NONLINEAR ANALYSIS OF TEXTILE REINFORCED CONCRETE SHELLS USING AN ANISOTROPIC, DAMAGED-BASED MATERIAL MODEL

Size: px
Start display at page:

Download "NONLINEAR ANALYSIS OF TEXTILE REINFORCED CONCRETE SHELLS USING AN ANISOTROPIC, DAMAGED-BASED MATERIAL MODEL"

Transcription

1 NONLINEAR ANALYSIS OF TEXTILE REINFORCED CONCRETE SHELLS USING AN ANISOTROPIC, DAMAGED-BASED MATERIAL MODEL Ehsan Sharei (1), Alexander Scholzen (1), Rostislav Chudoba (1), (1) Institute of Structural Concrete, RWTH Aachen University Abstract: Thin shell structures made of Textile Reinforced Concrete (TRC) exhibit a physically nonlinear response due to the strain-hardening behavior of the composite. For the simulation of thin walled TRC structures, an anisotropic damage-based material model of a microplane type has been used to reflect the propagation of fine, oriented cracks during the loading. In this paper a method for calibration and validation of a TRC cross section is proposed and demonstrated. After providing a brief summary of key assumptions of the material behavior, the calibration procedure using tensile test data is presented. Then the model is validated by simulation of a test on a TRC vault shell. The comparison is performed both for the load-displacement response and for the observed and calculated distributions of cracks. Finally, the feasibility and validity of the computational model is discussed. INTRODUCTION Textile Reinforced Concrete (TRC) can fulfill the demands of innovative structural designs by offering a high load bearing capacity and durability. A TRC cross section consists of fine-grained concrete layers and reinforcing layers of carbon or glass fabrics. Due to the non-corrosive reinforcement thin cross sections with a thickness of only a few centimeters can be realized. The textile reinforcement has a high form flexibility that enables also the construction of lightweight shell structures with curved shapes [1,2]. Its material characteristics make the composite material also highly attractive for various other fields of application such as ventilated facade elements or sandwich panels with TRC facings [3]. TRC as an inhomogeneous composite material exhibits an anisotropic crack formation which depends on the direction of the principle stress in a shell structure. Except of this damage-induced anisotropy, initial anisotropy due to the orientation of the fabrics can be observed as well. The tensile stress-strain response of the composite material exhibits a pronounced strain-hardening effect. In order to cover the anisotropic and nonlinear behavior of TRC, an anisotropic damage model of microplane type with smeared representation of finely distributed matrix cracks has been used in this paper. The model is based on the microplane damage model described in [4] and [5] that has been utilized for the application to TRC shells [6]. Figure 1 shows a procedure of calibration and validation of the model. On the left hand side a typical damage function is shown. This function determines the evolution of damage based on the direction of loading and is identified by an iterative calibration procedure which is described in [7]. Using this function, the experimental stress-strain curve from a 133

2 tensile test can be fully reproduced in the numerical simulation. The model has been validated by comparing the prediction with the TRC bending tests and slab tests with the same cross-sectional thickness and reinforcement ratio (Figure 1, right). In the present paper the ability of the anisotropic damage model to reproduce complex stress states within TRC shell structures is investigated using a large scale test of a TRC barrel-vault shell. The material model is implemented as a user subroutine for 4-node bilinear isoparametric finite shell elements with reduced integration in the commercial finite element software ABAQUS [8]. This implementation corresponds to a former implementation of the model for solid shell elements [9]. Figure 1: Schematic description of the procedure for calibration and validation of the nonlinear computational model The aim of this paper is to demonstrate the feasibility of the model in simulation of complex TRC shell structures. The capability of the model is discussed in terms of its ability to predict the crack formation and to estimate the load bearing capacity of the shell structure. CALIBRATION OF DAMAGE FUNCTION USING A TRC TENSILE TEST In order to calibrate the material model for TRC, a series of uniaxial tensile tests has been performed. Figure 2 right shows the TRC specimen with six layers of textile reinforcement made of carbon bonded with the fine-grained concrete matrix. Dimensions of the specimen are shown in Figure 2 left. Strain is measured by displacement gauges on both side of the specimen with a measuring length of 25 cm. 134

3 Figure 2: Geometry of tensile test specimen and position of the displacement gauges (left); cross-sectional layout with six layers of carbon textile fabrics (right) Figure 3: Damage function calibrated for the tensile test of TRC specimen (left) and stress-strain curves of tensile test corresponding to experiment and simulation (right) Figure 3 (left) shows the calibrated damage function with elasticity modulus E = MPa and Poisson s ratio ν = 0.2. The simulation of the tensile test shown in Figure 3 (right) performed with the calibrated damage function, showing the match between the stress-strain curves from the test and from the simulation. VALIDATION OF THE MODEL USING A TRC VAULT SHELL The TRC barrel-vault shell shown in Figure 4 was fabricated with the cross-sectional layout corresponding to Figure 2 (right) 135

