ENERGY AUDIT REPORT. Women s Bay Volunteer Fire Department 538 Sargent Creek Road Kodiak, Alaska AkWarm ID No. KONI-ADQ-CAEC-04.

Size: px
Start display at page:

Download "ENERGY AUDIT REPORT. Women s Bay Volunteer Fire Department 538 Sargent Creek Road Kodiak, Alaska AkWarm ID No. KONI-ADQ-CAEC-04."

Transcription

1 ENERGY AUDIT REPORT Women s Bay Volunteer Fire Department 538 Sargent Creek Road Kodiak, Alaska AkWarm ID No. KONI-ADQ-CAEC-04 Submitted by: Central Alaska Engineering Company Contact: Jerry P. Herring, P.E., C.E.A Lakefront Drive Soldotna, Alaska Phone (907) akengineer@starband.net June 30, 2012

2 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY INTRODUCTION METHOD OF ANALYSIS LIMITATIONS OF STUDY BUILDING DESCRIPTION EQUIPMENT INVENTORY AND PHOTO SURVEY HISTORIC ENERGY CONSUMPTION AND COST ENERGY EFFICIENCY MEASURES CONCLUSION APPENDICES APPENDIX A BENCHMARK REPORT APPENDIX B AKWARM SHORT REPORT APPENDIX C MAJOR EQUIPMENT LIST APPENDIX D BLOCK FORMAT ENERGY EFFICIENY MEASURES APPENDIX E SITE VISIT PHOTOS AKWARM ID KONI ADQ CAEC 04 i

3 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT This Investment Grade Audit (IGA) was performed using American Recovery and Reinvestment Act (ARRA) funds, managed by Alaska Housing Finance Corporation (AHFC). IGA s are the property of the State of Alaska, and may be incorporated into AkWarm-C, the Alaska Retrofit Information System (ARIS), or other state and/or public information systems. AkWarm-C is a building energy modeling software developed under contract by AHFC. This material is based upon work supported by the Department of Energy under Award Number DE-EE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This energy audit is intended to identify and recommend potential areas of energy savings, estimate the value of the savings and approximate the costs to implement the recommendations. Any modifications or changes made to a building to realize the savings must be designed and implemented by licensed, experienced professionals in their fields. Lighting recommendations should all be first analyzed through a thorough lighting analysis to assure that the recommended lighting upgrades will comply with State of Alaska Statute as well as Illuminating Engineering Society (IES) recommendations. Central Alaska Engineering Company bears no responsibility for work performed as a result of this report. Payback periods may vary from those forecasted due to the uncertainty of the final installed design, configuration, equipment selected, and installation costs of recommended Energy Efficiency Measures (EEMs), or the operating schedules and maintenance provided by the owner. Furthermore, EEMs are typically interactive, so implementation of one EEM may impact the cost savings from another EEM. Neither the auditor, Central Alaska Engineering Company, AHFC, nor any other party involved in preparation of this report accepts liability for financial loss due to EEMs that fail to meet the forecasted payback periods. This energy audit meets the criteria of a Level 2 IGA per the American Society of Heating, Refrigeration, Air-conditioning Engineers (ASHRAE). The life of the IGA may be extended on a case-by-case basis, at the discretion of AHFC. AKWARM ID KONI ADQ CAEC 04 ii

4 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 1.0 EXECUTIVE SUMMARY The scope of this report is a comprehensive energy study, which included an analysis of building shell, interior and exterior lighting systems, HVAC systems, and plug loads. The scope of the audit focused on Bayside Fire Station as part of a contract for: Alaska Housing Finance Corporation Contact: Rebekah Luhrs 4300 Boniface Parkway Anchorage, AK rluhrs@ahfc.us Kodiak Island Borough Contact: Robert Tucker 710 Mill Bay Road Kodiak, AK btucker@kodiakak.us This audit was performed using ARRA funds to promote the use of innovation and technology to solve energy and environmental problems in a way that improves the State s economy. This can be achieved through the wiser and more efficient use of energy and through refined controlling equipment such as occupancy sensing devices and timers. Opportunities for application of these energy saving methods are discussed in detail throughout this report. The February January 2011 documented annual utility costs at this facility are as follows: Electricity $3,721 Fuel Oil $4,798 Total $8, Energy Utilization Index (EUI) = 97.0 kbtu/sf 2010 Energy Cost Index (ECI) = 2.66 $/sf The Energy Efficiency Measures (EEMs) considered are shown in Table 1.1 with estimated installed costs, annual savings, and investment returns. Be aware that the measures are not additive because of the interrelation of several of the measures. The cost of each measure for this level of auditing is ± 30% until detailed engineering, specifications, and hard proposals are obtained. AKWARM ID KONI ADQ CAEC 04 1

