A Hydrologic Modeling Assessment of Haiti. by: Joshua Johnson 5/27/09

Size: px
Start display at page:

Download "A Hydrologic Modeling Assessment of Haiti. by: Joshua Johnson 5/27/09"

Transcription

1 A Hydrologic Modeling Assessment of Haiti by: Joshua Johnson 5/27/09

2 A. Research Description, Results, and Conclusions 1. Introduction According to the 2005 United Nations Human Poverty Index, Haiti ranks 70 out of the 103 least developed countries in the world (1). It is also the poorest country in the Western Hemisphere according to the CIA World Fact-Book (2). Haiti has been hampered by political strife for most of its history, and in more recent times has been inundated by multiple tropical storms. Environmental degradation by human activity in the form of mass deforestation (only 3% of original forests remain) has resulted in periodic flooding in many regions. It has also eroded away arable soils that were once used for farm land. These combined social, environmental and economic conditions have created a variety of difficulties for the Haitian people. If reforms were made regarding these issues it potentially could benefit the country as a whole. This report builds upon research completed by Fredline Ilorme that dealt with the use of remote sensing and GIS to quantify flood risk in the data poor region of Gonaives, Haiti (3). Haiti itself often is inundated by hurricanes and tropical storms. Flooding from these storms often drastically affects the Haitian population and countryside. This flooding has been made worse by the continued deforestation of the Haitian landscape, but it is not clear to what extent. This report takes steps toward better understanding that relationship. 2. Objectives The objectives of this research project were to contribute to the HEC-HMS hydrologic model developed by Fredline. This contribution was in the form of improved rainfall-runoff relationships ( runoff curve numbers ), based on historical forestation and land use practices for the Gonaives watershed. A better understanding of the socio-environ-economic conditions that have shaped modern day Haiti also developed from these efforts. A secondary objective of this project was to experience and document the reciprocal mentoring activities that were first described in the S-STEM program requirements. Over the course of this project, the research objectives slowly changed. Initially the project objectives were to develop a new hydrologic model for the Gonaives watershed and complete flood risk and vulnerability assessments based on the Haitian population. As the work progressed, however, it became evident that these goals

3 were not very realistic. This is explained in further detail in the mentoring mechanisms section of this paper. 3. Methods To determine forestation in the Gonaives watershed over time, two different maps were used. The first map was from 1970 and was acquired from the University of Texas Libraries (see Figure 1). The second, somewhat higher resolution map was acquired from the World Food Program website (see Figure 2). Additional maps were desired, but obtaining quality data proved more difficult than initially expected. Haiti is considered to be data poor and these maps were the best available that were freely available. Figure 1: Haiti 1970 Land Usage Map (5)

4 Figure 2: Haiti 2004 Land Usage Map (6) Each of these maps was then input into ArcGIS, and Geo-Referenced with the GIS shapefile and HEC-HMS watershed model developed by Fredline Ilorme. This model provided the shape and area as well as other physical characteristics of each of the four sub-basins in the Gonaives watershed modeled by Ilorme (see Figure 3).

5 Figure 3: HEC-HMS Sub-basin Model (3) An example of the 2004 land usage map Geo-Referenced with the sub-basin model can be seen in Figure 4 below. To accomplish this, the watershed and sub-basin lines were converted to polygons using the polygon tool in ArcGIS. Once this was completed, each subbasin area and land use composition was determined using the area calculation tool in ArcGIS (see Figure 5). The resulting land use composition and area calculations were then used to determine a Curve Number (CN) for each sub-basin. Curve Number estimation was based on comparison of land use categories and soil types to those in Table 8.3 in Water Resources Engineering by Ralph Wurbs and Wesley James (2002) (4). Note this reference provided CN values for soil condition II only. Estimate of CN values for soil condition III can be estimated using the following equation: CN(III) = [23*CN(II)] / [ *CN(II)] Soil condition III was characterized by heavy rainfall or light rainfall with low temperatures having occurred within the last 5 days, thus saturating the soil. This was assumed to represent conditions during a hurricane. Also, the NRCS soil classification of group B was selected. This soil group was characterized by moderate infiltration rates and consists primarily

6 of moderately fine to moderately coarse textured soils such as loess and sandy loam (4). This was the same soil classification selected in Ilorme s report. Figure 4: 2004 Land Usage Map overlaid with Gonaives Sub-basins Figure 5: Sub-basin area and land use compositional area example

7 4. Results and Discussion Tables of the land usage and area calculations for each sub-basin can be seen below. G1-R, G1-L, G0-L and GG are the designations of each of the sub-basins. Please note that all area calculations in Table 1 are in square kilometers. Table 1 shows the total area of each subbasin and its composition. For example, in 1970, sub-basin G1-R covered a total area of 127 square kilometers, and of that area 16.9 square kilometers was forested land. The difference between the watershed approximate area, calculated as the summation of the compositional areas in each sub-basin, and the watershed area determined as a whole provides an indication of the inaccuracies of determining the sub-basin compositional areas following the stated procedure in ArcGIS. Table 1: Area and Composition of Each Sub-Basin Table 2: Area and Composition by Percent of Each Sub-Basin Substantial reductions of forested area occurred from 1970 to 2004, especially in the G1- R and GG sub-basins. Substantial increases in croplands and savanna followed this decrease in forested areas, as illustrated in Table 2. The CN values for each land usage were as follows (4): Forest = 60; Scrub (some forest) = 56; Savanna (some pasture) = 79; Cropland = 74; Cropland

