17 th ICMCF Session Topics

Size: px
Start display at page:

Download "17 th ICMCF Session Topics"

Transcription

1 th 50P P Anniversary Lecture Dissecting the biology/materials interface for innovative antifouling solutions Emeritus Professor James Callow University of Birmingham Biology of Fouling Organisms UChairU: Dr Nick Aldred, Research Associate, School of Marine Science & Technology, Newcastle University, UK. [nicholas.aldred@ncl.ac.uk] From single-celled organisms to macroalgae and sessile marine invertebrates, the focus of this session is the biological adaptations of fouling organisms that enable them to locate, select and attach to surfaces, identify or attract conspecific individuals, deter predators or epibionts, resist contemporary antifouling approaches and reproduce/disperse in a manner that exacerbates the fouling challenge. Talks may focus at the individual or the community level to provide insight into potential fouling mitigation strategies. s Fouling as a vector for invasive species UChairU: Dr Eugene Georgiades, Senior Adviser, Biosecurity Risk Analysis (Animals and Aquatic), Science and Risk Assessment Directorate, Ministry for Primary Industries, NZ [Eugene.Georgiades@mpi.govt.nz] Vessel biofouling represents an important vector for the spread of non-indigenous species. The introduction of some non-indigenous species to new locations can have far-ranging impacts on the marine environment and the people reliant upon it. This session aims to provide scientists, regulators and end users with new information regarding: the transport of non-indigenous species via vessel biofouling; their associated impacts; the risks associated with different types of vessels or hull treatments; and, new developments, both regulatory and technical, to address this problem. Graeme Inglis National Institute of Water and Atmospheric Research Lt, NZ

2 Microalgal fouling and adhesion processes UChairU: Professor Jim Callow, Emeritus Professor of Plant Science, School of Biosciences, University of Birmingham, UK. This session is concerned with all aspects of fouling and adhesion processes that concern microalgae, or the microalgal fouling stages of macroalgae. Contributions may range from cellular and molecular processes involved in recruitment and adhesion, up to studies on the dynamics of microalgal communities such as those responsible for diatom slimes. Developments in novel coating technologies to control microalgal fouling and the formation of slime layers are also relevant. Paul Molino University of Wollongong Microbial Adhesion and Colonization Assaying Methods to Assist in the Future Design of Fouling Resistant Coatings Marine Bioadhesion UChairU: Dr Gary Dickinson, Assistant Professor, Dept of Biology, The College of New Jersey, USA. Adhesion is a matter of life and death for a wide range of marine organisms. Barnacles, sea weeds, oysters, starfish, mussels, limpets, and tube worms (among others), have evolved remarkable physical and biochemical mechanisms that enable secure attachment in a wet environment. Understanding these mechanisms may foster development of antifouling coatings that interfere specifically with the bioadhesion processes. This session will focus on recent insights on the biochemistry, biology, chemistry, interfacial contacts, and mechanics of marine bioadhesives. s Emily Carrington University of Washington Mussel Adhesion in a Warmer, High- COR2 RWorld: An Ecomaterial Approach Jonathan Wilker Purdue University Understanding Oyster Cement: Similarities and Differences Compared to Other Bioadhesives

