Bei Fragen wenden Sie sich bitte an:

Size: px
Start display at page:

Download "Bei Fragen wenden Sie sich bitte an:"

Transcription

1 Urheberrechtshinweis Die Inhalte dieser Präsentation (u.a. Texte, Grafiken, Fotos, Logos etc.) und die Präsentation selbst sind urheberrechtlich geschützt. Sie wurden durch Fraunhofer UMSICHT selbständig erstellt. Eine Weitergabe von Präsentation und/oder Inhalten ist nur mit schriftlicher Genehmigung von Fraunhofer UMSICHT zulässig. Ohne schriftliche Genehmigung von Fraunhofer UMSICHT dürfen dieses Dokument und/oder Teile daraus nicht weitergegeben, modifiziert, veröffentlicht, übersetzt oder reproduziert werden, weder durch Fotokopien, Mikroverfilmung, noch durch andere insbesondere elektronische - Verfahren. Der Vorbehalt erstreckt sich auch auf die Aufnahme in oder die Auswertung durch Datenbanken. Zuwiderhandlungen werden gerichtlich verfolgt. Copyright Fraunhofer UMSICHT, 2015 Bei Fragen wenden Sie sich bitte an: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT Dipl.-Chem. Iris Kumpmann Abteilungsleiterin Public Relations Osterfelder Straße Oberhausen Tel.: iris.kumpmann@umsicht.fraunhofer.de

2 Concept for Combined Heat and Power Production from Wood via Gasification followed by Catalytic Gas Cleaning Tim Schulzke, Group Manager Thermochemical Processes and Hydrocarbons Dr. Christoph Unger, Christian Hamel Folie 2

3 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

4 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

5 Patron Joseph von Fraunhofer ( ) Scientist è Discovery of the»fraunhofer lines«in the Sun s spectrum Inventor è New manufacturing methods for reamfree glas and lenses Entrepreneur è Director and co-partner of a glass factory Deutsches Museum Fraunhofer-Gesellschaft "Fraunhofer lines" Folie 5

6 The Fraunhofer-Gesellschaft n 67 institutes and independent research facilities n 2 bn research funds n 1.7 bn contract research n More than employees (m/f) 1 n 40 facilities in Germany n 13 institutes in North Rhine- Westphalia n 4 institutes in the Ruhr area more information under: Oberhausen Aachen Duisburg Euskirchen Kaiserslautern St. Ingbert Saarbrücken Karlsruhe Braunschweig Magdeburg Paderborn Dortmund Halle Schmallenberg Schkopau Sankt Augustin Darmstadt Freiburg Bremen Pfinztal Stuttgart Efringen-Kirchen Itzehoe Hannover Wertheim Ilmenau Würzburg Lübeck München Berlin Potsdam Cottbus Leipzig Jena Chemnitz Erlangen Teltow Dresden Sulzbach-Rosenberg Nürnberg Freising Holzkirchen Rostock Institute branch (m/f) as per including fixed-term contracts of less than 18 months. Folie 6

7 Fraunhofer UMSICHT Pioneer of the energy and resource transition n Core area: Process engineering Chemical conversion»from raw material to the product«n 559 employees (318 permanent staff) in Oberhausen and Sulzbach-Rosenberg n Operating budget 2014: 38.1 million n Our subjects: Energy I Processes I Products I Environment I Material I Sustainability Site Oberhausen n Our guiding themes: Production without raw materials / Energy with prudence (= English translation of UMSICHT) Site Sulzbach-Rosenberg Folie 7

8 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

9 General applications for wood-based synthesis gas solid fuel CFB-gasification gaseous fuel gas utilization / application Biomass/RDF increasing demand on gas upgrading substitution of primary fuels in thermal processes like ovens/ kilns for calcination, dryling, melting, sintering etc.) gas fired (steam) boilers power generation with gas engines or gas turbines power generation with fuel cells Impurities: dust, tars, sulfur, chlorine, Syntheses (SNG or BtL) Folie 9

10 Gas Composition UMSICHT (CFB) N 2 43 % H 2 O 10 % CO 2 13 % Tar 0,5 % ca. 30 % PAH (mainly C 12 H 8, C 14 H 10, C 16 H 10 ) ca. 30 % Benzene CH 4 4 % H 2 14 % CO 16 % ca. 30 % Naphthalene: ca. 10 % other monoaromatics R 1 LHV without tar : H u 1.38 kwh/nm 3 Tar weight-% R 2 Folie 10

11 Primary Measures for Tar Reduction (fluidized bed) Tar Content in Dependence of Bed Material n Silica Sand n Dolomite (fresh) 300 mg/nm 3 4,250 mg/nm 3 10,000 mg/nm 3 n Other Materials (natural and artifical) n Olivine mg/nm 3 2,500 mg/nm 3 n Contamination limit for IC engine (1996) 50 mg/nm 3 Folie 11

12 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

13 Development of Catalytic Tar Reforming Slip Stream - Fixed bed Ni NiCo CoMo AC biomass flue gas stack CFB-gasification plant fan additives flare CFBgasifier reformer (tar) (slip flow) reformer (tar) (Full-scale) BHPP-plant module heat recovery flue gas stack - Monolith gas filter Ni dryer air gas engine generator filter ash air flue gas feedstock drying plant blower primary air preheater siphon air gas cooler furnace stack Folie 13

14 Thermodynamic Equilibrium of Gas Composition Raw gas not in equilibrium Clean gas approaches equilibrium 1,6 H i increases due to 1,4 endothermal reforming 1,2 CO CO 2 H 2 H 2 O not possible by shift reaction CO + H 2 O CO 2 + H 2 c i / c i, GG 1,0 0,8 0,6 0,4 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 τ Kat [s] Folie 14

