DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM GAYATRI SACHIN VYAS

Size: px
Start display at page:

Download "DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM GAYATRI SACHIN VYAS"

Transcription

1 DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM GAYATRI SACHIN VYAS DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI OCTOBER 2017

2 Indian Institute of Technology Delhi (IITD), New Delhi, 2017

3 DEVELOPMENT OF A FRAMEWORK FOR INDIAN GREEN BUILDING RATING SYSTEM by GAYATRI SACHIN VYAS Department of Civil Engineering Submitted In fulfillment of the requirements of the degree of Doctor of philosophy to the INDIAN INSTITUTE OF TECHNOLOGY DELHI OCTOBER 2017

4 Dedicated to my beloved Parents, Husband & Teachers

5 CERTIFICATE This is to certify that the thesis entitled, Development of a Framework for Indian Green Building Rating System being submitted by Mrs. Gayatri Sachin Vyas to the Indian Institute of Technology Delhi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by her under my supervision and guidance. The thesis work, in my opinion, has reached the requisite standard fulfilling the requirement for the degree of Doctor of Philosophy. The results contained in this thesis have not been submitted, in part or full, to any other University or Institute for the award of any degree or diploma. Dr. K. N. Jha (Associate Professor) Department of Civil Engineering Indian Institute of Technology Delhi New Delhi i

6 ACKNOWLEDGEMENTS Firstly I would like to thank Almighty God for guiding and helping me to complete my thesis setting in excellence to the best of my potential. I express my deep sense of gratitude towards my supervisor Dr. K. N. Jha for providing inspiration and motivation for the present work at every stage with invaluable suggestions. This thesis would not have been possible without his help, support and patience. He has been what I can only describe as the ideal supervisor. No amount of appreciation can be good enough to express my gratitude and how indebted I am to him. Besides my supervisor, I would like to thank members of student research committee, Prof. J. T. Shahu, Prof. B. Bhattacharjee, and Prof. V. K. Vijay for their advice and guidance during the course of my Ph.D. I also express my thanks to Prof. M. B. Kumthekar, Mr. Suresh Pakhare, Mr. Gautam Oza, Mr. Vinay Kulthe and many others for their cooperation in collecting data and providing useful information for my research. I have a galaxy of friends who have been the source of my unwavering strength during the course of this work. Some of the names amongst those are: Dr. Dilip Patel, Mrs. Prachi Sohoni, Mr. K. K. Tripathi, Mr. Satish Kumar, Miss. Abhilasha Panwar. I am indebted to them and many more around me for the stimulating environment in the campus. I would like to acknowledge the Indian Institute of Technology Delhi for offering me the admission to enable me to undertake the present research. I am especially thankful to all staff of Civil Engineering Department, and Kailash hostel for their kind support, help and guidance whenever I needed. I am also thankful to College of Engineering Pune (COEP), for giving me an opportunity to pursue studies at IIT Delhi. My thanks are extended to my all colleagues and ii

7 friends. Special thanks are due to Prof. A. D. Sahasrabudhe, Prof. B. B. Ahuja, Prof. S. S. Bhosale, and Prof. S. R. Sathe for advising and inspiring me to join Ph.D., in IIT Delhi. I am grateful to Dr. R. S. Dalvi, Dr. V. B. Dawari, Dr. B. M. Dawari, Dr. M. S. Ranadive, Prof. R. P. Thanedar and Mrs. Y. T. Lomte-Patil for their cooperation and support. My friends Meera, Soumya, Kanchan also supported me. This thesis would not have been possible without wishes and support from all of my relatives and friends. This thesis is dedicated to my parents, and I cannot thank them enough for all they have done for me. My younger sister Shivani, younger brother Laxmikant, and his wife Durga have given me their unequivocal support and love during my stay at IIT Delhi, for which my mere expression of thanks does not suffice. Lastly and most importantly, I wish to extend thanks to my husband Sachin, for his personal support and encouragement for the studies. It was his constant encouragement and understanding that allowed me to write this thesis. Smiling faces of my sons, Omkar and Ishan and my nephew Vedant always inspire me to work hard and excel in everything I do. Gayatri Sachin Vyas iii