8 (some forest, pasture, scrub) = 62; Herbaceous (scrub) = 56; Cultivated (cropland); and Regularly Flooded Shrub or Herbaceous Cover = 56; Since the two maps used did not have identical land usage classification, some assumptions had to be made based on the definition of each land usage type. For example, herbaceous was considered to be the same or at least very similar to scrub. This seemed like a valid assumption because the natural vegetative environment was not likely to change substantially over the 34-year time frame under normal geological process. The only things that would change the land cover drastically were events such as wildfires and flooding, or human activities such as agriculture. Using these values, the weighted CN values were calculated for each sub-basin (see Table 3). Table 3: Weighted CN for each sub-basin based on land usage G1-R 64 G1-R 67 G1-L 61 G1-L 70 G0-L 64 G0-L 66 GG 63 GG 56 Next, the overall CN values were calculated for all the combined sub-basins based on the weighted area of each (see Table 4). Finally, these composite CN(II) values for 1970 and 2004 were input into the equation for CN(III), thus yielding the results in Table 5. These results are similar to the CN calculated by Ilorme of 79. As higher CN values correspond to more runoff, this is an indication that flood risk increased slightly in the Gonaives watershed from 1970 to 2004.

9 Table 4: CN for overall Gonaives watershed based on weighted area of each sub-basin. Table 5: Final Watershed CN values. 5. Conclusions Runoff Curve Numbers estimated in this study were comparable to the value approximated in an earlier study by Ilorme. The change in curve number from 80 in 1970 to 82 in 2004 suggests that the soils in the Gonaives watershed have become less able to retain water, and that flood risk has increased. Based on the land usage maps and changes in land use practices over the years, deforestation is likely to be, at least in part, responsible for these changes. Due to the relatively coarse resolution of the land use maps, it is difficult to estimate the true extent of deforestation, however, and significant uncertainty remains. If funds are available, higher resolution maps and areal photos should be obtained. It is perhaps surprising that Runoff Curve Numbers increased only slightly from 1970 to 2004, but this result may be due to inaccuracies in the maps, or else the Gonaives watershed was already converted to cultivated land, pasture, and scrub land by 1970.

10 6. Outcomes This work is provides a contribution to understanding of the watershed characteristics and land usage practices over time, and Runoff Curve Number approximation for the Gonaives watershed. These results will augment the MS report by Fredline Ilorme and provide the basis for future flood risk assessments. C. References F. Ilorme (2007). Flood Risk Assessment In Haiti Using Remote Sensing and Geographic Information Systems. Web site: 4. Author, Water Resources Engineering, Prentice-Hall of India, New Delhi, (image) 6. (image)

WMS Tools For Computing Hydrologic Modeling Parameters

WMS Tools For Computing Hydrologic Modeling Parameters WMS Tools For Computing Hydrologic Modeling Parameters Lesson 9 9-1 Objectives Use the drainage coverage as a basis for geometric parameters as well as overlaying coverages to compute important hydrologic

More information

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy 22 April 2015 NWA, Pune Exercise Objective: To determine hydrological Response of the given

More information

Appendix C Little Calumet River Watershed Curve Number Calculation

Appendix C Little Calumet River Watershed Curve Number Calculation Little Calumet River Watershed Curve Number Calculation Introduction SCS hydrology uses the empirical curve number (CN) parameter as a part of calculating runoff volumes based on landscape characteristics

More information

SURFACE RUNOFF ESTIMATION BY SCS CURVE NUMBER METHOD USING GIS FOR RUPEN-KHAN WATERSHED, MEHSANA DISTRICT, GUJARAT

SURFACE RUNOFF ESTIMATION BY SCS CURVE NUMBER METHOD USING GIS FOR RUPEN-KHAN WATERSHED, MEHSANA DISTRICT, GUJARAT J. Indian Water Resour. Soc., Vol. 36, No. 4, Oct., 2016 SURFACE RUNOFF ESTIMATION BY SCS CURVE NUMBER METHOD USING GIS FOR RUPEN-KHAN WATERSHED, MEHSANA DISTRICT, GUJARAT Dhvani Tailor 1 and Narendra

More information

Chapter 2: Conditions in the Spring Lake Watershed related to Stormwater Pollution

Chapter 2: Conditions in the Spring Lake Watershed related to Stormwater Pollution Chapter 2: Conditions in the Spring Lake Watershed related to Stormwater Pollution To identify the primary causes and consequences of stormwater discharges to Spring Lake and its adjoining waterbodies,

More information

Estimation of runoff for agricultural watershed using SCS Curve Number and Geographic Information System

Estimation of runoff for agricultural watershed using SCS Curve Number and Geographic Information System Estimation of runoff for agricultural watershed using SCS Curve Number and Geographic Information System Ashish Pandey 1,V.M.Chowdary 2, B.C.Mal 3 and P.P.Dabral 1 ABSTRACT Soil Conservation Service (SCS)

More information

RUNOFF CALCULATIONS RATIONAL METHOD. To estimate the magnitude of a flood peak the following alternative methods are available:

RUNOFF CALCULATIONS RATIONAL METHOD. To estimate the magnitude of a flood peak the following alternative methods are available: RUNOFF CALCULATIONS To estimate the magnitude of a flood peak the following alternative methods are available: 1. Unit-hydrograph technique 2. Empirical method 3. Semi-Empirical method (such rational method).