4 Figure 4: Dimensions of the tested and simulated TRC barrel-vault shell The thickness of the shell was 2 cm containing 6 layers of equidistantly placed fabric layers of carbon. The shell was placed on four steel supports providing a radial and tangential constraint at each support. This structure was tested under a radial loading applied by means of a steel stripe which was pulled using a hydraulic cylinder on each side as shown in Figure 5. Two different types of supports have been used during a loading-unloading-reloading scenario. At the first loading step up to a force of F = 60 kn in the hydraulic cylinders, the radial displacement was allowed at the supports. After that, the shell was unloaded and the radial displacements were fixed by means of screwed bolts in order to prevent uplifting of the shell during the test. With the fixed radial displacements the shell was reloaded up to the failure load (Figure 6). 136

5 Figure 5: Test setup for the measurement of the load bearing capacity of the investigated TRC barrel-vault shell (up), tested prototype in the laboratory (down left) and detail of load introduction via hydraulic cylinders (down right) The chosen loading scenario led to finely distributed crack pattern throughout large zones of the shell as intended by the design of the test setup. The highest tensile stresses developed along the shell edges in the longitudinal direction where also the ultimate failure of the shell occurred. The ultimate breaking strain of the composite in these regions was measured using two displacement gauges as shown in Figure 5 (top). The numerically obtained damage of the shell at the ultimate load is shown in Figure 6. In agreement to the experiment, largest values of the damage indicator occur in the middle of the longitudinal shell edges. Moreover, due to the chosen loading and boundary conditions the structure was also exhibiting damage zones at the front and at the back side of the structure. Also this result agrees well with the observation in the test and documents the ability of the model to reproduce the matrix fragmentation process within a complex structural geometry and boundary conditions. 137

6 Figure 6: Damage contour in the TRC vault shell under load F and the loading-unloading path with the corresponding change in the support conditions Figure 7: Load-tensile strain curve from the simulation of the TRC barrel-vault shell compared to the experimental results for the left and right side of the shell (unloading branch is not shown) A qualitative comparison between test and simulation is provided in Figure 7 showing the load F and the corresponding strain measured by the two displacement gauges at the longitudinal edges of the shell is plotted in Figure 7. The applied loading history is sketched in the diagram in Figure 6 containing the loading, unloading and reloading branches. The calculated prediction slightly underestimates the measured response as shown in Figure 7. Obviously, the test results are not perfectly symmetric. Further improvements and detailing of the numerical model including the sensitivity of the response with respect to the slight perturbations with respect to the geometry will be 138

7 included in the next phase of analysis. Yet, the shown results demonstrate the ability of the model to capture the trend of the strong nonlinear structural response for the described loading-unloading-reloading scenario. SUMMARY In this paper a calibration of an anisotropic damage model for the simulation of TRC shell structures with a given material properties, cross-section and textile fabric reinforcement is presented. This model is based on microplane damage model and cares for the anisotropy and physical nonlinearity of textile reinforced concrete. After the calibration step, model was validated by simulation of a test on a TRC vault shell. The model has shown a good suitability in representation of fine and discrete cracks. Results from the simulation show also a good correspondence to the experimental results in the estimation of load bearing capacity. ACKNOWLEDGMENT The financial support of the German Research Foundation (DFG) within DFG project CH 276/2-2 is gratefully acknowledged. REFERENCES 1. A. Scholzen, R. Chudoba, J. Hegger. Thin-walled shell structure made of textile reinforced concrete; Part I: structural design and construction. Structural Concrete, 16(1), 2015, DOI: /suco (in press). 2. A. Scholzen, R. Chudoba, J. Hegger. Thin-walled shell structure made of textile reinforced concrete; Part II: experimental characterization, ultimate limit state assessment and numerical simulation. Structural Concrete, 16(1), 2015, DOI: /suco (in press) 3. A. Shams, M. Horstmann, J. Hegger. Experimental investigations on textile-reinforced concrete (TRC) sandwich sections. Composite Structures, Vol. 118, pp , December I. Carol and Z. P. Bažant. Damage and plasticity in microplane theory. International Journal of Solids and Structures, 34(29), pp , M. Jirásek. Comments on microplane theory. Mechanics of Quasibrittle Materials and Structures, Hermes Science Publications, pages 55-77, E. Sharei, A. Scholzen, R. Chudoba and J. Hegger. Anisotropic Damage Model for the Numerical Simulation of Textile Reinforced Concrete Shell Structures", The Twelfth International Conference on Computational Structures Technology, B.H.V. Topping and P. Iványi, (Editors), Civil- Comp Press, Stirlingshire, United Kingdom, paper 9, R. Chudoba and A. Scholzen. Modeling of reinforced cementitious composites using the microplane damage model in combination with the stochastic cracking theory. Proceedings of EURO-C 2010, Rohrmoos/Schladming, Austria, March ABAQUS User Subroutines Reference Manual, Version 6.11, Dassault Systèmes Simulia Corp., Providence, RI, USA, A. Scholzen, R. Chudoba, J. Hegger, Calibration and validation of a Microplane damage model for cement-based composite applied to Textile Reinforced Concrete, International Conference on Recent Advances in Nonlinear Models - Structural Concrete Applications, H. Barros, R. Faria and C. Ferreira (Editors), pp ,

8 140

Chapter 7. Finite Elements Model and Results

Chapter 7. Finite Elements Model and Results Chapter 7 Finite Elements Model and Results 7.1 Introduction In this chapter, a three dimensional model was presented. The analytical model was developed by using the finite elements method to simulate

