information

Prestressed Concrete Girder Continuity Connection

Prestressed Concrete Girder Continuity Connection Report No: Title: Developing Organization: Precast/Prestressed Concrete Institute Technical Committee Phone - 888-700-5670 Email contact@pcine.org Website- www.pcine.org Report Date: Revision Date: Status

More information

Dan Eckenrode Executive Director

Dan Eckenrode Executive Director Dan Eckenrode Executive Director pcigulfsouth1@att.net www.pcigulfsouth.org PCI Gulf South Became a chapter of PCI in May 2016 12 Precast producers Covers 3 states, AL, MS, & LA Work with DOT s on Transportation

More information

Concrete-filled fiber reinforced polymer tube-footing interaction in bending

Concrete-filled fiber reinforced polymer tube-footing interaction in bending Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Concrete-filled fiber reinforced polymer tube-footing interaction in bending Y. C.

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Qiang SHEN Graduate Research Assistant Yahya C. KURAMA Assistant Professor University of Notre Dame, Civil Engineering and Geological

More information

Design Aids of NU I-Girders Bridges

Design Aids of NU I-Girders Bridges Nebraska Transportation Center Report SPR-P1(09) P322 Final Report 26-1120-0042-001 Design Aids of NU I-Girders Bridges Kromel E. Hanna, Ph.D. Department of Civil Engineering University of Nebraska-Lincoln

More information

Executive Summary. Champlain Bridge Approach Spans Edge Girder Condition Assessment and Rehabilitation Requirements.

Executive Summary. Champlain Bridge Approach Spans Edge Girder Condition Assessment and Rehabilitation Requirements. Executive Summary "Les Ponts Jacques Cartier et Champlain Incorporée" (PJCCI) requested that Buckland & Taylor (B&T) study the overall condition of the approach span edge girders of the Champlain Bridge

More information

fib publications - Pr.November 2017:

fib publications - Pr.November 2017: fib publications - Pr.November 2017: No. 79. Fibre-reinforced concrete: From design to structural applications. FRC 2014: ACI-fib International Workshop Proceedings - ACI SP-310 (480 pages, ISBN 978-2-88394-119-9,

More information

North Mountain IMS Medical Office Building

North Mountain IMS Medical Office Building North Mountain IMS Medical Office Building Phoenix, Arizona Michael Hopple Technical Assignment 2 October 29 th, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari,

More information

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3 ISSN: 239-5967 ISO 900:2008 Certified Volume 4, Issue 5, September 205 Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain, Khaled Fawzy 2, and Mahmoud Nasr 3 Abstract-

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 2.1 Methods of Prestressing Advantages of Prestressing Section remains uncracked under service loads Reduction of steel corrosion (increase durability) Full section

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

CORROSION MITIGATION OF PRECAST CONCRETE PARKING GARAGES

CORROSION MITIGATION OF PRECAST CONCRETE PARKING GARAGES CORROSION MITIGATION OF PRECAST CONCRETE PARKING GARAGES BY TORE O. ARNESEN AND LEO WHITELEY Fig. 1: Typical precast parking garage The use of precast concrete for constructing parking garages is very

More information

BRIDGE REHABILITATION USING FRP- CASE STUDIES PEDRAM MOJARRAD SIKA AUSTRALIA

BRIDGE REHABILITATION USING FRP- CASE STUDIES PEDRAM MOJARRAD SIKA AUSTRALIA BRIDGE REHABILITATION USING FRP- CASE STUDIES PEDRAM MOJARRAD SIKA AUSTRALIA BRIDGE STRENGTHENING 2 November 26, 2015Title of Presentation / Meeting Name SIKA FRP PRODUCT RANGE MAIN FRP STRENGTHENING MATERIALS

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2016 to December 31, 2016 Period Year 2 Project Shake Table Studies of a Bridge System with ABC Connections Submitted by M. Saiidi,