More information

Narasayya Kamuju Central Water and Power Research Station, Pune, Maharashtra, India

Narasayya Kamuju Central Water and Power Research Station, Pune, Maharashtra, India 2015 IJSRST Volume 1 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Sensitivity of Initial Abstraction Coefficient on Prediction of Rainfall- Runoff for Various

More information

APPENDIX 4 ARROYO MODELING

APPENDIX 4 ARROYO MODELING APPENDIX 4 ARROYO MODELING The existing HEC-HMS model can serve as a baseline for further development and analysis of major arroyos in the city. The model would need to be updated and expanded to consider

More information

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Keanan Bell NorthStar June 12, 2015 Project began in 2010 as a Hydrology Assessment and Conceptual Restoration

More information

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream What is runoff? Runoff Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream 1 COMPONENTS OF Runoff or STREAM FLOW 2 Cont. The types of runoff

More information

Estimation of Infiltration Parameter for Tehri Garhwal Catchment

Estimation of Infiltration Parameter for Tehri Garhwal Catchment Estimation of Infiltration Parameter for Tehri Garhwal Catchment Ashish Bhatt 1 H L Yadav 2 Dilip Kumar 3 1 UG Student, Department of civil engineering, G B Pant Engineering College, Pauri, UK-246194 2,3

More information

A Comprehensive Review of Runoff Estimation by the Curve Number Method

A Comprehensive Review of Runoff Estimation by the Curve Number Method A Comprehensive Review of Runoff Estimation by the Curve Number Method Ankit Balvanshi 1, H.L. Tiwari 2 P.G. Student, Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal,

More information

Evaluation of Empirical and Nomograph Method of Predicting Erodibility Index for Selected Savannah Soils.

Evaluation of Empirical and Nomograph Method of Predicting Erodibility Index for Selected Savannah Soils. Evaluation of Empirical and Nomograph Method of Predicting Erodibility Index for Selected Savannah Soils. A.I. Arab, M.Sc. 1* ; Prof. S.Z. Abubakar 1 ; and U.D. Idris, M.Sc. 2 1 National Agricultural Extension

More information

ORDINANCE APPENDIX C RUNOFF COEFFICIENTS AND CURVE NUMBERS

ORDINANCE APPENDIX C RUNOFF COEFFICIENTS AND CURVE NUMBERS ORDINANCE APPENDIX C RUNOFF COEFFICIENTS AND CURVE NUMBERS TABLE C-1. RUNOFF CURVE NUMBERS Source: Table 2-2a, Table 2-2b, and Table 2-2c from U. S. Department of Agriculture, Natural Resources Conservation

More information

East Baton Rouge Parish Micro-Watershed Characterization

East Baton Rouge Parish Micro-Watershed Characterization 26 th Annual Louisiana Remote Sensing and GIS Workshop José E. Villalobos-Enciso Warren L. Kron, Jr. April 28, 2010 Presentation Outline Objectives Warren Kron Data Warren Kron Concept José Villalobos

More information

Ponds Planning, Design, Construction

Ponds Planning, Design, Construction United States Department of Agriculture Natural Resources Conservation Service Ponds Planning, Design, Construction Agriculture Handbook Number 590 Estimating storm runoff The amount of precipitation,

More information

Runoff Volume: The Importance of Land Cover

Runoff Volume: The Importance of Land Cover Runoff Volume: The Importance of Land Cover Grade Level: 9-12 Time: 1-2 class periods Learning Objectives: - Quantify the volume of water that runs off different land uses in a watershed. - Analyze the

More information

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Runoff and soil loss (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Part I. Runoff Contents 1. Fundamental Concepts 2. Generation of

More information

Names: ESS 315. Lab #6, Floods and Runoff Part I Flood frequency

Names: ESS 315. Lab #6, Floods and Runoff Part I Flood frequency Names: ESS 315 Lab #6, Floods and Runoff Part I Flood frequency A flood is any relatively high flow of water over land that is not normally under water. Floods occur at streams and rivers but can also

More information

Sustainable STEM Series

Sustainable STEM Series W 338-C Sustainable STEM Series Science, Technology, Engineering and Mathematics for a Sustainable Future All over the media are reports that the United States is falling behind other countries in the

More information

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 3, 2014

INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 3, 2014 INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 4, No 3, 2014 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4380 Analysis of surface runoff

More information

0.0. Pervious CN = 40. (Unconnected impervious) (Total impervious) Total impervious area (percent) Composite CN

0.0. Pervious CN = 40. (Unconnected impervious) (Total impervious) Total impervious area (percent) Composite CN Figure 2-3 Composite CN with connected impervious area. 100 Composite CN 90 80 70 60 Pervious CN = 90 80 70 60 50 40 50 40 0 10 20 30 40 50 60 70 80 90 100 Connected impervious area (percent) Figure 2-4

More information

Calculating a Pollution Potential Index for Storm Water Runoff at the Watershed Scale Ranking watersheds for potential non-point pollution