5 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT Rank 1 2 Feature Lighting: Misc. Incandescent Lighting: Apparatus Bay Lights 3 HVAC And DHW Lighting: Misc. Incandescent Window/Skylight: NSFW - Double Paned Window/Skylight: SFW Lighting: Apparatus Bay Emergency Circuit Ceiling w/ Attic: Dwelling/Training Room Ceiling w/ Attic: Apparatus Bay Lighting: Training Room Lights Table 1.1 PRIORITY LIST ENERGY EFFICIENCY MEASURES Annual Improvement Installed Energy Description Cost Savings Replace with 20 FLUOR CFL, Spiral 15 W Add new Occupancy Sensor Add thermostat control to dwelling stairwell. Add outdoor reset to system to set boiler to low in summer. Add a hard duct to the boiler air intake and seal off the existing combustion air opening. Evaluation of use of Solar Thermal for reduced demand from HWM is modeled separately. Add new Occupancy Sensor Replace existing window with U-0.30 vinyl window Replace existing window with U-0.30 vinyl window Replace with FLUOR (2) T8 4' F32T8 28W Energy- Saver Instant HighEfficElectronic Add R-12 blown cellulose insulation to attic with Energy Truss. Add R-12 blown cellulose insulation to attic space with Energy Truss. Replace with 12 FLUOR (2) T8 4' F32T8 28W Energy-Saver Instant LowLight HighEfficElectronic and Add new Occupancy Sensor SIR* SP (Years)* $575 $ $136 $ $1,074 $14, $48 $ $340 $5, $91 $1, $9 $ $43 $1, $51 $1, $197 $2, AKWARM ID KONI ADQ CAEC 04 2

6 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT Rank Feature Refrigeration: Refrigerators Lighting: Exterior Incandescent Exterior Door: Dwelling/Training Room 14 Air Tightening Above-Grade Wall: Building Walls On- or Below- Grade Floor, Perimeter: Fire Station Lighting: Exterior HPS Other Electrical: PC Monitors Garage Door: Apparatus Bay Lighting: Exterior LED Lights TOTAL, all measures Table Notes: Table 1.1 PRIORITY LIST ENERGY EFFICIENCY MEASURES Annual Improvement Installed Energy Description Cost Savings Replace with 2 Refrigerator Replace with 2 LED (2) 17W Module StdElectronic Remove existing door and install standard pre-hung U-0.16 insulated door, including hardware. Perform air sealing to reduce air leakage by 10%. Install R-15 rigid foam board to exterior and cover with T1-11 siding or equivalent. Install 2' of R-10 rigid board insulation around perimeter of Slab (vertical or horizontal). Replace with LED 34W Module StdElectronic and Add new Occupancy Sensor Replace with 6 PC/TV Flat screen Monitor Replace existing garage door with R-7, 2" polyurethane core replacement door. Add new Occupancy Sensor SIR* SP (Years)* $116 $1, $32 $ $49 $1, $58 $1, $507 $23, $29 $1, $14 $ $29 $1, $36 $3, $2 $ $3,344 $62, * Savings to Investment Ratio (SIR) is a life-cycle cost measure calculated by dividing the total savings over the life of a project (expressed in today s dollars) by its investment costs. The SIR is an indication of the profitability of a measure; the higher the SIR, the AKWARM ID KONI ADQ CAEC 04 3

7 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT more profitable the project. An SIR greater than 1.0 indicates a cost-effective project (i.e. more savings than cost). Remember that this profitability is based on the position of that Energy Efficiency Measure (EEM) in the overall list and assumes that the measures above it are implemented first. ** Simple Payback (SP) is a measure of the length of time required for the savings from an EEM to payback the investment cost, not counting interest on the investment and any future changes in energy prices. It is calculated by dividing the investment cost by the expected first-year savings of the EEM. AKWARM ID KONI ADQ CAEC 04 4