8 ABSTRACT The construction industry is responsible for some of the most severe forms of local and global pollution, whose effects include climate change. So, it faces pressure to mitigate such negative impacts through increasing the sustainability of building practices, as reflected in the development of green building (GB) rating systems. Existing rating methods can be applied to different regions by addressing additional aspects such as varied climatic conditions and regional variations. This study proposes a rating system for the Indian context. To achieve this aim and promote GB construction, the study set five objectives: (1) to identify and evaluate various attributes for measuring the greenness of a building, (2) to develop a GB rating framework consisting of components, attributes and parameters to evaluate the green building index (GBI) and thereby rate a building for its greenness, (3) to identify the cost of a GB, (4) to benchmark GB attributes, and (5) to evaluate GB attributes by the environmental, social, and economic pillars of sustainability. For the sake of convenience, these objectives are achieved in five phases based on various research methods, including principal component analysis (PCA), analytical hierarchy process (AHP), fuzzy measures, fuzzy integrals, data envelopment analysis (DEA), and entropy. The PCA has extracted nine components and 34 attributes. These are used for developing a framework for measuring the greenness of building in developing countries such as India. The nine components are: (1) site selection, (2) environment, (3) building resources and reuse, (4) building services and management, (5) innovative construction techniques, (6) environmental health and safety, (7) mechanical systems, (8) indoor air quality, and (9) economy. The GB rating system developed consists of the GBI at the top level, nine components at the middle level, and 34 attributes at the bottom level. To measure the attributes, 68 parameters were determined. The rating system was converted into a user- iv

9 friendly JAVA based software, which makes it easy to implement. To promote the GB, it is vital to focus on those attributes which cost less while contributing more towards reducing the negative impact of construction on the environment. The outcomes of this study showed that investing in green building is economically profitable as it saves the emission of carbon dioxide (CO 2 ). The financial analysis of GB projects demonstrated that the percentage increase in the cost for a five stars green rating for integrated habitat assessment (GRIHA) rated buildings varied from 6.43% to 16.35% with an average of 8.50%. In the case of three star rated buildings, the percentage increase in the cost varied from 1.63 to 3.63% with an average of 2.85%. From the study, it was observed that the average payback period for GBs rated three stars was 2.53 years and for GBs rated five stars it was 5.5 years. The average discounted period for a five stars GB was 5.23 years and for a three stars GB, 7.56 years. The increase in cost per square meter for a five stars GB varied from Rs to Rs and the average increase was Rs. 1, The increase in cost per square meter for three stars GBs was from Rs to Rs and the average increase was Rs The DEA benchmarked those GB attributes which can give more green points using limited funds. These include operation and maintenance costs, material recycling, low-impact construction site techniques, locally available materials, soil pollution, light pollution, plantation of adaptive plants, integrated project management building information modelling (BIM), environmental impact of materials, and a noise pollution efficient frontier. However, if the users do not want to focus on the cost parameter alone, they may also consider the environmental and the social pillars of sustainability. In that case, the most substantial attributes are the occupant s health, safety, and comfort, climatic conditions, the cost of investment, operation and maintenance, and indoor air quality. So the study contributes to theory and practice in the form of models and methods to v

10 (1) assess the GB in India by JAVA based software; (2) find out the increase in initial cost, payback period, and life cycle cost of a GB; (3) identify the GB attributes through which a GB developer can achieve more green points with less cost; and (4) identify prominent attributes by considering social, environmental, and economic pillars of sustainability. The proposed approach can produce significant benefits for GB construction practices that are not likely to result from conventional practices. Further, the framework suggested in this research can be applied for countries having similar climatic conditions. The findings of this study can aid designers and developers in their quest to achieve green development. Keywords: Green Building; Rating System; Sustainable Development; Principal Component Analysis; Analytical Hierarchy Process; Fuzzy Integral; Data Envelopment Analysis; Initial Cost; Payback Period. vi