Calculating a Pollution Potential Index for Storm Water Runoff at the Watershed Scale Ranking watersheds for potential non-point pollution Calculating a Pollution Potential Index for Storm Water Runoff at the Watershed Scale Ranking watersheds for potential non-point pollution Philip Dougherty GISC 6387 7-27-2006 Introduction Non-point source

More information

North Appalachian Expermental Watershed

North Appalachian Expermental Watershed WatershedWiki Hydrology-(CEE-434/534) North Appalachian Expermental Watershed Sagar Gautam 1 Table of Content Abstract Introduction Description of the study area Method/Procedures Approach Results Disscussion

More information

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE KOTSIFAKIS

More information

Precipitation Surface Cover Topography Soil Properties

Precipitation Surface Cover Topography Soil Properties Precipitation Surface Cover Topography Soil Properties Intrinsic capacity of rainfall to cause erosion Influenced by Amount, intensity, terminal velocity, drop size and drop size distribution of rain.

More information

Estimation of Hydrological Outputs using HEC-HMS and GIS

Estimation of Hydrological Outputs using HEC-HMS and GIS Nigerian Journal of Environmental Sciences and Technology (NIJEST) www.nijest.com ISSN (Print): 2616-051X ISSN (electronic): 2616-0501 Vol 1, No. 2 July 2017, pp 390-402 Estimation of Hydrological Outputs

More information

Chapter 4 "Hydrology"

Chapter 4 Hydrology Chapter 4 "Hydrology" Revised TxDOT Hydraulics Manual Jorge A. Millan, P.E., CFM TxDOT Design Division/Hydraulics 2012 Transportation Short Course October 17, 2012 Chapter 4 Sections 1 Hydrology s Role

More information

INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET)

INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 6308 ISSN 0976 6308 (Print) ISSN 0976 6316(Online) Volume

More information

Surface Runoff Estimation using Remote Sensing & GIS based Curve Number Method Ishtiyaq Ahmad, Dr. M. K. Verma

Surface Runoff Estimation using Remote Sensing & GIS based Curve Number Method Ishtiyaq Ahmad, Dr. M. K. Verma Surface Runoff Estimation using Remote Sensing & GIS based Curve Number Method Ishtiyaq Ahmad, Dr. M. K. Verma Department of Civil Engineering, National Institute of Technology, Raipur, India Abstract

More information

IJSER. within the watershed during a specific period. It is constructed

IJSER. within the watershed during a specific period. It is constructed International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-014 ISSN 9-5518 306 within the watershed during a specific period. It is constructed I. INTRODUCTION In many instances,

More information

Douglas County 2008 PFIS Appeal, 2010 Effective FIS Restudies ( ), and Alpine View Estates Flood Study

Douglas County 2008 PFIS Appeal, 2010 Effective FIS Restudies ( ), and Alpine View Estates Flood Study Douglas County 2008 PFIS Appeal, 2010 Effective FIS Restudies (2010-2015), and Alpine View Estates Flood Study Douglas County 2008 PFIS Appeal, and 2010 Effective FIS Re- Studies (2010-2015) (Prior to

More information

RAINFALL RUNOFF ESTIMATION USING SCS MODEL AND ARC GIS FOR MICRO WATERSHED IN CUDDALORE DISTRICT

RAINFALL RUNOFF ESTIMATION USING SCS MODEL AND ARC GIS FOR MICRO WATERSHED IN CUDDALORE DISTRICT International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 9, September 2018, pp. 990 996, Article ID: IJCIET_09_09_095 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=9

More information

Simulations of the Effect of Deforestation on Surface Water Runoff and Flooding in the Swift River Watershed.

Simulations of the Effect of Deforestation on Surface Water Runoff and Flooding in the Swift River Watershed. Simulations of the Effect of Deforestation on Surface Water Runoff and Flooding in the Swift River Watershed. INTRODUCTION Background Intense rainfall associated with Tropical Storm/Hurricane Michelle

More information

HYDROLOGICAL MODELING OF AN AGRICULTURAL WATERSHED USING HEC-HMS HYDROLOGICAL MODEL, REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEM

HYDROLOGICAL MODELING OF AN AGRICULTURAL WATERSHED USING HEC-HMS HYDROLOGICAL MODEL, REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEM HYDROLOGICAL MODELING OF AN AGRICULTURAL WATERSHED USING HEC-HMS HYDROLOGICAL MODEL, REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEM Niravkumar K. Pampaniya 1, Mukesh K. Tiwari 2, M. L. Gaur 3 1 M.Tech.

More information

LAKE COUNTY HYDROLOGY DESIGN STANDARDS

LAKE COUNTY HYDROLOGY DESIGN STANDARDS LAKE COUNTY HYDROLOGY DESIGN STANDARDS Lake County Department of Public Works Water Resources Division 255 N. Forbes Street Lakeport, CA 95453 (707)263-2341 Adopted June 22, 1999 These Standards provide

More information

International Journal of Advance Engineering and Research Development. Application of SCS-CN Method forestimation of Runoff Using GIS

International Journal of Advance Engineering and Research Development. Application of SCS-CN Method forestimation of Runoff Using GIS Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 4, April -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Application

More information

Integrating HEC HMS generated flow hydrographs with FLO-2D. Nanda Meduri, PE, PMP, CFM Seth Lawler Venkata Dinakar Nimmala, CFM

