Environmentally Conscious Fossil Energy Production

Size: px
Start display at page:

Download "Environmentally Conscious Fossil Energy Production"

Transcription

1 Environmentally Conscious Fossil Energy Production Environmentally Conscious Fossil Energy Production Edited by Myer Kutz and Ali Elkamel Copyright 2010 John Wiley & Sons, Inc. ISBN:

2 Environmentally Conscious Fossil Energy Production Edited by Myer Kutz and Ali Elkamel JOHN WILEY & SONS, INC.

3 This book is printed on acid-free paper. Copyright 2010 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) , fax (978) , or on the web at Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) , fax (201) , or online at Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information about our other products and services, please contact our Customer Care Department within the United States at (800) , outside the United States at (317) or fax (317) Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at Library of Congress Cataloging-in-Publication Data: Environmentally conscious fossil energy production / edited by Myer Kutz and Ali Elkamel p. cm Includes index. ISBN (cloth) 1. Fossil fuels Environmental aspects. 2. Renewable energy sources. 3. Global warming Prevention. 4. Sustainable engineering. I. Kutz, Myer. II. Elkamel, Ali. TP318.E dc Printed in the United States of America

4 Contents Contributors vii Preface ix 1 Environmentally Conscious Petroleum Engineering 1 M. Rafiqul Awal 2 Carbon Management and Hydrogen Requirements in Oil Sands Operations 87 Ali Elkamel, J. Guillermo Ordorica-Garcia, Peter Douglas, and Eric Croiset 3 Environmentally Conscious Coal Mining 127 R. Larry Grayson 4 Maritime Oil Transport and Pollution Prevention 143 Sabah A. Abdul-Wahab 5 Accidental Oil Spills Behavior and Control 173 M. R. Riazi 6 Geological Sequestration of Greenhouse Gases 207 Ahmed Shafeen and Terry Carter 7 Clean-Coal Technology: Gasification Pathway 243 J. Guillermo Ordorica-Garcia, Ali Elkamel, Peter L. Douglas, and Eric Croiset 8 An Integrated Approach for Carbon Mitigation in the Electric Power Generation Sector 277 Ali Elkamel, Haslenda Hashim, Peter L. Douglas, and Eric Croiset 9 Energy and Exergy Analyses of Natural Gas-Fired Combined Cycle Power Generation Systems 313 K. Mohammed and B. V. Reddy Index 335 v

5 Contributors Sabah A. Abdul-Wahab Sultan Qaboos University Sultanate of Oman M. Rafiqul Awal Texas Tech University Lubbock, Texas Terry Carter Petroleum Resources Centre Ministry of Natural Resources Eric Croiset University of Waterloo Peter Douglas University of Waterloo Ali Elkamel University of Waterloo R. Larry Grayson The Pennsylvania State University University Park, Pennsylvania Haslenda Hashim University of Waterloo K. Mohammed University of New Brunswick Fredericton, New Brunswick, Canada J. Guillermo Ordorica-Garcia University of Waterloo B. V. Reddy University of Ontario Institute of Technology Oshawa, M. R. Riazi Kuwait University Safat, Kuwait Ahmed Shafeen Natural Resources Canada Ottowa, vii