More information

Elevation. Typical Section

Elevation. Typical Section PS1 - Simple Span Prestressed I Beam Example #4 stirrups @ 12" 120'-0" 6" 6" Elevation 1'-6" 51'-0" 48'-0" 1'-6" 8" Future Wearing Surface 2" thick, 150 pcf AASHTO-PCI BT-72 3'-0" 5 spaces @ 9'-0" = 45'-0"

More information

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example AASHTOWare BrD 6.8 BrR and BrD Tutorial PS7-3 Stem PS Bridge Example BrR and BrD Training PS7 3 Stem PS Bridge Example From the Bridge Explorer create a new bridge and enter the following description data.

More information

Structural health monitoring of structures repaired with FRP

Structural health monitoring of structures repaired with FRP Structural Studies, Repairs and Maintenance of Heritage Architecture IX 567 Structural health monitoring of structures repaired with FRP Y. Khalighi Department of Civil Engineering, The University of British

More information

CFRP Strengthening and Load Testing of the Concrete Deck of I-10 KCS Railroad Overpass Mohsen Shahawy, Ph.D, PE SDR Engineering Consultants, Inc.

CFRP Strengthening and Load Testing of the Concrete Deck of I-10 KCS Railroad Overpass Mohsen Shahawy, Ph.D, PE SDR Engineering Consultants, Inc. CFRP Strengthening and Load Testing of the Concrete Deck of I-10 KCS Railroad Overpass Mohsen Shahawy, Ph.D, PE SDR Engineering Consultants, Inc. SDR Engineering Consultants, Inc. 2260 Wednesday Street,

More information

ADVANCED COMPOSITE MATERIALS FOR BRIDGES

ADVANCED COMPOSITE MATERIALS FOR BRIDGES ADVANCED COMPOSITE MATERIALS FOR BRIDGES Sami RIZKALLA ISIS Canada Network of Centres of Excellence Room 227, Engineering Building, University of Manitoba Winnipeg Manitoba, Canada, R3T 5V6 1. SUMMARY

More information

PRECAST CONCRETE CONNECTIONS - US PRACTICE

PRECAST CONCRETE CONNECTIONS - US PRACTICE PRECAST CONCRETE CONNECTIONS - US PRACTICE Larbi Sennour, PhD, SE President Consulting Engineers Group, Inc. SPEAKERS Precast Connections 3 General Types Wet Connections Semi Dry Dry Wet System - Definition

More information

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc.

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc. Design and Construction of the SH58 Ramp A Flyover Bridge over IH70 Gregg A. Reese, PE, CE, Summit Engineering Group, Inc., Littleton, CO ABSTRACT: The SH58 Ramp A bridge in Golden, CO is the latest on

More information

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS Proc., 12th World Conference on Earthquake Engineering, Jan 3- Feb 4, 2, Auckland, New Zealand, paper 35,1 pp SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS AHMED KHALIFA,

More information

LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES

LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES The 7 th International Conference on FRP Composites in Civil Engineering International Institute for FRP in Construction LOAD TEST EVALUATION OF FRP-STRENGTHENED STRUCTURES Nestore GALATI Senior Design

More information

CIVIL BREADTH Exam Specifications

CIVIL BREADTH Exam Specifications NCEES Principles and Practice of Engineering Examination CIVIL BREADTH and STRUCTURAL DEPTH Exam Specifications Effective Beginning with the April 2015 Examinations The civil exam is a breadth and depth

More information

Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders

Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders University of Arkansas, Fayetteville ScholarWorks@UARK Civil Engineering Undergraduate Honors Theses Civil Engineering 5-2017 Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders

More information

Strengthening steel bridges with new high modulus CFRP materials

Strengthening steel bridges with new high modulus CFRP materials Strengthening steel bridges with new high modulus CFRP materials M. Dawood, E. Sumner & S. Rizkalla North Carolina State University Raleigh, North Carolina, U.S.A. D. Schnerch, Wiss, Janney, Elstner Associates,