Integrating HEC HMS generated flow hydrographs with FLO-2D. Nanda Meduri, PE, PMP, CFM Seth Lawler Venkata Dinakar Nimmala, CFM Integrating HEC HMS generated flow hydrographs with FLO-2D Nanda Meduri, PE, PMP, CFM Seth Lawler Venkata Dinakar Nimmala, CFM Focus of this Presentation Introduction Methodology Challenges & Solutions

More information

BMP Design Aids. w w w. t r a n s p o r t a t i o n. o h i o. g o v. Equations / Programs

BMP Design Aids. w w w. t r a n s p o r t a t i o n. o h i o. g o v. Equations / Programs BMP Design Aids 1 Equations / Programs Outlet Discharge Equations Hydrograph and Pond Routing Programs USGS StreamStats 2 Ohio Department of Transportation 1 Training Intent Introduction and overview of

More information

A Hydrologic Study of the. Ryerson Creek Watershed

A Hydrologic Study of the. Ryerson Creek Watershed A Hydrologic Study of the Ryerson Creek Watershed Dave Fongers Hydrologic Studies Unit Land and Water Management Division Michigan Department of Environmental Quality May 8, 2002 Table of Contents Summary...2

More information

CGIAR Research Program on Water, Land and Ecosystems: Use of remote sensing and GIS tools in the irrigation commands to assist planning and management

CGIAR Research Program on Water, Land and Ecosystems: Use of remote sensing and GIS tools in the irrigation commands to assist planning and management CGIAR Research Program on Water, Land and Ecosystems: Use of remote sensing and GIS tools in the irrigation commands to assist planning and management Summary Remote sensing (RS) and geographic information

More information

Flood Modelling and Water Harvesting Plan for Paravanar Basin

Flood Modelling and Water Harvesting Plan for Paravanar Basin International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.14, pp 01-08, 2017 Flood Modelling and Water Harvesting Plan for Paravanar Basin Dhinesh

More information

Relationship to E Flows

Relationship to E Flows Relationship to E Flows Riparian Areas Influences groundwater/surface water relationships Provides filters to improve water quality Provides habitat for diverse flora and fauna Relationship to E Flows

More information

Computation of excess stormflow at the basin scale. Prof. Pierluigi Claps. Dept. DIATI, Politecnico di Torino

Computation of excess stormflow at the basin scale. Prof. Pierluigi Claps. Dept. DIATI, Politecnico di Torino Computation of excess stormflow at the basin scale Prof. Pierluigi Claps Dept. DIATI, Politecnico di Torino Pierluigi.claps@polito.it losses include: interception, evapotranspiration, storage infiltration,

More information

Runoff Processes. Daene C. McKinney

Runoff Processes. Daene C. McKinney CE 374 K Hydrology Runoff Processes Daene C. McKinney Watershed Watershed Area draining to a stream Streamflow generated by water entering surface channels Affected by Physical, vegetative, and climatic

More information

ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN

ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN Jeffry Swingly Frans Sumarauw 1, 2 and Koichiro Ohgushi 1 1 Department of Civil Engineering and Architecture,

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

1 Introduction 1.1 HYDROLOGIC MODELS

1 Introduction 1.1 HYDROLOGIC MODELS 1 Introduction Adequate scientific evidence (e.g., IPCC, 2007) exists now to show that the global climate is changing. The three prominent signals of climate change, namely, increase in global average

More information

Bench terraces on loess soil China - 土坎梯田, 梯地

Bench terraces on loess soil China - 土坎梯田, 梯地 Bench terraces on loess soil China - 土坎梯田, 梯地 A Terrace is a structural SLM practice with a raised flat platform built on the slope to reduce soil loss and runoff on the slope, increase the rainfall infiltration

More information

CALCASIEU PARISH ENGLISH BAYOU BASIN STORMWATER MASTER PLAN. NTB Associates, Inc. Solving Tomorrow's Problems Today...

CALCASIEU PARISH ENGLISH BAYOU BASIN STORMWATER MASTER PLAN. NTB Associates, Inc. Solving Tomorrow's Problems Today... CALCASIEU PARISH ENGLISH BAYOU BASIN STORMWATER MASTER PLAN Prepared by: Solving Tomorrow's Problems Today... PROJECT TEAM Calcasieu Parish Division of Engineering & Public Works URS Corporation Prime

More information

SECTION III: WATERSHED TECHNICAL ANALYSIS

SECTION III: WATERSHED TECHNICAL ANALYSIS Trout Creek Watershed Stormwater Management Plan SECTION III: WATERSHED TECHNICAL ANALYSIS A. Watershed Modeling An initial step this study of the Trout Creek watershed was the selection of a stormwater

More information

Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX

Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX Assessing the impacts of two stand-replacing wildfires on canopy cover and soil conditions in Bastrop County, TX Sol Cooperdock GEO386G Final Project Purpose and Introduction: In the falls of 2011 and

More information

CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN

CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN U.S.- Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods Perugia (Italy), November 1995 CHANGES ON FLOOD CHARACTERISTICS DUE TO LAND USE CHANGES IN A RIVER BASIN

More information

Assessing Multiple Functions of Missouri s Bottomlands: Laying the Groundwork For Wetland Conservation