More information

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials P. Suthiwarapirak & T. Matsumoto The University of Tokyo, Tokyo, Japan. ABSTRACT: The present paper considers the

More information

CHAPTER 5 FINITE ELEMENT MODELLING

CHAPTER 5 FINITE ELEMENT MODELLING 53 CHAPTER 5 FINITE ELEMENT MODELLING 5.1 GENERAL Reinforced concrete structures are largely employed in engineering practice in a variety of situations and applications. In most cases these structures

More information

(1) (1) (1) P, Ali Shams P. Abstract. fine-grained. textile

(1) (1) (1) P, Ali Shams P. Abstract. fine-grained. textile P 2 nd International RILEMM Conference on Strain Hardening Cementitious Composites 12-144 Decemberr 2011, Rio de d Janeiro, Brazil APPLICATIONN POTENTIAL OF TEXTILE REINFORCED CONCRETE Josef Hegger P (1)

More information

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC H.W. Reinhardt, M. Krueger Constructions Materials Institute, University of Stuttgart, Germany Abstract Tests on fine grain concrete plates with textile

More information

Ductile Fiber Reinforced Panels for Seismic Retrofit

Ductile Fiber Reinforced Panels for Seismic Retrofit 9 Ductile Fiber Reinforced Panels for Seismic Retrofit Keith E. Kesner School of Civil & Environmental Engineering, Cornell University Research Supervisor: Sarah L. Billington, Assistant Professor Summary

More information

SHEAR STRENGTHENING OF PRESTRESSED CONCRETE BEAMS WITH TEXTILE REINFORCED CONCRETE

SHEAR STRENGTHENING OF PRESTRESSED CONCRETE BEAMS WITH TEXTILE REINFORCED CONCRETE SHEAR STRENGTHENING OF PRESTRESSED CONCRETE BEAMS WITH TEXTILE REINFORCED CONCRETE Martin Herbrand, RWTH Aachen University, Institute of Structural Concrete, Mies-van-der-Rohe Str. 1, 52074 Aachen, Germany,

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 NUMERICAL MODELING FOR STRUCTURAL BEHAVIOR OF BRIDGE DECK BARRIERS MADE OF FIBER REINFORCED CONCRETE Saman Hedjazi Ryerson University, Canada Hamidreza Khederzadeh

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS

CHAPTER 7 FINITE ELEMENT ANALYSIS 189 CHAPTER 7 FINITE ELEMENT ANALYSIS 7.1 SCOPE In Engineering applications, the physical response of the structure to the system of external forces is very much important. Understanding the response of

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

Steel-Fibre-Reinforced Concrete Pavements

Steel-Fibre-Reinforced Concrete Pavements Concrete Communication Conference 1-2 September 2008, University of Liverpool Steel-Fibre-Reinforced Concrete Pavements Naeimeh Jafarifar, Kypros Pilakoutas, Kyriacos Neocleous Department of Civil and

More information

STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED CONCRETE ONE-WAY SLABS

STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED CONCRETE ONE-WAY SLABS Fourth Asia-Pacific Conference on FRP in Structures (APFIS 13) 11-13 December 13, Melbourne, Australia 13 International Institute for FRP in Construction STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED

More information

Title: Large Deflections

Title: Large Deflections Na Hrebenkach 55, 150 00 Prague 5, Czech Republic Phone.: +420 220 610 018, Fax: +420 220 612 227 E-mail: cervenka@cervenka.cz Web: http://www.cervenka.cz Title: Large Deflections Report number: 2010-06-09-0018

More information

Failure Mechanism for Large-Sized Grouted Anchor Bolt under Tensile Load

Failure Mechanism for Large-Sized Grouted Anchor Bolt under Tensile Load Failure Mechanism for Large-Sized Grouted Anchor Bolt under Tensile Load Nam-Ho Lee 1), Il-Hwan Moon 1), and In-Soo Ju 1) 1) Department of Civil/Architectural Engineering, Korea Power Engineering Company,

More information

The Use of Sustainable Materials for Quick Repair of Aging Bridges

The Use of Sustainable Materials for Quick Repair of Aging Bridges The Use of Sustainable Materials for Quick Repair of Aging Bridges Phase II Final Report PI: Azadeh Parvin, D.Sc. Associate Professor Department of Civil Engineering College of Engineering Prepared for

More information

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites

Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites Effect of fiber fatigue rupture on bridging stress degradation in fiber reinforced cementitious composites T. Matsumoto, P. Chun, & P. Suthiwarapirak The University of Tokyo, Tokyo, Japan. ABSTRACT: This

More information

INELASTIC ANALYSIS OF BARC PRESTRESSED CONCRETE CONTAINMENT MODEL

INELASTIC ANALYSIS OF BARC PRESTRESSED CONCRETE CONTAINMENT MODEL 2th International Conference on Structural Mechanics in Reactor Technology (SMiRT 2) Espoo, Finland, August 9-14, 29 SMiRT 2-Division V, Paper 1885 INELASTIC ANALYSIS OF BARC PRESTRESSED CONCRETE CONTAINMENT

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF PROGRESSIVE FAILURE OF BOLTED SINGLE-LAP JOINTS OF WOVEN REINFORCED COMPOSITE