8 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 2.0 INTRODUCTION This comprehensive energy audit covers the 3,204 square-foot Womens Bay Fire Station that includes office space, a conference room, an apparatus bay, restrooms, and a residential unit. A satellite image of this building can be seen below in Figure 2.1. Figure 2.1 Overhead Satellite Image of Women s Bay Volunteer Fire Dept. The first task was to collect and review two years of utility data for electricity and fuel oil usage. This information was used to analyze operational characteristics, calculate energy benchmarks for comparison to industry averages, estimate savings potential and establish a baseline to monitor the effectiveness of implemented measures. An excel spreadsheet was used to enter, sum, and calculate benchmarks and to graph energy use information (see Appendix A). The annual Energy Utilization Index (EUI) is expressed in Thousands of British Thermal Units/Square Foot (kbtu/sf) and can be used to compare energy consumption to similar building types or to track consumption from year to year in the same building. The EUI is calculated by converting annual consumption of all fuels used to Btu s then dividing by the area (gross conditioned square footage) of the building. EUI is a good indicator of the relative potential for energy savings. A comparatively low EUI indicates less potential for large energy savings. Building architectural, mechanical and electrical drawings were obtained and utilized to calculate and verify the gross area of the facility. After gathering the utility data and calculating the EUI, the next step in the audit process is the site visit. The site visit was completed on July 13, 2011, and was spent inspecting the actual systems and answering specific questions from the preliminary review. Occupancy schedules, O&M practices, building energy management program, and other information that has an impact on energy consumption were obtained. AKWARM ID KONI ADQ CAEC 04 5

9 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT During the site visit, drawings for a similar building were obtained. These drawings were used to answer questions that arose during the site visit regarding the building envelope, lighting systems/controls, HVAC equipment and controls where possible. Additionally, photos of mechanical equipment and the building construction were taken during the site visit. Several photos detailing the equipment and building are included in Appendix E. The post-site work includes evaluation of the information gathered during the site visit, researching possible conservation opportunities, organizing the audit into a comprehensive report, and making recommendations on mechanical, lighting and building envelope improvements. AKWARM ID KONI ADQ CAEC 04 6

10 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 3.0 METHOD OF ANALYSIS Central Alaska Engineering Co. (CAEC) began the site survey after completing the preliminary audit tasks noted in section 2.0: Introduction. The site survey provided critical input in deciphering where energy opportunities exist within the facility. The audit team walked the entire site to inventory the building envelope (roof, windows, etc.), the major equipment including HVAC, water heating, lighting, and equipment in kitchens and offices. The site survey was used to determine an understanding of how the major equipment is used. The collected data was entered into the AkWarm Commercial software (AkWarm), an energy calculating program for buildings. The data was processed by AkWarm to model a baseline from which energy efficiency measures (EEMs) could be considered. The model was compared to actual utility costs to ensure the quality of baseline and proposed energy modeling performed by AkWarm. The recommended EEMs focus on building envelope, HVAC, lighting, water heating, and other electrical measures that will reduce annual energy consumption. The model uses local weather data and is trued up to historical energy use to ensure its accuracy. The model can be used now and in the future to measure the utility bill impact of all types of energy projects, including improving building insulation, modifying glazing, changing air handler schedules, increasing heat recovery, installing high efficiency boilers, using variable air volume air handlers, adjusting outside air ventilation and adding cogeneration systems. For the purposes of this study, the Women s Bay Volunteer Fire Station was modeled using AkWarm energy use software to establish a baseline space heating and cooling energy usage. Climate data from Kodiak was used for analysis. From this, the model was calibrated to predict the impact of theoretical energy savings measures. Once annual energy savings from a particular measure were predicted and the initial capital cost was estimated, payback scenarios were approximated. Equipment cost estimate calculations are provided in Appendix D. EEMs are evaluated based on building use and processes, local climate conditions, building construction type, function, operational schedule, existing conditions, and foreseen future plans. When new equipment is proposed, energy consumption is calculated based on the manufacturer s cataloged information where possible. Energy savings are calculated by AkWarm. Implementation of more than one EEM often affects the savings of other EEMs. The savings may in some cases be relatively higher for an EEM implemented individually than when that EEM is just one of multiple recommended EEMs. For example, implementing reduced operating schedules of inefficient lighting systems may result in a given savings. Also implementing a more efficient lighting system will add to the savings, but less than the efficient lighting would alone because there is less energy to be saved when the lights are on a reduced operating schedule. Thus, if multiple EEM s are recommended, the combined savings must be calculated and identified appropriately in groups. AKWARM ID KONI ADQ CAEC 04 7