11 स र नम ण उ ग, थ न य और व क द षण क क छ सबस ग भ र प क लए ज द र ह, जनक भ व म जलव य प रवत न श मल ह इस लए, यह न ब ग (ज ब ) र ट ग स म क वक स म प रल त कए गए नम ण व धय क थरत म व क म म स इस तरह क नक र क भ व क कम करन क लए दब व क स मन करन पड़त ह व भ म सम स ब ध थ तय और य व वधत ओ ज स अ त र पहल ओ क स ब धत करक म ज द र ट ग व धय क अलग-अलग म ल ग कय ज सकत ह इस अ यन म भ रत य स दभ क लए एक र ट ग ण ल क व ह इस उ क ह सल करन क लए और ज ब नम ण क बढ़ व द न क लए, अ यन म प च उ क थ पन क गई: (१) एक इम रत क नन स क पहच न और म कन करन क लए व भ क रक क पहच न, (२) म कन क लए घटक, वश षत ओ और म पद ड स य ज ब र ट ग ढ च क वक स न ब ग इ ड (ज ब आई) और इसक नन स क लए एक इम रत क दर, (३) ज ब क ल गत, (४) ब चम क ज ब क रक, और (५) पय वरण, स म जक, और आ थ क, त न थरत क ख र ज ब क रक क म कन. इन उ क प च चरण म ह सल कय ज त ह, जसम म ख घटक व षण (प स ए), व षण क पद न म य (एएचप ), फज उप य, फज एक क त, ड ट भ ग व षण (ड ईए) और ए प स हत व भ श ध व धय पर आध रत ह प स ए न ९ घटक और ३४ वश षत ओ क नक ल ह इनक उपय ग भ रत ज स वक सश ल द श म नम ण क नन स क म पन क लए एक ढ च वक सत करन क लए कय ज त ह न घटक ह : (१) थ न चयन, (२) पय वरण, (३) नम ण स स धन और प न: उपय ग, (४) नम ण स व ओ और ब धन, (५) अ भनव नम ण तकन क, (६) पय वरण और स र, (७) म क नकल स म, (८) इनड र हव क ग णव, और (९) अथ व थ वक सत ज ब र ट ग ण ल म श ष र पर ज ब आई, म र पर न घटक ह त ह, और न च क र पर ३४ वश षत ए ह त ह ग ण क vii

12 म पन क लए, ६८ प र म टर नध रत कए गए थ र ट ग ण ल क उपय गकत क अन क ल ज व व आध रत स टव यर म बदल दय गय थ, जसस इस ल ग करन आस न ह ज त ह ज ब क बढ़ व द न क लए, उन वश षत ओ पर न क त करन मह प ण ह, ज खच कम और पय वरण पर नम ण क नक र क भ व क कम करन क लए अ धक य गद न करत ह इस अ यन क प रण म स पत चल ह क हर इम रत म नव श करन आ थ क प स ल भद यक ह क यह क ब न ड इऑ इड (स ओ २) क उ ज न बच त ह ज ब प रय जन ओ क व य व षण दश त ह क एक क त आव स म कन (ज आरआईएचए) क प च सत र क हर र ग क र ट ग क लए ल गत म तशत व दर ८.५३% स औसत ६.४३% स बढ़कर १६.३५% ह गई ह त न सत र ण नध रण व ल इम रत क म मल म, ल गत म तशत व १.६3 स ३.६३% स बढ़कर औसत २. ८५% ह गई ह अ यन स, यह द ख गय क त न सत र क र ट कए गए ज ब क लए औसत ल ट न क समय २.५३ स ल थ और प च स ल क लए ज ब क म कन ५.५ स ल थ प च सत र ज ब क औसत रय यत अव ध ५.२३ स ल थ और त न सत र क लए ज ब, ७.५६ स ल थ प च सत र ज ब क लए ल गत त वग म टर म व ८२७.५६ स २२८0.५१ और औसत व १, ३७५.९१ थ त न सत र क लए त वग म टर क ल गत म व पय स थ ५१२.२५ स १२५0.0९ और औसत व ८00. १६ थ ड ईए न उन ज ब ग ण क ब चम क कय ज क स मत न धय क उपय ग करक अ धक हर र ग क अ क द सकत ह इसम स च लन और रखरख व ल गत, स म र स इ ग, कम भ व व ल नम ण स इट तकन क, थ न य प स उपल स म, म द षण, क श द षण, अन क ल प ध क प धर पण, एक क त प रय जन ब धन- नम ण स चन म ड ल ग (ब आईएम), स म क पय वरण य भ व और एक श र द षण क शल स म ह ल क, अगर उपय गकत अक ल ल गत प र म टर पर न क त नह करन च हत ह, त व पय वरण और थ य थरत क स म जक ख भ viii