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF PROGRESSIVE FAILURE OF BOLTED SINGLE-LAP JOINTS OF WOVEN REINFORCED COMPOSITE 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 NUMERICAL AND EXPERIMENTAL INVESTIGATION OF PROGRESSIVE FAILURE OF BOLTED SINGLE-LAP JOINTS OF WOVEN REINFORCED COMPOSITE

More information

Local buckling of steel and carbon fibre reinforced plastic plates restrained by concrete

Local buckling of steel and carbon fibre reinforced plastic plates restrained by concrete Local buckling of steel and carbon fibre reinforced plastic plates restrained by concrete B. Uy', C.S. A d and T.Yang' 'Schoolof Civil and Environmental Engineering, The University of New South Wales,

More information

MODELING OF CARBON FIBER REINFORCED POLYMER (CFRP) STRENGTHENED REINFORCED CONCRETE (RC) BEAMS: EFFECT OF BEAM SIZE AND CFRP THICKNESS

MODELING OF CARBON FIBER REINFORCED POLYMER (CFRP) STRENGTHENED REINFORCED CONCRETE (RC) BEAMS: EFFECT OF BEAM SIZE AND CFRP THICKNESS International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 6, June 217, pp. 57 516, Article ID: IJCIET_8_6_56 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=6

More information

RE-EXAMINATION OF NIST ACOUSTIC EMISSION SENSOR CALIBRATION: Part I Modeling the loading from glass capillary fracture

RE-EXAMINATION OF NIST ACOUSTIC EMISSION SENSOR CALIBRATION: Part I Modeling the loading from glass capillary fracture RE-EXAMINATION OF NIST ACOUSTIC EMISSION SENSOR CALIBRATION: Part I Modeling the loading from glass capillary fracture Abstract BRIAN BURKS Mechanical and Materials Engineering Department, University of

More information

Flexural behaviour of a polymeric foam/glass-fibre composite: FE modelling and experimental testing

Flexural behaviour of a polymeric foam/glass-fibre composite: FE modelling and experimental testing Flexural behaviour of a polymeric foam/glass-fibre composite: FE modelling and experimental testing G. Belingardi, M. P. Cavatorta & L. Peroni Department of Mechanical Engineering, Politecnico di Torino,

More information

Experimental And Numerical Study On Softening And Pinching Effects Of Reinforced Concrete Frame

Experimental And Numerical Study On Softening And Pinching Effects Of Reinforced Concrete Frame IOSR Journal of Engineering (IOSRJEN) ISSN (e): 225-321, ISSN (p): 2278-8719 Vol. 4, Issue 5 (May. 214), V2 PP 1-5 www.iosrjen.org Experimental And Numerical Study On Softening And Pinching Effects Of

More information

BEARING BEHAVIOR OF IMPREGNATED TEXTILE REINFORCEMENT

BEARING BEHAVIOR OF IMPREGNATED TEXTILE REINFORCEMENT BEARING BEHAVIOR OF IMPREGNATED TEXTILE REINFORCEMENT Sergej Rempel (1), Christian Kulas (2), Josef Hegger (1), (1) RWTH Aachen University, Institute of Structural Concrete, Germany, (2) solidian GmbH,

More information

Shear force strengthening of large reinforcedconcrete components using textile-reinforced

Shear force strengthening of large reinforcedconcrete components using textile-reinforced Shear force strengthening of large reinforcedconcrete components using textile-reinforced concrete (TRC) F. Schladitz, A. Brückner, R. Ortlepp, M. Curbach Institute of Concrete Structures, Technische Universität

More information

EXPERIMENTAL AND NUMERICAL SIMULATIONS OF COLLAPSE OF MASONRY ARCHES

EXPERIMENTAL AND NUMERICAL SIMULATIONS OF COLLAPSE OF MASONRY ARCHES EXPERIMENTAL AND NUMERICAL SIMULATIONS OF COLLAPSE OF MASONRY ARCHES Łukasz Hojdys*, Tomasz Kamiński + & Piotr Krajewski* * Cracow University of Technology, Institute for Building Materials and Structures

More information

Bond efficiency factor at different textile geometries reinforced concrete beams

Bond efficiency factor at different textile geometries reinforced concrete beams Bond efficiency factor at different textile geometries reinforced concrete beams [Fahed Alrshoudi, Philip Purnell] Abstract-- Textile reinforced non-structural concrete member has been commonplace in last

More information

FLEXURAL BEHAVIOR OF LIGHTWEIGHT AGGREGATEE CONCRETE ONE-WAY

FLEXURAL BEHAVIOR OF LIGHTWEIGHT AGGREGATEE CONCRETE ONE-WAY International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 13, December 2018, pp.277 289, Article ID: IJCIET_09_13_0299 Available online at http://www.ia aeme.com/ijciet/issues.asp?jtype=ijciet&vtype=

More information

COMPARISON BETWEEN INVERSE ANALYSIS PROCEDURE RESULTS AND EXPERIMENTAL MEASUREMENTS OBTAINED FROM UHPFRC FOUR-POINT BENDING TESTS

COMPARISON BETWEEN INVERSE ANALYSIS PROCEDURE RESULTS AND EXPERIMENTAL MEASUREMENTS OBTAINED FROM UHPFRC FOUR-POINT BENDING TESTS COMPARISON BETWEEN INVERSE ANALYSIS PROCEDURE RESULTS AND EXPERIMENTAL MEASUREMENTS OBTAINED FROM UHPFRC FOUR-POINT BENDING TESTS J.Á. López (1), P. Serna (1), J. Navarro-Gregori (1) and H. Coll (2) (1)