11 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT In Appendix D the simple lifetime calculation is shown for each EEM. The lifetime for each EEM is estimated based on the typical life of the equipment being replaced or altered. The energy savings are extrapolated throughout the lifetime of the EEM. The total energy savings are calculated as the total lifetime multiplied by the yearly savings. Cost savings are calculated based on the historical energy costs for the building. Installation costs include labor and equipment to evaluate the initial investment required to implement and EEM. These are applied to each recommendation with simple paybacks calculated. The energy analyst s opinions of probable cost are garnered from Means Cost Data, other industry publications, and local contractors and suppliers. In addition, where applicable, maintenance cost savings are estimated and applied to the net savings. The costs and savings are applied to calculate Simple Payback and Savings to Investment Ratio (SIR).These are listed in Appendices B and D and briefly summarized in Table 1.1 of this report. The SIR is calculated as a ratio by dividing the break even cost by the initial installed cost. AKWARM ID KONI ADQ CAEC 04 8

12 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 4.0 LIMITATIONS OF STUDY All results are dependent on the quality of input data provided. In this case the site investigation was limited to observable conditions. No testing or destructive investigations were undertaken. Although energy-conserving methods are described in the EEMs, several methods may also achieve the identified savings in some instances. Detailed engineering is required in order to develop the EEMs to a realizable project. This audit and report are thus intended to offer approximations of the results achievable by the listed improvements. This report is not intended to be a final design document. The design professional or other persons following the recommendations shall accept responsibility and liability for the results. Budget for engineering and design of these projects is not included in the cost estimate for each measure. The AkWarm model is based on typical mean year weather data for Kodiak. This data represents the average ambient weather profile as observed over approximately 30 years. As such, the fuel oil and electric profiles generated will not likely compare perfectly with actual energy billing information from any single year. This is especially true for years with extreme warm or cold periods, or even years with unexpectedly moderate weather. The heating and cooling load model is a simple two-zone model consisting of the building s core interior spaces and the building s perimeter spaces. This simplified approach loses accuracy for buildings that have large variations in cooling/heating loads across different parts of the building. The model does not model HVAC systems that simultaneously provide both heating and cooling to the same building space (typically done as a means of providing temperature control in the space). AKWARM ID KONI ADQ CAEC 04 9

13 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 5.0 BUILDING DESCRIPTION The Women s Bay Volunteer Fire Department is a two story building with an attached apparatus bay that is used to house two (2) fire trucks. This facility was built in 1984, making original equipment 27 years old. The facility is occupied by a tenant living in the second floor and is a site of weekly and monthly training events and meetings of 15 people. Weekly and monthly meetings use the lower conference room and office area as well as the apparatus bay. 5.1 Shell Components Exterior walls of the building use double paned glass, wood framed windows that have an estimated U-factor in the range of Btu/hr-sf-F. The current windows were a part of the original construction and are in poor condition. The wall height of the conference room and residential area of the building is 22 feet high, including a 4 foot space between floors. The wall height of the apparatus bay is 14 feet with a hose tower section that is 35 feet high, measured from the foundation. The exterior walls have been insulated with R-19 fiberglass batt (FGB) between the studs. The stud wall consists of 2x6 framing with a spacing of 16 inches on center (OC) between the studs. The roof system has been insulated with R-38 FGB. The entire building has a truss design allowing for insulated attic space above the operational areas. The hose tower is considered to have a cathedral ceiling with R-19 insulation and no attic space. The Floor/Foundation of the building is constructed of concrete slab on grade with no slab-edge or under slab insulation. This building has no crawlspace. Doors are metal framed with fiberglass insulation. Most doors are in poor condition with rusting metal exteriors or damaged weather stripping. 5.2 Heating Plant Originally, the entire building was heated by a Burnham oil burning boiler rated at 221,000 BTU/hr. This boiler was replaced with a new System 2000 Energy Kinetics oil fired boiler in 2011, before benchmark data was provided to CAEC. The original boiler information is listed below. Nameplate Information: Burnham Model V-18 Fuel Type: Fuel Oil Input Rating: 221,000 BTU/hour Steady State Efficiency: 82 % Heat Distribution Type: Water Boiler Operation: All Year Notes: Oil Fired Cast Iron 5.3 Space Heating The lower floor conference room and office area of Women s Bay Volunteer Fire Department are heated using baseboard heaters. The upstairs residential area is also heated using a hot water piped baseboard system. The apparatus bay contains two (2) unit heaters that provide heat to the AKWARM ID KONI ADQ CAEC 04 10