More information

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading Amir Fam, Bart Flisak and Sami Rizkalla ABSTRACT Innovative hybrid systems such as the concrete-filled fiber reinforced

More information

Flexure Design Sequence

Flexure Design Sequence Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress)

More information

Because of their architectural versatility and energy

Because of their architectural versatility and energy Precast Concrete Corbels for Insulated Wall Panels Proposed system minimizes thermal bridging at wall connections by Mohamed Elkady, Maher K. Tadros, Mark Lafferty, George Morcous, and Doug Gremel Because

More information

Pro-Con Structural Study for Alternative Floor Systems October 27, 2004

Pro-Con Structural Study for Alternative Floor Systems October 27, 2004 Ismail Al-Hadhrami Structural Option Faculty Consultant: Dr. Thomas Boothby Agricultural Hall and Annex East Lansing, MI Pro-Con Structural Study for Alternative Floor Systems October 27, 2004 Executive

More information

Applications of FRP Projects in Egypt

Applications of FRP Projects in Egypt Applications of FRP Projects in Egypt Abdel-Hady Hosny Emeritus Professor Ain Shams University, Cairo, Egypt Abdel-Hady Hosny received his PhD degree from Leeds Univ., Chairman of the Egyptian Engineering

More information

PRECAST REINFORCED CONCRETE SANDWICH PANEL AS AN INDUSTRIALISED BUILDING SYSTEM

PRECAST REINFORCED CONCRETE SANDWICH PANEL AS AN INDUSTRIALISED BUILDING SYSTEM International Conference On Concrete engineering and Technology (2004) Universiti Malaya PRECAST REINFORCED CONCRETE SANDWICH PANEL AS AN INDUSTRIALISED BUILDING SYSTEM A. Benayoune 1, Abdul Aziz Abdul

More information

Precast concrete double-tee beams with thin stems

Precast concrete double-tee beams with thin stems Dapped ends of prestressed concrete thin-stemmed members: Part 1, experimental testing and behavior Amir W. Botros, Gary J. Klein, Gregory W. Lucier, Sami H. Rizkalla, and Paul Zia Precast concrete double-tee

More information

Learning Objectives. A Brief History

Learning Objectives. A Brief History Slide 1 Precast Structures and Frames Miles L. Blackman, P.E. Slide 2 Learning Objectives Discuss precast concrete characteristics, advantages and benefits, typical construction methods and construction

More information

Field application of FRP material in Kentucky

Field application of FRP material in Kentucky Field application of FRP material in Kentucky Abheetha Peiris, University of Kentucky (email: abheetha@engr.uky.edu) Issam Harik, University of Kentucky (email: iharik@engr.uky.edu) Abstract Repair and

More information

ABSTRACT. The research reported in this thesis investigates the behavior and the punching shear capacity

ABSTRACT. The research reported in this thesis investigates the behavior and the punching shear capacity ABSTRACT KHALAF ALLA, OMAR MOHAMED. Design and Behavior of Ledges for Short Span L- Shaped Spandrel Beams. (Under the direction of Dr. Sami Rizkalla.) The research reported in this thesis investigates

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 MOMENT REDISTRIBUTION OF GFRP-RC CONTINUOUS T-BEAMS S. M. Hasanur Rahman M.Sc. Student, University of Manitoba, Canada Ehab El-Salakawy Professor and CRC in Durability

More information

Moment curvature analysis of concrete flexural members confined with CFRP grids

Moment curvature analysis of concrete flexural members confined with CFRP grids Materials Characterisation V 131 Moment curvature analysis of concrete flexural members confined with CFRP grids A. Michael & P. Christou Department of Civil Engineering, Frederick University, Cyprus Abstract

More information

Revise Sections through of Part 1 of the 2009 Provisions as follows:

Revise Sections through of Part 1 of the 2009 Provisions as follows: PROPOSAL - (00) SCOPE: Sec.. Concrete Sec... Additional Detailing Requirements for Concrete Piles PROPOSAL FOR CHANGE: Revise Sec... and Sec.... of Part of the 00 Provisions as follows:.. Additional Detailing

More information

AC : SEISMIC DESIGN OF PIERS AND WHARFS: A CAPSTONE COURSE APPLICATION OF A NEW STANDARD FOR DESIGNING PORT STRUCTURES IN THE UNITED STATES

AC : SEISMIC DESIGN OF PIERS AND WHARFS: A CAPSTONE COURSE APPLICATION OF A NEW STANDARD FOR DESIGNING PORT STRUCTURES IN THE UNITED STATES AC 2007-393: SEISMIC DESIGN OF PIERS AND WHARFS: A CAPSTONE COURSE APPLICATION OF A NEW STANDARD FOR DESIGNING PORT STRUCTURES IN THE UNITED STATES Timothy Mays, The Citadel Kevin Bower, The Citadel Robert

More information

CSU GUIDELINES. April 27, 2018 FOR POST-TENSIONED CONCRETE STRUCTURES.

CSU GUIDELINES. April 27, 2018 FOR POST-TENSIONED CONCRETE STRUCTURES. CSU GUIDELINES FOR POST-TENSIONED CONCRETE STRUCTURES April 27, 2018 http://www.calstate.edu/cpdc/ae California State University Seismic Review Board Technical Guidelines January 9, 2018 The CSU Seismic

More information

Concrete Filled, Fiber Reinforced Polymer (FRP) Composite Tubes Bridge-in-a-Backpack A collaborative innovation together with:

Concrete Filled, Fiber Reinforced Polymer (FRP) Composite Tubes Bridge-in-a-Backpack A collaborative innovation together with: Concrete Filled, Fiber Reinforced Polymer (FRP) Composite Tubes Bridge-in-a-Backpack A collaborative innovation together with: Fiber Composite + Concrete Arch Superstructure A Hybrid bridge system combining

More information

PHYSICAL, MECHANICAL, AND DURABILITY CHARACTERIZATION OF CARBON FRP CABLE

PHYSICAL, MECHANICAL, AND DURABILITY CHARACTERIZATION OF CARBON FRP CABLE PHYSICAL, MECHANICAL, AND DURABILITY CHARACTERIZATION OF CARBON FRP CABLE Ahmed H. Ali 1, Hamdy M. Mohamed 2, Patrice Cousin 3, Adel ElSafty 4, and Brahim Benmokrane 5 1 Doctoral candidate, University

More information

Structural Tests and Special Inspections Form. Inspection of Fabricators (1704.2)

Structural Tests and Special Inspections Form. Inspection of Fabricators (1704.2) Inspection of Fabricators (1704.2) Furnish inspection reports (1704.2.1) - Fabricators that have not been approved Provide a Certificate of Compliance (1704.2.2) - Approved Fabricators Steel Construction

More information

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders Catbas, Darwash, Fadul / 0 0 0 Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders F.N. Catbas, H. Darwash and M. Fadul Dr. F. Necati Catbas, P.E. Associate

More information

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup HIGH PERFORMANCE CONCRETE by John J. Roller CTLGroup Early Louisiana HPC Research Law & Rasoulian (1980) Adelman & Cousins (1990) Bruce, Russell & Roller (1990-1993) Law & Rasoulian (1980) Concrete strengths

More information

SUNSHINE SKYWAY BRIDGE

SUNSHINE SKYWAY BRIDGE SUNSHINE SKYWAY BRIDGE Retrofit of the Post-Tensioned Precast Transition Pier Columns on the Sunshine Skyway Bridge Presented by: Antonio Ledesma, P.E. May 7, 2012 SUNSHINE SKYWAY BRIDGE, FLORIDA Presentation