More information

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT Engineering Review Vol. 32, Issue 3, 147-155, 2012. 147 FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT S. * G. Turkalj Department of Engineering Mechanics, Faculty of Engineering,

More information

Experimental and analytical study of the steel-concrete-steel beam under flexural behavior

Experimental and analytical study of the steel-concrete-steel beam under flexural behavior Experimental and analytical study of the steel-concrete-steel beam under flexural behavior Dr. Amjad Hameed Abdul-Razaq Civil Eng. Dept. College of Engineering, Kufa University Al-Najaf, Iraq E-mail: amjad881980@yahoo.com

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

Example 8 - Hopkinson Bar

Example 8 - Hopkinson Bar Example 8 - Hopkinson Bar Summary Precise data for high strain rate materials is necessary to enable the accurate modeling of high-speed impacts. The high strain rate characterization of materials is usually

More information

MODELING THE BOND-SLIP BEHAVIOR OF CONFINED LARGE- DIAMETER REINFORCING BARS

MODELING THE BOND-SLIP BEHAVIOR OF CONFINED LARGE- DIAMETER REINFORCING BARS COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 2011

More information

THE EFFECT OF THE TYPES OF SUPPORTS IN THE DISTRIBUTION OF LOADS BETWEEN THE GIRDERS OF THE BRIDGE

THE EFFECT OF THE TYPES OF SUPPORTS IN THE DISTRIBUTION OF LOADS BETWEEN THE GIRDERS OF THE BRIDGE THE EFFECT OF THE TYPES OF SUPPORTS IN THE DISTRIBUTION OF LOADS BETWEEN THE GIRDERS OF THE BRIDGE Mohammed Hassan, Khalil AL-Bukhaiti * and Deshan Shan School of Civil Engineering, south west Jiaotong

More information

Axial loading of small scale sandwich panels with textile reinforced cementitious faces monitored by DIC

Axial loading of small scale sandwich panels with textile reinforced cementitious faces monitored by DIC Serviceability in Cement-based Materials and Structures (EAC2) 12-14 September 217, ULB-VUB, Brussels, Belgium Axial loading of small scale sandwich panels with textile reinforced cementitious faces monitored

More information

Non-Linear Damping Analysis of Sandwich. Composite Structures

Non-Linear Damping Analysis of Sandwich. Composite Structures Contemporary Engineering Sciences, Vol. 4, 2011, no. 1, 37-42 Non-Linear Damping Analysis of Sandwich Composite Structures A. Fereidoon 1, A. Ghoddosian 1 and A. Hazrati Niyari *2 1 Faculty of Mechanical

More information

Oriented fibrous structures for concrete reinforcement

Oriented fibrous structures for concrete reinforcement Oriented fibrous structures for concrete reinforcement Mario de Araujo PhD, Senior Professor, School of Engineering, University of Minho, Portugal Raul Fangueiro PhD, Auxiliary Professor, Department of

More information

Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete

Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete Jongbum Park, Sung-Yong Park, Keunhee Cho, Sung-Tae Kim, Kihyon Kwon, Changbin Joh Researcher, Structural Engineering

More information

Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete filled tubular structures

Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete filled tubular structures Tubular Structures XV Batista, Vellasco & Lima (eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02837-1 Effect of bolt gauge distance on the behaviour of anchored blind bolted connection to concrete

More information

Prestressed Sandwich Beams with UHPC Layers

Prestressed Sandwich Beams with UHPC Layers Author(s) & Affiliation: Alexander Stark, RWTH Aachen University (Germany), astark@imb.rwth-aachen.de Martin Classen, RWTH Aachen University (Germany), mclassen@imb.rwth-aachen.de Abstract: Sandwich panels

More information

STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS

STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS D. C. L. Teo 1, M. A. Mannan 2, V. J. Kurian Civil Engineering Program, School of Engineering and Information Technology Universiti Malaysia Sabah, 88999

More information

Residual Strengths of Reinforced Concrete Beams With Heavy Deterioration

Residual Strengths of Reinforced Concrete Beams With Heavy Deterioration Research Journal of Applied Sciences, Engineering and Technology 2(8): 798-805, 2011 ISSN: 2040-7467 Maxwell Scientific Organization, 2011 Received: June 09, 2011 Accepted: July 18, 2011 Published: August

More information

Deformation of Foundation Structure and their Experimental Testing

Deformation of Foundation Structure and their Experimental Testing Deformation of Foundation Structure and their Experimental Testing SMIRAKOVA MARTINA, MATECKOVA PAVLINA, BUCHTA VOJTECH Department of Building Structures, Faculty of Civil Engineering VŠB-Technical University

More information

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Numerical and Experimental Behaviour of Moment Resisting

More information

Finite element modeling of impact strength of laser welds for automotive applications

Finite element modeling of impact strength of laser welds for automotive applications Safety and Security Engineering II 375 Finite element modeling of impact strength of laser welds for automotive applications N. Kuppuswamy 1, R. Schmidt 2, F. Seeger 1 & S. Zhang 1 1 DaimlerChrysler AG