13 पर भ वच र कर सकत ह उस म मल म, सबस मह प ण ग ण म रहन व ल क, स र, और आर म, जलव य प र थ तय, नव श क ल गत, स च लन और रखरख व, और इनड र हव क ग णव ह अत यह अ यन स त और वह र क लए म डल और तर क क प म य गद न द त ह (१) ज व क स व यर र भ रत म ज ब क म कन; (२) र भक ल गत म बढ़ तर, ल ट न क अव ध, और ज ब क ज वन च क ल गत क पत लग ए ; (३) ज ब ए ट ट स क पहच न कर जसक म म स एक ज ब ड वलपर कम ल गत क स थ अ धक हर र ग क अ क कर सकत ह ; और (४) थरत क स म जक, पय वरण और आ थ क ख भ पर वच र करक म ख वश षत ओ क पहच न कर वत क ण ज ब नम ण थ ओ क लए मह प ण ल भ उ कर सकत ह ज प र प रक थ ओ स ह न क स भ वन नह ह इसक अल व, इस श ध म स झ ए गए ढ च क सम न जलव य प र थ तय व ल द श क लए ल ग कय ज सकत ह इस अ यन क न ष अ भक क र और वक सक क हर र ग क वक स क ह सल करन क लए अपन ख ज म मदद कर सकत ह क ज श : न ब ग; र ट ग ण ल ; सतत वक स; म ख क प न ट व षण; व षण क पद न म य ; फज इ ट ल; आकड़ लप टन व षण; आर भक ल गत; ऋण व पस क अव ध ix

14 CONTENTS CERTIFICATE... i ACKNOWLEDGEMENTS... ii ABSTRACT... iv स र... vii CONTENTS... x LIST OF FIGURE... xiv LIST OF TABLE... xvi LIST OF ABBREVIATION... xvii 1 CHAPTER 1 INTRODUCTION Research Background Research Aim and Objectives Rationale for the Research Research Questions The Scope of the Research Organisation of the Thesis Summary CHAPTER 2 LITERATURE REVIEW Introduction Background of Environment Alteration Population Growth Climate Change Building Sector Sustainable Development (SD) Well-Known Green Building Assessment Methods BREEAM (UK- 1990) SBTool (International-1995) Green Globes LEED (U.S.A.) HK-BEAM DGNB Rating System Three-Star Building Rating System- China Green Building Rating Systems in India x

15 2.4.1 LEED-2011 for India NC Rating System GRIHA Rating System Eco-Housing Comparison of Different Green Building Rating Systems Critique of the Well-Known GB Rating Systems Research Gaps Summary CHAPTER 3 RESEARCH METHOD Introduction Research Method for Phase I Research Method for Phase II Fuzzy Measures Fuzzy Integral Analytical Hierarchy Process Weighted Sum Method Research Method for Phase III Research Method for Phase IV Research Method for Phase V Entropy Method Data Collection for the Study Data Collection for Phase I Data Collection for Phase II Data Collection for Phases III, IV, and V Selection of Respondents Summary CHAPTER 4 DEVELOPMENT OF GREEN BUILDING RATING FRAMEWORK FOR INDIA Introduction Framework of the Study Identifying the GB Attributes Univariate Analysis of Attributes Analysing the Attributes by Principal Component Analysis Preliminary Tests of Response Data Component Reduction Discussion xi