More information

Shear Capacity of Prestressed Lightweight Self- Consolidating Concrete

Shear Capacity of Prestressed Lightweight Self- Consolidating Concrete University of Arkansas, Fayetteville ScholarWorks@UARK Civil Engineering Undergraduate Honors Theses Civil Engineering 5-2014 Shear Capacity of Prestressed Lightweight Self- Consolidating Concrete Micah

More information

In-Plane and Out-of-Plane Performance of the MINI-MC Flange Connector

In-Plane and Out-of-Plane Performance of the MINI-MC Flange Connector Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 7-1-2009 In-Plane and Out-of-Plane Performance of the MINI-MC Flange Connector Clay Naito Ruirui Ren Follow this and

More information

Leading in construction with non-metallic reinforcement.

Leading in construction with non-metallic reinforcement. Leading in construction with non-metallic reinforcement. Leading in construction with nonmetallic reinforcement Textile-reinforced concrete is the technology of the future. Reinforcements made of carbon

More information

Contents. 1.1 Introduction 1

Contents. 1.1 Introduction 1 Contents PREFACE 1 ANCIENT MASONRY 1 1.1 Introduction 1 1.2 History of Masonry Materials 1 1.2.1 Stone 2 1.2.2 Clay Units 2 1.2.3 Calcium Silicate Units 4 1.2.4 Concrete Masonry Units 4 1.2.5 Mortars 5

More information

Bond Characteristics of ASTM A1035 Steel Reinforcing Bars

Bond Characteristics of ASTM A1035 Steel Reinforcing Bars ACI STRUCTURAL JOURNAL Title no. 106-S51 TECHNICAL PAPER Bond Characteristics of ASTM A1035 Steel Reinforcing Bars by Hatem M. Seliem, Amr Hosny, Sami Rizkalla, Paul Zia, Michael Briggs, Shelby Miller,

More information

The following excerpt are pages from the Hilti North America Post- Installed Reinforcing Bar Guide.

The following excerpt are pages from the Hilti North America Post- Installed Reinforcing Bar Guide. The following excerpt are pages from the Hilti North America Post- Installed Reinforcing Bar Guide. Please refer to the publication in its entirety for complete details on this topic including data development,

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

The bridge over the Georges River at Alfords Point has been duplicated with a new incrementally launched bridge.

The bridge over the Georges River at Alfords Point has been duplicated with a new incrementally launched bridge. The Design and Construction of Alfords Point Bridge Mark Bennett, Senior Bridge Engineer (New Design) RTA Harry Cheung, Project Engineer, RTA Trung Doan Project Engineer, RTA Synopsis The bridge over the

More information

CVEN 483. Structural System Overview

CVEN 483. Structural System Overview CVEN 483 Structural System Overview Dr. J. Bracci Fall 2001 Semester Presentation Overview 1. Building system primary function 2. Types of load 3. Building materials 4. Structural members 5. Structural

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

Department of Civil Engineering, UIT, RGPV, Bhopal, India

Department of Civil Engineering, UIT, RGPV, Bhopal, India International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 1142 Comparative study of flexural strength of RC beams strengthened with steel and FRP bars Keertika Sharma 1, S.

More information

NDE of FRP Bridge Decks and Beams

NDE of FRP Bridge Decks and Beams NDE of FRP Bridge Decks and Beams John C. Duke, Jr. Virginia Tech NDE Development Laboratory we.search.for.perfection@vt.edu Virginia Tech NDEDL Va FRP Showcase 1 Virginia Tech NDEDL Va FRP Showcase 2

More information

Statement of Special Inspections Michigan Building Code 2012 (MBC 2012)

Statement of Special Inspections Michigan Building Code 2012 (MBC 2012) Gaines Charter Township 8555 Kalamazoo Ave SE Caledonia MI 49316 PH: 616 698-6640 Fax: 616 698-2490 www.gainestownship.org Building Department Statement of Special Inspections Michigan Building Code 2012

More information

Lecture 13: Practical Design, The Future of Prestressed Concrete, and Concluding Thoughts...