More information

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES Benjamin Raison R; Freeda Christy C PG student, School of Civil Engineering, Karunya University. Associate Professor, School of Civil Engineering, Karunya

More information

THE INFLUENCE OF RESIDUAL STRESS FIELDS AND SHEET THICKNESS ON STRESS DISTRIBUTIONS IN RIVETED JOINT

THE INFLUENCE OF RESIDUAL STRESS FIELDS AND SHEET THICKNESS ON STRESS DISTRIBUTIONS IN RIVETED JOINT Journal of KONES Powertrain and Transport, Vol. 7, No. 2 THE INFLUENCE OF RESIDUAL STRESS FIELDS AND SHEET THICKNESS ON STRESS DISTRIBUTIONS IN RIVETED JOINT El bieta Szymczyk Military University of Technology

More information

FEM performance of concrete beams reinforced by carbon fiber bars

FEM performance of concrete beams reinforced by carbon fiber bars FEM performance of concrete beams reinforced by carbon fiber bars Hashim Hasan Building and Construction Engineering Department, University of Technology, Baghdad, Iraq Abstract. Concrete structures may

More information

Numerical Analysis and Experimental Studies on Welded Joint for Buildings

Numerical Analysis and Experimental Studies on Welded Joint for Buildings 3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 27 16 Numerical Analysis and Experimental Studies on Welded Joint for Buildings D. DAN, V. STOIAN, T. NAGY-GYORGY,

More information

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 87 CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 7.1 GENERAL With the advances in modern computing techniques, finite element analysis has become a practical and powerful tool for engineering analysis and

More information

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC)

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) H. Murata 1), J. Niwa 2), and C. Sivaleepunth 3) 1) Master course 2nd year

More information

Numerical Analysis of the Durability of Retaining Wall with Anchor

Numerical Analysis of the Durability of Retaining Wall with Anchor Numerical Analysis of the Durability of Retaining Wall with Anchor Qingyu Meng 1, 2, Chao Li 1, 2, Hongbo Zhang 1, 2, Xin Li 1, 2 1. School of Civil Engineering, Shandong University, Jinan, 250061, China

More information

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM Donna CHEN Ph.D. Candidate University of Calgary, Department of Civil Engineering 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada dsmchen@ucalgary.ca

More information

DOUBLE-CURVED TEXTILE REINFORCED CONCRETE PANELS WITH TENSILE STRAIN--HARDENING CHARACTERISTICS

DOUBLE-CURVED TEXTILE REINFORCED CONCRETE PANELS WITH TENSILE STRAIN--HARDENING CHARACTERISTICS DOUBLE-CURVED TEXTILE REINFORCED CONCRETE PANELS WITH TENSILE STRAIN--HARDENING CHARACTERISTICS Marijn Kok (1), Roel Schipper (1), Steffen Grünewald (1) and Rob Nijsse (1) (1) Delft University of Technology,

More information

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES Sung Woo Lee 1, Sokhwan Choi 2, Byung-Suk Kim 3, Young-Jin Kim 4, Sung-Yong Park 5 1 Prof., Dept of Civil & Environmental

More information

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017 ABC-UTC Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC ABSTRACT March, 2017 Accelerated Bridge Construction (ABC) is a method of bridge construction designed

More information

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION D. Polyzois, S. Ibrahim, V. Burachynsky, and S. K. Hassan Department of Civil and Geological

More information

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing R. I. Liban, N. Tayşi 1 Abstract This paper deals with a nonlinear finite element analysis to examine the behavior

More information

NUMERICAL ANALYSIS OF BUCKLING AND POST BUCKLING BEHAVIOR OF SINGLE HAT STIFFENED CFRP PANEL

NUMERICAL ANALYSIS OF BUCKLING AND POST BUCKLING BEHAVIOR OF SINGLE HAT STIFFENED CFRP PANEL NUMERICAL ANALYSIS OF BUCKLING AND POST BUCKLING BEHAVIOR OF SINGLE HAT STIFFENED CFRP PANEL Bijapur Shahajad Alam 1, Dr. Smt. G. Prasanthi 2 1 PG Research Scholar, Product Design, Dept. of Mechanical

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Analysis of Jointed Plain Concrete Pavement Containing RAP

Analysis of Jointed Plain Concrete Pavement Containing RAP Analysis of Jointed Plain Concrete Pavement Containing RAP Kukjoo Kim 1, Mang Tia 1,and James Greene 2 1 (Department of Civil and Coastal Engineering, University of Florida, United States) 2 (State Materials

More information

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives and Scope of Work... 2 1.2.1 Experimental Phase... 2 1.2.2 Analytical Phase... 3 1.3 Outline of the Report... 4 SECTION

More information

Numerical Analysis of Strengthening R.C Slabs with Opening using Ferrocement Laminates

Numerical Analysis of Strengthening R.C Slabs with Opening using Ferrocement Laminates Numerical Analysis of Strengthening R.C Slabs with Opening using Ferrocement Laminates Mahmoud Elsayed Assistant Professor, Civil Engineering Department, Faculty of Engineering Fayoum University Fayoum,

More information

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM S.D. Vanjara 2, J.M. Dave 1, Professor 1, Department of Mechanical Engineering, Institute of Technology, Nirma university