15 Naphthalene Conversion as Key Component Naphthalene - most difficult to convert - high concentration in raw gas Folie 15

16 Catalyst Poisoning and Deactivation Deactivation mechanisms - sulfur poisoning Ni + H 2 S NiS + H methane reformation decreases very fast, tar reformation hardly - carbon deposition (coking) tar reformation decreases linearly, light tars more affected Conversion [%] BTX Conversion Naphthalin Conversion PAH (C -C ) Conversion Tar content (Naphthalin + PAH) time-on-stream [h] Tar content [mg/nm 3 ] Folie 16

17 Results from Full Scale Tar Reformer Experiments n 2 layers 3x3 of Ni-Monoliths laminar flow in ducts (u G < 1.5 m/s) residence time 0.4 sec n Puls cleaning for dust removal 1 sec N 2 pulse every 1.5 h spatially distributed with time n Air addition between both layers Gas inlet monolithic catalysts Gas exit Temperature control (inlet to 2. layer above 900 C) n Air treatment between experiments regeneration (removal of sulfur and coke) Folie 17

18 Final design for CHP station Wood Flue gas CHP Application Flue gas Blower Flare Stack Bed material Stack Tar reformer Belt Dryer BFB- Gasifier Gasfilter Filterasche Air Air IC Engine Generator Flue gas Gas Cooler Primary Air Drying Air Preheater Gasification Combustion Stack Folie 18

19 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

20 Greenhouse Gas Emissions emissions [ g CO2 - Equivalent/kWhel ] v1: electrical auxiliary power from grid (left pile) v2: electrical auxiliary power from self production (right pile) 46.6 emissions in power plant emissions during transport emissions during biomass production , fuel input [ MW ] 0, in Germany: 597 g CO2-equivalent /kwh electricity from grid (reference year 2010) Folie 20

21 Investment Cost Calculation investment cost [ Mio ] Investment cost [ Mio ] Investment cost [ Mio ], Supplier A + Supplier C Investment cost [ Mio ], Supplier B (without building) Investment cost [ Mio ], Grate firing + Steam turbine (without building) specific Investment [ /kwel ] fuel input [ MW ] specific investment [ /kwel ] (reference year 2010) Folie 21

22 Electricity Cost Calculations production cost [ /kwhel ] 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (reference year 2010) fossil reference: 0.07 /kwh el electricity production only complete heat utilization , fuel input [MW] Folie 22

23 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

24 Synthesis gas as building blocks for bulk chemicals CO H 2 CO 2 CH 4 N 2 Other H 2 /CO Güssing Taylor UMSICHT Chrisgas Carbo-V CUTEC For comparison: coal gasification H 2 /CO 0.5 natural gas steam reforming H 2 /CO 3 Folie 24

25 Synthesis reactions Methane CO + 3 H 2 CH 4 + H 2 O Δ R H=-206 kj/mol (3:1) Fischer-Tropsch-Synthesis n CO + 2n H 2 (-CH 2 -) n + n H 2 O Δ R H=-158 kj/mol (2:1) Methanol CO + 2 H 2 CH 3 OH Δ R H=-98,7 kj/mol (2:1) Ethanol 2 CO + 4 H 2 C 2 H 5 OH + H 2 O Δ R H=-256 kj/mol (2:1) Dimethyl Ether 2 CO + 4 H 2 H 3 C-O-CH 3 +H 2 O Δ R H=-219 kj/mol (2:1) Methane 2 CO + 2 H 2 CH 4 + CO 2 Δ R H=-247 kj/mol (1:1) Ethanol 3 CO + 3 H 2 C 2 H 5 OH + CO 2 Δ R H=-297 kj/mol (1:1) Dimethyl Ether 3 CO + 3 H 2 H 3 C-O-CH 3 + CO 2 Δ R H=-258 kj/mol (1:1) Folie 25

26 Test Rig for Tar Reforming Catalyst Development Folie 26

27 Test Rig for Tar Reforming Catalyst Development Folie 27

28 Precious metal catalysts Influence of different active metals Ø All catalysts were tested as monoliths (34 x 17 mm) Ø Conversion of hydrocarbons as a function of gas temperature: methane, benzene, naphthalene Conversion 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% % Gas temperature before catalyst [ C] Cat A B - Methane H2S Cat A B - Benzene H2S Cat A B - Naphth. Naphthalene H2S Cat B A - Methane H2S Cat B A - Benzene H2S Cat B A - Napthalene Naphth. H2S Cat A: 1 precious metal Cat B: 2 precious metals Results without sulfur! Folie 28

29 Outline 1. Fraunhofer-Gesellschaft and Fraunhofer UMSICHT 2. Conceptual Design of Combined Heat and Power Station 3. Tar Reformer Development 4. Greenhouse Gas Reduction and Cost Calculation 5. Recent Research on Tar Reforming Monoliths 6. Summary Fraunhofer

30 Summary n Concept for CHP station successfully developed n air-blown atmospheric fluidized bed n catalytic tar reforming reactor in high dust gas deveoped and tested n good performance with woody biomass n high greenhouse gas emissions reduction ( 95 % compared to grid) n Electricity production cost in commercial scale roughly double the fossil reference cost under German circumstances no commercial implementation yet n Latest work focuses on development of new/improved catalysts for different applications n lower temperatures n low or full conversion of methane Folie 30

31 Fraunhofer UMSICHT Department Biorefinery & Biofuels Thank You for Your kind attention! Contact: Fraunhofer UMSICHT Osterfelder Strasse 3, Oberhausen, Germany Internet: Фотография: photocase.de Dipl.-Ing. Tim Schulzke Telephone: Folie 31