Lecture 13: Practical Design, The Future of Prestressed Concrete, and Concluding Thoughts... Lecture 13: Practical Design, The Future of Prestressed Concrete, and Concluding Thoughts... LECTURE 13 May 17, 2005 May 17, 2005 1 Where we have been Basics Allowable Stress Ultimate Strength Shear Camber

More information

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1 Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction Bijan Khaleghi 1 Abstract Ductility of precast prestressed girder bridges can be achieved by proper detailing of pier

More information

Section 906. STRUCTURAL STEEL

Section 906. STRUCTURAL STEEL 906.01 Section 906. STRUCTURAL STEEL 906.01. General Requirements. Finished rolled shapes must be free from imperfections that affect strength and durability in accordance with ASTM A 6. Rolled shapes

More information

FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS

FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS FUNDAMENTAL CHARACTERISTICS OF HIGH MODULUS CFRP MATERIALS FOR STRENGTHENING OF STEEL-CONCRETE COMPOSITE BEAMS Mina Dawood, Sami Rizkalla and Emmett Sumner Constructed Facilities Laboratory North Carolina

More information

THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC

THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC CD02-017 THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC A.A. Maghsoudi 1, M. Torkamanzadeh 2 1 Associate. Prof., Civil Engineering.

More information

EVALUATION OF SHEAR TIE CONNECTORS FOR USE IN INSULATED CONCRETE SANDWICH PANELS

EVALUATION OF SHEAR TIE CONNECTORS FOR USE IN INSULATED CONCRETE SANDWICH PANELS AFRL-RX-TY-TR-2009-4600 EVALUATION OF SHEAR TIE CONNECTORS FOR USE IN INSULATED CONCRETE SANDWICH PANELS Clay J. Naito Department of Civil and Environmental Engineering Lehigh University, PA 18015 John

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

Full-Depth Precast Concrete Bridge Deck Construction

Full-Depth Precast Concrete Bridge Deck Construction Full-Depth Precast Concrete Bridge Deck Construction John R. Fowler, P.Eng., President Canadian Precast/Prestressed Concrete Institute Paper prepared for presentation at the Bridges Links to a Sustainable

More information

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES Benjamin Raison R; Freeda Christy C PG student, School of Civil Engineering, Karunya University. Associate Professor, School of Civil Engineering, Karunya

More information

CHOI, WONCHANG. Flexural Behavior of Prestressed Girder with High Strength Concrete. (Under the direction of Dr. Sami Rizkalla)

CHOI, WONCHANG. Flexural Behavior of Prestressed Girder with High Strength Concrete. (Under the direction of Dr. Sami Rizkalla) ABSTRACT CHOI, WONCHANG. Flexural Behavior of Prestressed Girder with High Strength Concrete. (Under the direction of Dr. Sami Rizkalla) The advantages of using high strength concrete (HSC) have led to

More information

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS Weichen XUE Professor Tongji University Siping Road 1239#, Shanghai 200092, China xuewc@tongji.edu.cn*

More information

14.1 PCI Standard Design Practice

14.1 PCI Standard Design Practice SPECIFICATIONS AND STANDARD PRACTICES Chapter.1 PCI Standard Design Practice Precast and prestressed concrete structures have provided decades of satisfactory performance. This performance is the result

More information

Proposed Modifications to the LRFD Design of U-Beam Bearings

Proposed Modifications to the LRFD Design of U-Beam Bearings Proposed Modifications to the LRFD Design of U-Beam Bearings Charles D. Newhouse, Scott A. Bole, W. R. Burkett, Phillip T. Nash, Mostafa El-Shami Performed in Cooperation with the Texas Department of Transportation

More information

EXPERIMENTAL NON-DESTRUCTIVE TESTING OF FRP MATERIALS, INSTALLATION, AND PERFORMANCE, DALLAS COUNTY BRIDGE, MISSOURI, USA