More information

ZANCO Journal of Pure and Applied Sciences

ZANCO Journal of Pure and Applied Sciences ZANCO Journal of Pure and Applied Sciences The official scientific journal of Salahaddin University-Erbil ZJPAS (2016), 28 (6); 65-56 http://doi.org/10.21271/zjpas.28.6.7 Punching Strength of GFRP Reinforced

More information

Punching shear strength of RC slabs with AFRPm and PVA short-fiber-mixed shotcrete

Punching shear strength of RC slabs with AFRPm and PVA short-fiber-mixed shotcrete Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Punching shear of RC slabs with AFRPm and PVA short-fiber-mixed shotcrete F. Taguchi

More information

Finite element analysis on steel-concrete-steel sandwich composite beams with J-hook shear connectors

Finite element analysis on steel-concrete-steel sandwich composite beams with J-hook shear connectors Finite element analysis on steel-concrete-steel sandwich composite beams with J-hook shear connectors Jia-bao Yan 1), J.Y.Richard Liew 2), Min-hong Zhang 3), and Zhenyu Huang 4) 1)~4) Department of Civil

More information

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL

CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL CHAPTER 4 STRENGTH AND STIFFNESS PREDICTIONS OF COMPOSITE SLABS BY FINITE ELEMENT MODEL 4.1. General Successful use of the finite element method in many studies involving complex structures or interactions

More information

PROGRESSIVE FAILURE OF PULTRUDED FRP COLUMNS

PROGRESSIVE FAILURE OF PULTRUDED FRP COLUMNS 10th International Conference on Composite Science and Technology ICCST/10 A.L. Araújo, J.R. Correia, C.M. Mota Soares, et al. (Editors) IDMEC 2015 PROGRESSIVE FAILURE OF PULTRUDED FRP COLUMNS Francisco

More information

An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web

An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web An experimental investigation of local web buckling strength and behaviour of compressive flange coped beam connections with slender web Michael C. H. Yam 1), *Ke Ke 2), Angus C. C. Lam 3), Cheng Fang

More information

COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE

COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE Arturs Lukasenoks, Arturs Macanovskis, Andrejs Krasnikovs Riga Technical University, Latvia

More information

Finite Element Simulation of Molding Process of Cold Bending Pipe

Finite Element Simulation of Molding Process of Cold Bending Pipe Finite Element Simulation of Molding Process of Cold Bending Pipe Dongshen He 1, Jie Yang 1, Liquan Shen 2, Gehong Liu 1 1 School of Mechanical Engineering, Southwest Petroleum University, Chengdu, 610500,

More information

Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials

Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials Dimitri Soteropoulos, Konstantine A. Fetfatsidis, and James A. Sherwood, University of Massachusetts at Lowell Department of Mechanical

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 MOMENT REDISTRIBUTION OF GFRP-RC CONTINUOUS T-BEAMS S. M. Hasanur Rahman M.Sc. Student, University of Manitoba, Canada Ehab El-Salakawy Professor and CRC in Durability

More information

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method Musthafa Akbar a,* and Aditya Sukma Nugraha b a) Department of Mechanical Engineering, Faculty of Engineering,

More information

Numerical Modelling of Shear Connections for Composite Slabs

Numerical Modelling of Shear Connections for Composite Slabs The Ninth International Conference on Computational Structures Technology (CST2008) Athens, Greece, 2-5 September 2008 Numerical Modelling of Shear Connections for Composite Slabs Noémi Seres, Attila László

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

SOIL PRESSURE IN EMBANKMENT STABILIZATIONS

SOIL PRESSURE IN EMBANKMENT STABILIZATIONS SOIL PRESSURE IN EMBANKMENT STABILIZATIONS Analysis of the 3D shadowing effect of piles Dipl.-Ing. M. Filus Fides DV-Partner GmbH ABSTRACT: Pile checks required by the codes alone are usually not sufficient

More information

Residual stress influence on material properties and column behaviour of stainless steel SHS

Residual stress influence on material properties and column behaviour of stainless steel SHS Residual stress influence on material properties and column behaviour of stainless steel SHS Michal Jandera Josef Macháček Czech Technical University in Prague residual stresses: austenitic steel grade

More information

Nonlinear Analysis of Shear Dominant Prestressed Concrete Beams using ANSYS

Nonlinear Analysis of Shear Dominant Prestressed Concrete Beams using ANSYS Nonlinear Analysis of Shear Dominant Prestressed Concrete Beams using ANSYS Job Thomas Indian Institute of Science, Bangalore, India Ananth Ramaswamy Indian Institute of Science, Bangalore, India Abstract

More information

Comparisons to Tests on Reinforced Concrete Members

Comparisons to Tests on Reinforced Concrete Members 82 Chapter 6 Comparisons to Tests on Reinforced Concrete Members Finite element (FE) model predictions of laboratory test results of reinforced concrete members with various confinement methods are presented

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT M. A. Musmar 1, M. I. Rjoub 2 and M. A. Abdel Hadi 1 1 Department of Civil Engineering, Al-Ahliyya Amman University,

More information

3D analysis of solid reinforced concrete beams subjected to combined load of bending, torsion and shear