16 4.3.1 Component 1 - Site selection Component 2 Environment Component 3 - Building resources and reuse Component 4 - Building services and management Component 5 - Innovative construction techniques Component 6 - Environmental health and safety Component 7 - Mechanical systems Component 8 - Indoor air quality Component 9 Economy Summary and Conclusions CHAPTER 5 DEVELOPMENT OF GREEN BUILDING INDEX Introduction Development of Green Building Index Determination of Weights of Attributes Determination of Weights of Components Determination of GBI Measurement of Attributes for Determining the GBI Certification Criteria Comparison of Newly Developed Rating System with Existing Indian Rating Systems Summary and Conclusions CHAPTER 6 COST IMPLICATIONS FOR A GREEN BUILDING Introduction Data Collection Calculation of Initial Cost of a Green Building Estimation of Energy Savings The Payback Period The Discounted Payback Period Life Cycle Cost Summary and Conclusions CHAPTER 7 BENCHMARKING OF GREEN BUILDING ATTRIBUTES Introduction Data Collection and Data Analysis The Cost Involved in Each Attribute Maintenance Cost of Each Attribute xii

17 7.4 Change in Greenness Points Results and Discussion Summary and Conclusions CHAPTER 8 PROMINENT GREEN BUILDING ATTRIBUTES FOR THE THREE PILLARS OF SUSTAINABILITY Introduction Environment and Social Pillar of Sustainability Analysis of Environment and Social Pillar Economy Analysis of Economic Pillar Discussion Summary and Conclusion CHAPTER 9 SUMMARY AND CONCLUSIONS Background Summary of the Study Conclusions of the Study Recommendations Limitations of the Study Contributions to the Body of Knowledge Suggestions for Further Studies REFERENCES APPENDIX I QUESTIONNAIRE FOR PRINCIPAL COMPONENT ANAYISIS APPENDIX II QUESTIONNAIRE FOR DEVELOPING GREEN BUILDING INDEX APPENDIX III AHP CALCULATION APPENDIX IV JAVA BASED GBI SOFTWARE CODING APPENDIX V INCREASE IN GREEN BUILDING COST- DATA FOR BUILDINGS C1 AND C APPENDIX VI ENTROPY ANALYSIS FOR THE ATTRIBUTES BIO-DATA OF THE AUTHOR xiii

18 LIST OF FIGURE Fig Assessment criteria and their weights in the BREEAM NC Fig Assessment criteria and their weights in the SBTool Fig Assessment criteria and their weights in Green Globes Fig Assessment criteria and their weights in the LEED (U.S.A.) Fig Assessment criteria and their weights in the HK BEAM Fig Assessment criteria and their weights in the DGNB Fig Assessment criteria and their weights in the three-star building rating system Fig Assessment criteria and their weights in the IGBC India Fig Assessment criteria and their weighs in the GRIHA Fig Assessment criteria and their weights in the Eco-housing rating system Fig Assessment criteria and their weights adopted by various green building rating systems across the world Fig Holistic framework of the research Fig Inputs and output of green building attributes Fig Distribution of respondents: by profession Fig. 3.4 Distribution of respondents: by experience Fig The steps for developing green building rating framework Fig Framework of GB rating system Fig The steps for developing GBI Fig Flowchart for the development of JAVA based GBI Fig 5.3. Site selection component Fig Environment component Fig Building resource and reuse component xiv

19 Fig Building service and management component Fig Innovative construction, environmental health and safety, mechanical systems, indoor air quality and economy component Fig A sample GBI output Fig Certification criteria in the developed rating system Fig Comparison of newly developed rating system with Fig The steps for identifying cost implications of GB Fig Cash flow diagram for calculating LCC for building C Fig Research methodology Fig Procedure for identifying environment, social, and economic analysis of attributes xv

20 LIST OF TABLE Table 2.1 Green building rating systems used in the world Table 2.2 Different attributes chosen in various rating systems Table 2.3 GB research around the globe Table 3.1 Saaty s RI table Table 3.2 Comparison of fuzzy and numerical scale Table 3.3 Limitations of questionnaire survey and their remedial measures Table 3.4 Limitations of case study method and their remedial measures Table 4.1 Attributes considered in the questionnaire survey Table 4.2 Results of univariate analysis carried out on 52 attributes Table 4.3 Details of ANOVA result Table 4.4 Attributes excluded based on KMO test- anti-image correlation matrix Table 5.1 Linguistics values of W ij and X ij and their membership functions Table 5.2 Combined matrix for the nine green building components Table 5.3 Normalised matrix for the nine green building components Table 5.4 Parameters for defining GB attributes Table 6.1 Green building measures adopted in different cases Table 6.2 Cost of green buildings Table 6.3 Payback period analysis Table 6.4 LCC for green buildings Table 7.1 List of possible attributes for DEA Table 8.1 Global weights for attributes of green buildings: stakeholder's perspectives Table 8.2 Ranking of attributes for environment, social, and economic pillars of sustainability xvi