EXPERIMENTAL NON-DESTRUCTIVE TESTING OF FRP MATERIALS, INSTALLATION, AND PERFORMANCE, DALLAS COUNTY BRIDGE, MISSOURI, USA EXPERIMENTAL NON-DESTRUCTIVE TESTING OF FRP MATERIALS, INSTALLATION, AND PERFORMANCE, DALLAS COUNTY BRIDGE, MISSOURI, USA N. Maerz 1, G. Galecki 1, and A. Nanni 1 1 University of Missouri-Rolla, Rolla,

More information

Stability of Precast/Prestressed Concrete Bridge Girders

Stability of Precast/Prestressed Concrete Bridge Girders Stability of Precast/Prestressed Concrete Bridge Girders Roy L. Eriksson, P.E. - Eriksson Technologies, Inc. PCEF Committee - August 20, 2015, Raleigh, NC Copyright 2015 Eriksson Technologies, Inc. 1 Roy

More information

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni Deflection Assessment of an FRP-Reinforced Concrete Bridge By Danielle K. Stone, Andrea Prota, and Antonio Nanni Synopsis: Serviceability of FRP-reinforced concrete structures remains a highly relevant

More information

FRP FOR CONSTRUCTION IN JAPAN

FRP FOR CONSTRUCTION IN JAPAN FRP FOR CONSTRUCTION IN JAPAN UEDA Tamon 1 SUMMARY This paper briefly introduces the current situation of FRP related materials, FRP reinforcement for concrete (and steel) structures and FRP shape, in

More information

Hyperstatic (Secondary) Actions In Prestressing and Their Computation

Hyperstatic (Secondary) Actions In Prestressing and Their Computation 5.5 Hyperstatic (Secondary) Actions In Prestressing and Their Computation Bijan O Aalami 1 SYNOPSIS This Technical Note describes the definition, computation, and the significance of hyperstatic (secondary)

More information

THE FORENSIC MEDICAL CENTER

THE FORENSIC MEDICAL CENTER THE FORENSIC MEDICAL CENTER Image courtesy of Gaudreau, Inc. TECHNICAL REPORT #2 OCTOBER 26, 2007 KEENAN YOHE STRUCTURAL OPTION DR. MEMARI FACULTY ADVISOR EXECUTIVE SUMMARY Image courtesy of Gaudreau,

More information

The North Carolina Department of Transportation awarded a

The North Carolina Department of Transportation awarded a Form+Function NEWS & INFORMATION FROM HAMILTON FORM SUMMER 2016 Project Spotlight The Herbert C. Bonner Bridge CYLINDRICAL PILE FORM Coastal Precast Systems, Chesapeake, Virginia The North Carolina Department

More information

A Composite Structural Steel and Prestressed Concrete Beam for Building Floor Systems

A Composite Structural Steel and Prestressed Concrete Beam for Building Floor Systems University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Architectural Engineering -- Dissertations and Student Research Architectural Engineering Spring 4-20-2012 A Composite Structural

More information

FLEXURAL BEHAVIOR OF RC BEAMS WITH OPENING

FLEXURAL BEHAVIOR OF RC BEAMS WITH OPENING www.crl.issres.net Vol. 5 (2) June 2014 FLEXURAL BEHAVIOR OF RC BEAMS WITH OPENING SAEED AHMED AL-SHEIKH 1 1 Lecturer - Civil Department Pyramids Higher Institute 6 October Giza - Egypt ABSTRACT Providing

More information

Bridge Engineering/Construction Ultra High Performance Concrete (UHPC)

Bridge Engineering/Construction Ultra High Performance Concrete (UHPC) Bridge Engineering/Construction Ultra High Performance Concrete (UHPC) Ductal UHPC Paul White, PE, P. Eng. Bridge Engineering Manager, UHPC/Ductal U.S. LafargeHolcim October, 2016 UHPC Premix/Constituents

More information