Assessing Multiple Functions of Missouri s Bottomlands: Laying the Groundwork For Wetland Conservation Assessing Multiple Functions of Missouri s Bottomlands: Laying the Groundwork For Wetland Conservation Frank Nelson (MDC), Dave Diamond (MoRAP), Doreen Mengel (MDC), Andy Raedeke (MDC), Project currently

More information

Deep River-Portage Burns Waterway Watershed 2015

Deep River-Portage Burns Waterway Watershed 2015 2.4 Soils Soil development is the product of the interaction of parent material, topography, climate, organisms and time. Understanding the types of soils that exist within a watershed and their characteristics

More information

Examination of PRZM5.0 Storm Rainfall Depth and Distribution Algorithms Compared to Current U.S. Storm Trends

Examination of PRZM5.0 Storm Rainfall Depth and Distribution Algorithms Compared to Current U.S. Storm Trends Examination of PRZM5.0 Storm Rainfall Depth and Distribution Algorithms Compared to Current U.S. Storm Trends August 24, 2016 Tammara L. Estes (Stone Environmental Inc.) Kevin L. Armbrust, Ph.D. (Louisiana

More information

Effective Impervious Area Lake Minnetonka

Effective Impervious Area Lake Minnetonka 1 Effective Impervious Area Lake Minnetonka Final Report Prepared by: Sarah Fitch Ryan Navis Sam Trebesch Stephen Borden Zeinab Takbiri University of Minnesota Civil Engineering Course: CE 5511 Spring

More information

Impact of Temporal Variation in Land Use on Surface Run Off: A Case Study of Cochin City, Kerala, India

Impact of Temporal Variation in Land Use on Surface Run Off: A Case Study of Cochin City, Kerala, India Cloud Publications International Journal of Advanced Earth Science and Engineering 2015, Volume 4, Issue 1, pp. 265-274, Article ID Sci-239 ISSN: 2320 3609 Case Study Open Access Impact of Temporal Variation

More information

Estimating the 100-year Peak Flow for Ungagged Middle Creek Watershed in Northern California, USA

Estimating the 100-year Peak Flow for Ungagged Middle Creek Watershed in Northern California, USA American Journal of Water Resources, 2014, Vol. 2, No. 4, 99-105 Available online at http://pubs.sciepub.com/ajwr/2/4/3 Science and Education Publishing DOI:10.12691/ajwr-2-4-3 Estimating the 100-year

More information

The Impacts of Oil and Natural Gas Activities on ALR Land in the Peace River Valley of Northern British Columbia Katie Eistetter 2015

The Impacts of Oil and Natural Gas Activities on ALR Land in the Peace River Valley of Northern British Columbia Katie Eistetter 2015 The Impacts of Oil and Natural Gas Activities on ALR Land in the Peace River Valley of Northern British Columbia Katie Eistetter 2015 Introduction, Background and Study Area British Columbia has one of

More information

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation

1 n. Flow direction Raster DEM. Spatial analyst slope DEM (%) slope DEM / 100 (actual slope) Flow accumulation 1 v= R S n 2/3 1/2 DEM Flow direction Raster Spatial analyst slope DEM (%) Flow accumulation slope DEM / 100 (actual slope) 0 = no cell contributing 215 = 215 cell contributing towards that cell sqrt (actual

More information

Effect of Land Surface on Runoff Generation

Effect of Land Surface on Runoff Generation Effect of Land Surface on Runoff Generation Context: Hydrologic Cycle Runoff vs Infiltration Infiltration: Process by which water on the ground surface enters the soil Runoff: Water (from rain, snowmelt,

More information

4.1 General Methodology and Data Base Development

4.1 General Methodology and Data Base Development Chapter 4 METHODOLOGY 4.1 General and Data Base Development This report project utilized several computer software models and analysis techniques to create the numeric data on which decisions for this

More information

EXPLORING THE RELATIONSHIP BETWEEN FRESHWATER WETLAND RESTORATION AND FLOOD MITIGATION

EXPLORING THE RELATIONSHIP BETWEEN FRESHWATER WETLAND RESTORATION AND FLOOD MITIGATION EXPLORING THE RELATIONSHIP BETWEEN FRESHWATER WETLAND RESTORATION AND FLOOD MITIGATION Kristen Hychka 1, Lisa Wainger 1, Elizabeth Murray 2, and Taylor Hollady 1 1 University of Maryland Center for Environmental

More information

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description Hydrologic Engineering Center Training Course on Hydrologic Modeling with HEC-HMS Davis, CA Course Description The course provides an introduction to HEC-HMS for new users, focusing both on using the program

More information

Flood Modelling For Peri Urban Areas in Adyar River

Flood Modelling For Peri Urban Areas in Adyar River Flood Modelling For Peri Urban Areas in Adyar River Saranya VP 1 Assistant Professor, Department of Civil Engineering, Bannari Amman Institute of Technology, Erode, India 1 ABSTRACT: Water is essential

More information

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS April 2018 Davis, CA. Course Description

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS April 2018 Davis, CA. Course Description Hydrologic Engineering Center Training Course on Hydrologic Modeling with HEC-HMS 23-27 April 2018 Davis, CA Course Description The course provides an introduction to HEC-HMS for new users, focusing both

More information

Stormwater, Climate Change, and Michigan: Part II. Alan Steinman Director, Annis Water Resources Institute Grand Valley State University