21 LIST OF ABBREVIATION AAC ABGR AHP ASHRAE ASTM BEE BIM BIPV BMVBS BOMA BOQ BRE BREEAM BRR CASBEE CB CCR CFL CI CPA CPCB CPI CPWD CR CRS CURC DEA DGNB DMU DNGB DSR EAM ECBC EG EI EMS ENVIS EP EPI ESRC Autoclaved Aerated Concrete Australian Building Greenhouse Rating Analytical Hierarchy Process American Society of Heating, Refrigerating and Air-Conditioning Engineers American Society for Testing and Materials Bureau of Energy Efficiency Building Information Modelling Building Integrated Photovoltaic Federal Ministry of Transport, Building and Urban A airs Building Owners and Managers Association Bill of Quantity Building Research Establishment Building Research Establishment s Environmental Assessment Method Building Resource and Reuse Comprehensive Assessment System for Built Environment Efficiency Commercial Building Charnes-Cooper- Rhodes Compact Fluorescent Light Consistency Index Comprehensive Project Evaluation Central Pollution Control Board Cost Performance Index Central Public Works Department Consistency Ratio Constant Returns to Scale Coal Utilization Research Council Data Envelopment Analysis Deutsche Gesellschaftfür Nachhaltiges Bauen Decision Making Unit German sustainable Building Council Delhi Schedule of Rates Environment Assessment Method Energy Conservation Building Code Extremely Good Extremely Important Efficiency Measurement System Environmental Information System Extremely Poor Energy Performance Index Economic and Social Research Council xvii

22 EUI FST GB GBI GDP GeSBC GHEM GRIHA HK-BEAM HK-BEAM HVAC IAQ IB IEA IGBC IIEC IPCC IS ISO IUCNs KMO LC LCC LCD LEED LG LI LP LUI MATLAB MCDM MNRE MoEF MSA N NAHB NBC NCF NPV NR O&M PC PCA PV Extremely Unimportant Fuzzy Set Theory Green Building Green Building Index Gross Domestic Product German Sustainable Building Certificate Green Home Evaluation Manual Green Rating for Integrated Habitat Assessment The Hong Kong Building Environmental Assessment Method Hong Kong Building Environmental Assessment Method Heating, Ventilation and Air Conditioning Indoor Air Quality Institutional Building International Energy Agency Indian Green Building Council International Institute for Energy Conservation Intergovernmental Panel for Climate Change Indian Standard International Organisation for Standardization International Union for Conservation of Nature and Natural Resources Kaiser-Meyer-Olkin Life Cycle Life Cycle Cost Liquid Crystal Display Leadership in Energy and Environmental Design Little Good Little Important Little Poor Little Un-Important Matrix Laboratory Multiple Criteria Decision Making Ministry of New and Renewable Energy Ministry of Environment and Forests Measures of Sampling Adequacy Neutral National Green Building Standard National Building Code Net Cash Flow Net Present Value Non-Rated Operational and Maintenance Principal Components Principal Component Analysis Photovoltaic xviii

23 RTI SBTool SBS SD SPSS SRI STP TERI UNFCCC USGBC VG VI VOC VP VUI WCED WSM Right to Information Sustainable Building Tool Sick Building Syndrome Sustainability development Statistical Package for the Social Sciences Solar Reflective Index Science and Technology Park The Energy and Resources Institute United Nations Framework Convention on Climate Change United States Green Building Council Very Good Very Important Voltaic Organic Compounds Very Poor Very Un-Important World Commission on Environment and Development Weighted Sum Method xix