6 Preface Many readers will approach this series of books in Environmentally Conscious Engineering with some degree of familiarity with, knowledge about, or even expertise in, one or more of a range of environmental issues, such as climate change, pollution, and waste. Such capabilities may be useful for readers of this series, but they aren t strictly necessary, for the purpose of this series is not to help engineering practitioners and managers deal with the effects of man-induced environmental change. Nor is it to argue about whether such effects degrade the environment only marginally or to such an extent that civilization as we know it is in peril, or that any effects are nothing more than a scientific-establishment-andmedia-driven hoax and can be safely ignored. (Authors of a plethora of books, even including fiction, and an endless list of articles in scientific and technical journals, have weighed in on these matters, of course.) On the other hand, this series of engineering books does take as a given that the overwhelming majority in the scientific community is correct and that the future of civilization depends on minimizing environmental damage from industrial, as well as personal, activities. At the same time, the series does not advocate solutions that emphasize only curtailing or cutting back on these activities. Instead, its purpose is to exhort and enable engineering practitioners and managers to reduce environmental impacts, to engage, in other words, in Environmentally Conscious Engineering, a catalog of practical technologies and techniques that can improve or modify just about anything engineers do, whether they are involved in designing something, making something, obtaining or manufacturing materials and chemicals with which to make something, generating power, transporting people and freight, handling materials anywhere in the chain between manufacturing operations, warehousing, and distribution, or handling and transporting both municipal and dangerous wastes. Increasingly, engineering practitioners and managers need to know how to respond to challenges of integrating environmentally conscious technologies, techniques, strategies, and objectives into their daily work, and, thereby, find opportunities to lower costs and increase profits while managing to limit environmental impacts. Engineering practitioners and managers also increasingly face challenges in complying with changing environmental laws. So companies seeking a competitive advantage and better bottom lines are employing environmentally responsible methods to meet the demands of their stakeholders, who ix

7 x Preface now include not only owners and stockholders, but also customers, regulators, employees, and the larger, even worldwide community. Engineering professionals need references that go far beyond traditional primers that cover only regulatory compliance. They need integrated approaches centered on innovative methods and trends in using environmentally friendly processes, as well as resources that provide a foundation for understanding and implementing principles of environmentally conscious engineering. To help engineering practitioners and managers meet these needs, I envisioned a flexibly connected series of edited books, each devoted to a broad topic under the umbrella of Environmentally Conscious Engineering. The intended audience for the series is practicing engineers and upper-level students in a number of areas mechanical, chemical, industrial, manufacturing, plant, power generation, transportation, and environmental as well as engineering managers. This audience is broad and multidisciplinary. Practitioners work in a variety of organizations, including institutions of higher learning, design, manufacturing, power generation, transportation, warehousing, waste management, distribution, and consulting firms, as well as federal, state, and local government agencies. So what made sense in my mind was a series of relatively short books, rather than a single, enormous book, even though the topics in some of the smaller volumes have linkages and some of the topics might be suitably contained in more than one freestanding volume. In this way, each volume is targeted at a particular segment of the broader audience. At the same time, a linked series is appropriate because every practitioner, researcher, and bureaucrat can t be an expert on every topic, especially in so broad and multidisciplinary a field, and may need to read an authoritative summary on a professional level of a subject that he or she is not intimately familiar with but may need to know about for a number of different reasons. The Environmentally Conscious Engineering Series is comprised of practical references for engineers who are seeking to answer a question, solve a problem, reduce a cost, or improve a system or facility. These books are not a research monographs. The purpose is to show readers what options are available in a particular situation and which option they might choose to solve problems at hand. I want these books to serve as a source of practical advice to readers. I would like them to be the first information resource a practicing engineer reaches for when faced with a new problem or opportunity a place to turn to even before turning to other print sources, even any officially sanctioned ones, or to sites on the Internet. So the books have to be more than references or collections of background readings. In each chapter, readers should feel that they are in the hands of an experienced consultant who is providing sensible advice that can lead to beneficial action and results. The six earlier volumes in the series have covered mechanical design, manufacturing, materials handling, materials and chemicals processing, alternative