Stormwater, Climate Change, and Michigan: Part II. Alan Steinman Director, Annis Water Resources Institute Grand Valley State University Stormwater, Climate Change, and Michigan: Part II Alan Steinman Director, Annis Water Resources Institute Grand Valley State University Point vs. Nonpoint Source Pollution Point sources: Nutrients come

More information

Watershed Modeling and Landuse Change: A new approach. Chris Duffy Lele Shu Penn State University

Watershed Modeling and Landuse Change: A new approach. Chris Duffy Lele Shu Penn State University Watershed Modeling and Landuse Change: A new approach Chris Duffy Lele Shu Penn State University Issues Goals of the Study-> Watershed Context for LUC Develop a high resolution integrated hydrologic and

More information

Stone lines Uganda - Ennyiriri z'amayinja eziziyiza ettaka okutwalibwa enkuba (Luganda)

Stone lines Uganda - Ennyiriri z'amayinja eziziyiza ettaka okutwalibwa enkuba (Luganda) Stone lines Uganda - Ennyiriri z'amayinja eziziyiza ettaka okutwalibwa enkuba (Luganda) Stone lines are built along a contour to control soil erosion on a degraded steep slope. left: Stone lines established

More information

Reservoir on the Rio Boba

Reservoir on the Rio Boba Reservoir on the Rio Boba Michael J. Burns II Guillermo Bustamante J. James Peterson Executive Summary The National Institute of Water Resources in the Dominican Republic (INDRHI) plans to construct a

More information

Who s in Charge!? 8/9/2018. Houston Geological Society Presents. Peak Floods Brays Bayou

Who s in Charge!? 8/9/2018. Houston Geological Society Presents. Peak Floods Brays Bayou Houston Geological Society Presents An Informational Workshop Flooding and Floodplains in the Houston Area: Past, Present, and Future: Part 1 Presented May 18, 2018 Dr. William R. Dupre Professor Emeritus

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

CE Water Resources Engineering Spring 2018

CE Water Resources Engineering Spring 2018 CE 321 - Water Resources Engineering Spring 2018 Text: Wurbs and James,Water Resources Engineering, 1st. Edition, Prentice Hall, 2002 ISBN: 0-13-0812935 Other references for Water Quality Topics of Interest

More information

INTRODUCTION cont. INTRODUCTION. What is Impervious Surface? Implication of Impervious Surface

INTRODUCTION cont. INTRODUCTION. What is Impervious Surface? Implication of Impervious Surface Mapping Impervious Surface Changes In Watersheds In Part Of South Eastern Region Of Nigeria Using Landsat Data By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus

More information

Integrated Watershed Management and Sedimentation

Integrated Watershed Management and Sedimentation Journal of Environmental Protection, 2016, 7, 490-494 Published Online March 2016 in SciRes. http://www.scirp.org/journal/jep http://dx.doi.org/10.4236/jep.2016.74043 Integrated Watershed Management and

More information

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan TR-20 is a computer program for the simulation of runoff occurring from a single storm event. The program develops flood hydrographs from runoff and routes

More information

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands USDA-ARS Southwest Watershed Research Center Mission Sound Science for Watershed Decisions To develop knowledge and technology to conserve water and soil in semi-arid lands ARS Watershed Locations Selected

More information

Estimating Groundwater Recharge within Wisconsin s Central Sands

Estimating Groundwater Recharge within Wisconsin s Central Sands Estimating Groundwater Recharge within Wisconsin s Central Sands Adam Freihoefer and Robert Smail Wisconsin Department of Natural Resources [study objective] Identify a defensible approach to quantify

More information

Protocol for Pre-Installation field Measurements for Prospective Living Snow Fence Sites in New York State

Protocol for Pre-Installation field Measurements for Prospective Living Snow Fence Sites in New York State Research Project C-06-09 Designing, Developing and Implementing a Living Snow Fence Program for New York State Task 3-A1 & 3-A2 Protocol for Pre-Installation field Measurements for Prospective Living Snow

More information

Culvert Sizing procedures for the 100-Year Peak Flow

Culvert Sizing procedures for the 100-Year Peak Flow CULVERT SIZING PROCEDURES FOR THE 100-YEAR PEAK FLOW 343 APPENDIX A: Culvert Sizing procedures for the 100-Year Peak Flow A. INTRODUCTION Several methods have been developed for estimating the peak flood

More information

Latest tools and methodologies for flood modeling

Latest tools and methodologies for flood modeling Latest tools and methodologies for flood modeling Dr. Yuri Simonov Senior scientist, Hydrometcentre of Russia WMO Commission for Hydrology AWG member Floods - background Types of water-related natural

More information

H. THOMAS & T.R. NISBET Centre for Ecosystems, Society & Biosecurity, Forest Research, UK.

H. THOMAS & T.R. NISBET Centre for Ecosystems, Society & Biosecurity, Forest Research, UK. H. Thomas & T.R. Nisbet, Int. J. of Safety and Security Eng., Vol. 6, No. 3 (2016) 466 474 SLOWING THE FLOW IN PICKERING: QUANTIFYING THE EFFECT OF CATCHMENT WOODLAND PLANTING ON FLOODING USING THE SOIL

More information

Reservoir age, increasing human population,

Reservoir age, increasing human population, B-6249 02/12 Eagle Mountain Watershed Management Brent Clayton, Justin Mechell, David Waidler and Clint Wolfe* Reservoir age, increasing human population, and changing land uses have prompted the development