3 Biofilms and microbial fouling UChairU: Professor Peter Steinberg, Director, Sydney Institute for Marine Sciences; Co-Director, Centre for Marine Bioinnovation, UNSW, Australia; Co-Director, Advanced Environmental Biotechnology Centre, NTU Singapore. This session will focus on the ecology, biology and control of microbial communities on marine and aquatic surfaces. Topics will include mechanisms of biofilm formation and development, the use of meta omics techniques for characterising structure and function of microbial communities and interactions within biofilms. Studies of control mechanisms will include novel approaches to interfering with biofilm formation, structure or dispersal. s Sergey Dobretsov Sultan Qaboos University, Oman Marine Biofilms Associated with Antifouling Coatings: Our Friends or Enemies? Scott Rice SCELSE (NTU)/UNSW Centre for Marine Bio-Innovation Microbial Fouling of Reverse Osmosis Membranes and Control Using Biological Signals Microbiologically influenced corrosion UChairU: Associate Professor Daniel J. Blackwood, Dept of Materials Science & Engineering, National University of Singapore, Singapore. [msedjb@nus.edu.sg] This session aims to present recent developments in understanding fundamental mechanisms of microbiologically influenced corrosion (MIC). The session aims to provide an overview of current and future approaches to its detection, prevention, monitoring and control of MIC in marine applications. Of particular interest, approaches that integrate electrochemical, modelling and microbiological investigations to give an in depth understanding of the nature of the biofilm-driven accelerated corrosion processes. Marine Corrosion - Materials and Coatings UChairU: Dr Dominique Thierry, French Corrosion Institute, Brest, France. [dominique.thierry@institut-corrosion.fr] This session will cover the aspects of corrosion and its prevention for materials in the marine environment. Papers dealing with materials such as carbon steel, stainless steel, copper alloys and aluminium alloys as well as coatings are welcomed. Topics may include corrosion mechanisms, failure analyses, coating systems, case studies, material selection and performance. Carol Powell Nickel Institute, UK Metals and their Corrosion Behaviour in Seawater-An Engineers Overview

4 Advances in analysis of corrosion UChairU: Professor Hideyuki Kanematsu, Dean, Dept. MS & E., Suzuka National College of Technology, Suzuka, Japan. This session will focus on novel evaluation methods and techniques to understand marine corrosion in relation to biofouling. Basic research papers are welcome, as well methods for practical applications. Risk management in marine corrosion UChairU: Dr Brenda Little, Senior Scientist, Naval Research Laboratory, Stennis Space Center, USA. Corrosion risk management in the marine environment is an essential tool for corrosion and materials engineers, requiring prediction, material selection, design, monitoring and mitigation (e.g., coatings and cathodic protection). The session invites papers on tested methodologies and innovative approaches for corrosion risk prediction and management. Robert Melchers University of Newcastle Seawater Nutrient Pollution And The Long-Term Immersion Corrosion Of Steels Biofouling and Corrosion in the Offshore Oil & Gas Industry UChairU: Mr John A. Lewis, Senior Associate, ES Link Services, Australia. Offshore facilities for oil & gas recovery have projected operating lives of up to 30 years, and project designs are increasingly utilising new engineering and technological innovations to increase production efficiency. Predicting biofouling impacts over this timeframe in the offshore realm is difficult. This session calls for papers on the accumulation, distribution and composition of biofouling on offshore rigs, floating storage and processing facilities, subsea pipelines, and other deep water structures, on corrosion and corrosion control for offshore structures, and on coatings and materials for biofouling and material protection to enable facilities to achieve their design life.

5 Fouling in desalination and seawater cooling systems UChairU: Dr Richard Piola, Defence Scientist, Maritime Division, Defence Science and Technology Organisation, Australia. This session will focus on challenges and opportunities concerning technologies for the management of biofouling in desalination and internal sea water cooling systems, including power plants and ships. Many of these systems experience unique biofouling pressures which present challenges for the research and development of effective treatment strategies. This session aims to bring together industry representatives and science and technology professionals to discuss improvements to current treatment methods and development of emergent technologies for effective biofouling treatment outcomes in these highly critical system environments. Fouling in Aquaculture UChairU: Dr Belinda Yaxley, Petuna Aquaculture Pty Ltd Biofouling is a serious problem in the aquaculture industry. Fouling organisms compete with cultured stocks for food and space in culture pens, as well as harbour pest and disease vectors. Due to human health concerns, application of antifouling poses challenges for the industry as there is limited scope for use of bioactive substances. This session will focus on challenges in managing biofouling in the aquaculture industry and new antifouling approaches. Ship Hydrodynamics and Energy Efficiency UChairU: Professor Mehmet Atlar, School of Marine Science and Technology, Newcastle University, UK. [mehmet.atlar@ncl.ac.uk] This session will focus on recent developments in the understanding of the role that marine fouling plays in ship performance and energy efficiency. The session will also explore new ideas for cleaning strategies to complement the IMO s new GHG emission criteria. Some of the topics covered in the session will include: Surface characterization of different fouling types (especially slime) by using different techniques to be used for predicting their hydrodynamic effects Efficient experimental methods/tools and other approaches (numerical, semi-empirical etc) in quantifying the impact of fouling (especially slime) on frictional drag Determination of hydrodynamic forces on different fouling organisms by using experimental methods/tools and other approaches to predict their fouling release characteristics Estimation of hull/propeller resistance and resulting power increase of ships due to fouling Onboard performance monitoring systems in ships for effective quantification and control of fouling Proactive cleaning strategies to maintain energy efficiency of ships and improve further by new ideas within the framework of IMO s new regulations for GHG emission of ships (by EEDI, SEEMP, EEOI) Noriyuki Sasaki Monohakobi Technology Institute The Effect of Anti-Fouling Paints on Long Term Hydrodynamic Performance of Ships Related to Energy Efficiency