3D analysis of solid reinforced concrete beams subjected to combined load of bending, torsion and shear ational Methods and Experimental Measurements XIII 85 3D analysis of solid reinforced concrete beams subjected to combined load of bending, torsion and shear A. S. Alnuaimi Civil and Architectural Engineering,

More information

Textile reinforced concrete overview, experimental and theoretical investigations

Textile reinforced concrete overview, experimental and theoretical investigations Textile reinforced concrete overview, experimental and theoretical investigations U. Häussler-Combe & F. Jesse & M. Curbach Department of Civil Engineering, Dresden University of Technology, Germany ABSTRACT:

More information

Analysis and optimization of Composite Sandwich Structures using Optistruct

Analysis and optimization of Composite Sandwich Structures using Optistruct Analysis and optimization of Composite Sandwich Structures using Optistruct Venkatesh. P 1 1 M. Tech Student, Dept of Mechanical Engineering, Malla Reddy College of Engineering & Technology, Secunderabad

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

Modelling of Sheared Behaviour Bolts Across Joints

Modelling of Sheared Behaviour Bolts Across Joints University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2004 Modelling of Sheared Behaviour Bolts Across Joints H. Jalalifar University of Wollongong

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Ofonime A. Harry Institute for Infrastructure and Environment, University of Edinburgh, UK Department of Civil Engineering Ndifreke

More information

SIMULATION OF DELAMINATION AND COLLAPSE OF A FIRE EXPOSED FRP COMPOSITE BULKHEAD

SIMULATION OF DELAMINATION AND COLLAPSE OF A FIRE EXPOSED FRP COMPOSITE BULKHEAD 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 SIMULATION OF DELAMINATION AND COLLAPSE OF A FIRE EXPOSED FRP COMPOSITE BULKHEAD Kim Olsson 1, Johan Sandström 2, Joakim

More information

LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS

LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS ICAS2 CONGRESS LOAD RESPONSE AND FAILURE OF THICK RTM COMPOSITE LUGS Markus Wallin 1, Olli Saarela 1 and Francesco Pento 2 1 Helsinki University of Technology and 2 Patria Finavicomp Keywords: composite

More information

Analytical Calculation of Load Tests of Curved Ceiling Elements Made of Carbon Concrete and Nonwovens Impregnated with Concrete

Analytical Calculation of Load Tests of Curved Ceiling Elements Made of Carbon Concrete and Nonwovens Impregnated with Concrete Proceedings Analytical Calculation of Load Tests of Curved Ceiling Elements Made of Carbon Concrete and Nonwovens Impregnated with Concrete Tilo Senckpiel * and Ulrich Häußler-Combe Institute of Concrete

More information

CHAPTER 8 FLEXURAL BEHAVIOUR OF FIBRE REINFORCED GEOPOLYMER COMPOSITE R.C. BEAMS

CHAPTER 8 FLEXURAL BEHAVIOUR OF FIBRE REINFORCED GEOPOLYMER COMPOSITE R.C. BEAMS 170 CHAPTER 8 FLEXURAL BEHAVIOUR OF FIBRE REINFORCED GEOPOLYMER COMPOSITE R.C. BEAMS 8.1 GENERAL An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional

More information

SIMPLE INVESTIGATIONS OF TENSILE MEMBRANE ACTION IN COMPOSITE SLABS IN FIRE

SIMPLE INVESTIGATIONS OF TENSILE MEMBRANE ACTION IN COMPOSITE SLABS IN FIRE SIMPLE INVESTIGATIONS OF TENSILE MEMBRANE ACTION IN COMPOSITE SLABS IN FIRE By Ahmed Allam 1, Ian Burgess 1 and Roger Plank 1 Department of Civil and Structural Engineering, University of Sheffield, UK

More information

Ensuring sufficient robustness to resist

Ensuring sufficient robustness to resist Performance of precast concrete moment frames subjected to column removal: Part 2, computational analysis Yihai Bao, Joseph A. Main, H. S. Lew, and Fahim Sadek This paper presents a computational study

More information

RESTORATION OF THE HISTORICAL CONCRETE-GLASS WINDOWS OF THE TOWN-HALL IN AACHEN

RESTORATION OF THE HISTORICAL CONCRETE-GLASS WINDOWS OF THE TOWN-HALL IN AACHEN RESTORATION OF THE HISTORICAL CONCRETE-GLASS WINDOWS OF THE TOWN-HALL IN AACHEN Sergej Rempel, Stephan Geßner, RWTH Aachen University, Institute of Structural Concrete, Miesvan-der-Rohe Str. 1, 52074 Aachen,

More information

NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS

NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS Andrej ANŽLIN 1, Tatjana ISAKOVIĆ 2 and Yasin FAHJAN 3 ABSTRACT Before the modern principles of earthquake engineering

More information

Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining

Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining Tereza Sajdlová, Radomír Pukl Červenka Consulting, Prague,

More information

HYBRID COMPOSITE REPAIR for OFFSHORE RISERS

HYBRID COMPOSITE REPAIR for OFFSHORE RISERS HYBRID COMPOSITE REPAIR for OFFSHORE RISERS O. O. Ochoa and C. Alexander Mechanical Engineering Texas A&M University College Station, TX 77840 oochoa@tamu.edu SUMMARY An innovative design based on integrated

More information