8 Preface energy production, and transportation. The seventh series volume, Environmentally Conscious Fossil Energy Production, has linkages to some of those earlier volumes, particularly alternative energy production and transportation. While this volume might be deemed the most controversial in the Environmentally Conscious Engineering Series, it deals with technologies that cannot be avoided for the intermediate future. After all, energy demand is growing worldwide, both in developed and in developing countries. While conservation methodologies and alternative energy sources are coming on line, fossil energy production will continue to be used to meet human needs and desires. The contributors to this volume, especially Ali Elkamel, who originated the idea for the volume and contributed three of the chapters together with colleagues, all recognize that the fossil energy sector currently produces unacceptable amounts of greenhouse gas emissions responsible for global climate change and must be carefully managed and regulated lest it create environmental damage in other ways, including pollution from spills occurring during oil ocean transport. Contributors have provided chapters that provide solutions for mitigating some of the most devastating problems that the fossil energy sector can create. I asked the contributors, located not only in North America, but also in the Middle East, to provide short statements about the contents of their chapters and why the chapters are important. Here are their responses: M. Rafiqul Awal (Texas Tech University in Lubbock, Texas), who contributed the chapter on Environmentally Conscious Petroleum Engineering, writes, The book opens with a chapter on environmental consciousness in the petroleum sector. True, the petroleum industry was not environmentally savvy in the first half of its century-old global existence, partly because the world itself was not environmentally conscious. But spurred by rising global ecological awareness and government regulation in the Western hemisphere after World War II, the petroleum industry has taken cognizance of its responsibilities. Consequently, not only has it plugged holes via technological and human resources development, but most oil companies in the product distribution and marketing sector, as well as oilfield operators, have taken proactive roles in planning their operations with almost zero tolerance for environmental damage. Ali Elkamel (University of Waterloo in Waterloo, ), who coedited this book and along with J. Guillermo Ordorica-Garcia, Peter Douglas, and Eric Croiset, contributed the chapter on Carbon Management and Hydrogen Requirements in Oil Sands Operations, writes, In this chapter, energy requirements associated with producing synthetic crude oil (SCO) and bitumen from oil sands are modeled and quantified, based on current commercial production schemes. These energy requirements are expressed in terms of amounts of hot water, steam, power, hydrogen, diesel fuel, and process fuel for upgrading processes. The production schemes considered are: a) mined bitumen, upgraded to SCO; b) thermal bitumen, upgraded to SCO and c) thermal bitumen, diluted. xi

9 xii Preface Additionally three distinct bitumen upgrading methods were modeled and incorporated into schemes a) and b). In addition to energy demands, greenhouse gas (GHG) emissions associated with supplying energy required to produce bitumen and SCO are also illustrated. Calculations are illustrated on two distinct situations. The first is a base case in which all the energy is produced using current technology, in the year The second situation is a future production scenario, where energy demands are computed for SCO and bitumen production levels corresponding to the years 2012 and R. Larry Grayson (The Pennsylvania State University in University Park, Pennsylvania), who contributed the chapter on Environmentally Conscious Coal Mining, writes, Following a description of the historical environmental performance of the U.S. coal industry, this chapter details the extent of current environmental regulations and environmental achievements of recent decades. Through regulation and enlightened management, improvements have been impressive. Impacts on air, land, and water have been mitigated dramatically. Today the global coal industry, through major companies, has embraced sustainable development principles, just as governments have, and future improvements will address remaining and emerging environmental, health, and safety related issues in a proactive way. Sabah A. Abdul-Wahab (Sultan Qaboos University in Muscat, Sultanate of Oman), who contributed the chapter on Maritime Oil Transport and Pollution Prevention, writes, This chapter addresses three case studies on maritime oil transport and pollution prevention. In the first case study, an innovative, realtime, and environment friendly in-situ device for early detection of oil pollution in seawater was developed. The device is very important for early detection of oil pollution in seawater and hence minimizes damage caused. It can contribute to the development of advanced practices in oil spill detection. In the second case study, an innovative technique to detect fissures in ship structures at an early stage was presented. Ihe design concept can be used in operational pipelines, such as those used to transport gas or oil. In the third case study, the groundlevel concentration of nitrogen oxides (NO x ) released from ships in berth was predicted. This prediction will help to identify ships that cause emission problems in port and also will help ships crews to take corrective actions to reduce and control. M. R. Riazi (Kuwait University in Kuwait), who contributed the chapter on Accidental Oil Spills Behavior and Control, writes, This chapter is devoted to oil spill occurrence, behavior and control. Oil is transmitted from producing countries to consuming countries mainly through tankers. The products of crude oil such as gasoline and fuel oil may also be transferred from refinery sites to the market. Oil spills occur mainly during such activities as a result of collision, accidents or human errors. In addition, during offshore production of oil, significant amounts of oil may be released over the sea surface causing significant damage to the environment and threatening the lives of humans and living organs