6 Ship Hull Management UChairU: Professor Geoffrey Swain, Director, Centre for Corrosion and Biofouling Control, Florida Institute of Technology, USA. Presentations are invited for research and procedures related to managing the corrosion and biofouling on the outer surfaces of ship hulls, niche areas and running gear. This includes new build, dry dock and in water maintenance. For example: what factors determine coating selection and cathodic protection design, what are the best methods for surface preparation and coating application, what are the recommendations for underwater cleaning and maintenance, how does ship operations and schedule affect hull condition, and what new approaches can improve performance? Daniel Kane Propulsion Dynamics Inc Biocidal Antifouling Technologies: From basic research through to end-user perspectives UChairU: Mr David Stark, International Paint Singapore Pte Ltd, Global Marine Coatings Headquarters and Research Center, Singapore. Biocidal antifouling technologies remain commercially dominant in many sectors of the industry and continue to be the subject of significant coatings R&D. A key challenge for any biocidal technology is to meet customer requirements with regards to in-service performance and longevity while at the same time minimising the potential for adverse environmental effects. The scope of this session ranges from basic R&D through to end-user industry perspectives on new and emerging biocidal antifouling technologies both in terms of measurable performance and operational challenges. Advances in Coating Technology UChairU: Professor Dean Webster, Chair, Dept of Coatings and Polymeric Materials, North Dakota State University, USA. [Dean.Webster@ndsu.edu] Coatings are a critical means to prevent biological fouling of ship hulls and other underwater surfaces. This session will focus on novel research and development in marine coatings systems, including new polymer and resin chemistries, new methods for incorporating and releasing additives from coatings, and improvements and new approaches for non-toxic coating systems.

7 New Approaches for Antifouling UChairU: Professor Robert Lamb, Surface Science & Technology Group, School of Chemistry, The University of Melbourne, Australia. This session will cover novel approaches to antifouling. These may include novel concepts such as nano-roughness, bio-inspired surfaces, acoustics, electromagnetic fields, etc. New methods for evaluation of antifouling UChairU: Professor Axel Rosenhahn, Analytical Chemistry Biointerfaces, Ruhr-University Bochum. This session will focus on new test methods such as optical methods that track interactions between the cells/larvae as they approach a surface prior to committing to settlement; techniques to observe and understand settlement and corrosion processes in-situ, assays to quantify settlement / adhesion strength of fouling organisms; methods to assess the performance of coatings under dynamic conditions; methods to predict the long-term performance of fouling-release coatings; design and rapid analysis of long- and short term field tests; etc. William Birch IMRE, Singapore Quantifying Barnacle Cyprid Exploration as a Performance-Relevant Measurement of Engineered Surfaces Regulatory and Environmental Issues UChairU: Dr Hannah Flint, Divisional Manager, ANZSPAC, IMarEST, Melbourne, Australia. [hannah.flint@imarest.org] The regulation of antifouling products for commercial vessels and pleasure craft is increasing, as too is the development of biofouling management guidance and requirements at local, regional and global scales to address invasive marine species concerns. This session will cover regulatory initiatives affecting antifouling products, biofouling management and in-water cleaning. Particular focus will be given to the development of tools for the regulatory process, the effectiveness and practicality of implementation, and discussion on some of the related environmental issues currently under debate. Naomi Parker NZ Ministry for Primary Industries Managing fouling regulatory challenges and opportunities