More information

Water Erosion in Slovakia - Problems and Solutions

Water Erosion in Slovakia - Problems and Solutions Water Erosion in ORIGINAL Slovakia SCIENTIFIC - Problems PAPER and Solutions Water Erosion in Slovakia - Problems and Solutions Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra,

More information

APPENDIX F RATIONAL METHOD

APPENDIX F RATIONAL METHOD 7-F-1 APPENDIX F RATIONAL METHOD 1.0 Introduction One of the most commonly used procedures for calculating peak flows from small drainages less than 200 acres is the Rational Method. This method is most

More information

CEE6400 Physical Hydrology

CEE6400 Physical Hydrology CEE6400 Physical Hydrology Midterm Review Learning Objectives (what you should be able to do) Hydrologic data, the hydrologic cycle and water balance (HW 1) Work with hydrologic data, quantify uncertainty

More information

Effects of initial abstraction ratio in SCS-CN method on modeling the impacts of urbanization on peak flows

Effects of initial abstraction ratio in SCS-CN method on modeling the impacts of urbanization on peak flows Effects of initial abstraction ratio in SCS-CN method on modeling the impacts of urbanization on peak flows Navideh Noori, Latif Kalin, Puneet Srivastava, Charlene LeBleu Proceedings ASCE World Environmental

More information

Estimation of Runoff for Ozat Catchment using RS and GIS based SCS-CN method

Estimation of Runoff for Ozat Catchment using RS and GIS based SCS-CN method Current World Environment Vol. 11(1), 212-217 (2016) Estimation of Runoff for Ozat Catchment using RS and GIS based SCS-CN method Dipesh B. Chavda 1, Jaydip J. Makwana* 2, Hitesh V. Parmar 3, Arvind N.

More information

Capabilities Statement

Capabilities Statement Capabilities Statement Welcome! People benefit from a multitude of resources and processes supplied by natural resources and ecosystems. These benefits include water supplies suitable for supporting economic

More information

Distribution Restriction Statement Approved for public release; distribution is unlimited.

Distribution Restriction Statement Approved for public release; distribution is unlimited. CECW-EH-Y Regulation No. 1110-2-1464 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 Engineering and Design HYDROLOGIC ANALYSIS OF WATERSHED RUNOFF Distribution Restriction

More information

FIELD PHOSPHORUS RISK ASSESSMENT

FIELD PHOSPHORUS RISK ASSESSMENT NEBRASKA DEPARTMENT OF ENVIRONMENTAL QUALITY AGRICULTURE SECTION * 1200 N STREET, SUITE 400 * LINCOLN, NE 68509-8922 TEL: (402)471-4239 *FAX: (402) 471-2909 * WEB SITE: www.ndeq.state.ne.us APPENDIX F

More information

Estimation of Surface Runoff of Machhu Dam - III Chatchment Area, Morbi, Gujarat, India, using Curve Number Method and GIS

Estimation of Surface Runoff of Machhu Dam - III Chatchment Area, Morbi, Gujarat, India, using Curve Number Method and GIS IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Estimation of Surface Runoff of Machhu Dam - III Chatchment Area, Morbi, Gujarat, India,

More information

Presented by: Peter Spal, IBI Group. OECS Regional Engineering Workshop October 1, 2014

Presented by: Peter Spal, IBI Group. OECS Regional Engineering Workshop October 1, 2014 Presented by: Peter Spal, IBI Group OECS Regional Engineering Workshop October 1, 2014 Presentation Topics Principles of Hydrology rational formula, unit hydrograph Modeling Methods SWMMHYMO Synthetic

More information

Calibration of the Soil Conservation Services (SCS) Method in Peninsular Malaysia Using Sungai Tasoh Catchment, Negeri Perlis

Calibration of the Soil Conservation Services (SCS) Method in Peninsular Malaysia Using Sungai Tasoh Catchment, Negeri Perlis Calibration of the Soil Conservation Services (SCS) Method in Peninsular Malaysia Using Sungai Tasoh Catchment, Negeri Perlis ROZI ABDULLAH, Lecturer, School of Civil Engineering, Universiti Sains Malaysia,

More information

Modeling Infiltration BMPs

Modeling Infiltration BMPs Modeling Infiltration BMPs CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696-4150 www.thcahill.com Design Goals for Calculations 1. Mitigate Peak Rates 2-Year to 100-Year 2. No Volume

More information

DRAFT. Jacob Torres, P.E.; Nick Fang, Ph.D., P.E.

DRAFT. Jacob Torres, P.E.; Nick Fang, Ph.D., P.E. \ Memorandum SSPEED Center at Rice University Department of Civil & Environmental Engineering 6100 Main MS-317 Houston, Texas 77005-1827 sspeed.rice.edu tel: 713-348-4977 To Andy Yung, P.E. CFM; Lane Lease,

More information

Rapid National Model Assessments to Support US Conservation Policy Planning Mike White

Rapid National Model Assessments to Support US Conservation Policy Planning Mike White Rapid National Model Assessments to Support US Conservation Policy Planning Mike White USDA-ARS Grassland, Soil and Water Research Laboratory, Temple, TX 1 Topics Current National Assessments Future National

More information