10 Preface in aquatic system. It is important to prevent such accidents but once they have occurred to use an appropriate clean-up technique. In this chapter, the nature of oil spills, their occurrence, prevention and clean-up methods are discussed. Selection of the right clean up technique mainly depends on the nature of a spill and its behavior. Predictive models are presented to simulate spill behavior and its impact especially from ecological and toxic points of view. Ahmed Shafeen (Natural Resources Canada, Ottowa, ), who along with Terry Carter, contributed the chapter on Geological Sequestration of Greenhouse Gases, writes, The recent rapid rise in the CO 2 content of the atmosphere and its causal linkage to global warming has politicians and the scientific community scrambling to identify a solution. Of all the methods proposed, geological sequestration of CO 2 is generally acknowledged to have the best potential to mitigate CO 2 emissions into the atmosphere in the large quantities necessary to have an effective near to medium-term impact. This chapter provides an overview of this promising technology. Ali Elkamel (University of Waterloo in Waterloo, ), who coedited this book and along with J. Guillermo Ordorica-Garcia, Peter Douglas, and Eric Croiset, contributed the chapter on Clean-Coal Technology: Gasification Pathway, writes, In this chapter, relevant information concerning power plant technology and carbon dioxide capture techniques is presented. The chapter covers current gasification techniques, including commercial gasification processes. The advantages of integrated gasification combined cycle (IGCC) power plants, stages of development, and selected commercial IGCC projects are presented. These are plants that employ synthetic gas from coal as a fuel. Details concerning the production of synthetic gas from coal are reviewed as well as the performance of IGCC plants. The more recent integrated coal gasification fuel cell combined cycle (IGFC) is also discussed. The chapter ends with a detailed classification of all major CO 2 capture technologies. Ali Elkamel (University of Waterloo in Waterloo, ), who coedited this book and along with Ali Elkamel, Haslenda Hashim, Peter L. Douglas, and Eric Croiset, contributed the chapter on An Integrated Approach for Carbon Mitigation in the Electric Power Generation Sector, writes, This chapter presents the modeling of fleet-wide energy planning that can be used to determine the optimal structure necessary to meet a given CO 2 reduction target while maintaining or enhancing power to the grid. The modeling framework discussed here incorporates power generation as well as CO 2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear and wind). The modeling is based on mixed integer programming (MIP) and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO 2 reduction target and electricity demand at a minimum overall cost. The framework is illustrated by a case study that deals with the energy supply system operated by Ontario Power Generation (OPG) for the province of. xiii

11 xiv Preface B.V. Reddy (University of Ontario Institute of Technology in Oshawa, Ontario, Canada), who along with K. Mohammed, contributed the chapter on Energy and Exergy Analyses of Natural Gas-Fired Combined Cycle Power Generation Systems, writes, The present chapter provides details on thermodynamic analysis of natural gas fired combined cycle power generation systems, on methodology to conduct energy analysis, on the role of operating parameters such as gas turbine inlet temperature and gas turbine pressure ratio. But energy analysis alone has limitations in providing details on the overall performance improvement for the power generation unit. Exergy analysis helps identify sources of irreversibilities and losses in components and in the overall system and improves performance. The present chapter provides details on how to conduct exergy analysis for a natural gas fired combined cycle power generation system with reheat and supplementary combustion chambers. That ends the contributors comments. I would like to express my heartfelt thanks to all of them, and especially to Ali Elkamel, my esteemed co-editor, for having taken the opportunity to work on this book. Their lives are terribly busy, and it is wonderful that they found the time to write thoughtful and complex chapters. I developed the book because I believed it could have a meaningful impact on the way many engineers approach their daily work, and I am gratified that the contributors thought enough of the idea that they were willing to participate in the project. Thanks also to my editor, Bob Argentieri, for his faith in the project from the outset. And a special note of thanks to my wife Arlene, whose constant support keeps me going. Myer Kutz Delmar, NY