14 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT working area of the bay. Additionally there is one (1) unit heater that provides heated air to the hose tower, which is used when fire hoses are hung to dry after use. Unit heaters use thermostatic control. 5.4 Domestic Hot Water System Domestic hot water is generated using a side arm hot water maker attached to the boiler. Hot water is provided to the entire building through well pump pressure. This hot water maker was replaced at the same time as the boiler upgrade. 5.5 Building Ventilation The building ventilation occurs naturally through the opening of doors and windows and through small air leaks in the building shell. Restroom exhaust fans on the lower floor are wired to an occupancy sensor that also controls the lights in these rooms. The dwelling area restroom is attached to a manual switch. Kitchen range hoods are typically used during cooking and are manually controlled when needed. The exhaust fan in the apparatus bay is seldom used. This fan is primarily used to exhaust engine fumes that may build up in the apparatus bay from the vehicles housed within. 5.6 Lighting There are several types of lights found throughout the building. The exterior of the building is lit with one high pressure sodium light, two 100-Watt incandescent lights, and one LED light. The dwelling area uses A-type incandescent lights that vary in wattage depending on their location. The lower floor training room area is lit with several two-bulb incandescent T8 troffers. The apparatus bay is lit with seven (7) four-bulb incandescent T5 troffers. Emergency lighting in the apparatus bay is provided by one (1) two-bulb fluorescent troffer. Emergency exit signs are LEDs that are on continuously. Additionally, there are three (3) incandescent emergency light fixtures with two (2) bulbs each that are designed to operate when the building is without power. 5.7 Plug Loads There are several plug loads throughout the building. This includes televisions, personal computers with monitors, copy machines, a dishwasher, electric clothing dryers, washing machines, refrigerators, microwaves, and electric ranges with ovens. There are several high wattage appliances in the apparatus bay that are used occasionally. AKWARM ID KONI ADQ CAEC 04 11

15 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 6.0 EQUIPMENT INVENTORY Following the completion of the field survey a detailed equipment list was created and is attached as Appendix C. The major pieces of equipment listed are considered to be the major energy consuming equipment in the building whose replacement or upgrade could yield substantial energy savings. An approximate age was assigned to the equipment if a manufactured date was not shown on the equipment s nameplate. As listed in the 2011 ASHRAE Handbook for HVAC Applications, Chapter 37, Table 4, the service life for the equipment along with the remaining useful life in accordance to the ASHRAE standard are also noted in the equipment list. Where there are zero (0) years remaining in the estimated useful life of a piece of equipment, this is an indication that maintenance costs are likely on the rise and more efficient replacement equipment is available which will lower the operating costs of the unit. Maintenance costs should also fall with the replacement. AKWARM ID KONI ADQ CAEC 04 12

16 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 7.0 HISTORIC ENERGY CONSUMPTION AND COST Tables provided in Appendix A represent the electric and fuel oil energy usage for the surveyed facility from February 2009 to January Kodiak Electric Association provides the electricity and North Pacific Fuel provides the fuel oil to the building. Both utilities bill under their commercial rate schedules. The electric utility measures consumption and bills in kilowatt-hours (kwh). One kwh usage is equivalent to 1,000 watts running for one hour. The basic usage charges are shown as generation service and delivery charges along with several non-utility generation charges. Rates used in this report reflect the historical data received for the building. The fuel oil supplier bills for consumption in gallons of fuel oil delivered. Fuel oil is delivered under a contract to top off the tank on an as-need basis. The average heating value of fuel oil was assumed to be 132,000 BTUs per gallon in benchmark calculations. The average billing rates for energy use are calculated by dividing the total cost by the total usage. Based on the electric and fuel oil utility data provided, the 2009 and 2010 costs for the energy and consumption at the surveyed facility are summarized in Table 7.1 below. Table 7.1 Energy Cost and Consumption Data for 2009 and 2010 Year Electric Cost 0.16 $/kwh 0.17 $/kwh Fuel Oil Cost 1.81 $/Gal 2.71 $/Gal Total Cost $8,050 $8,518 ECI 2.51 $/sf 2.66 $/sf Electric EUI 21.5 kbtu/sf 23.9 kbtu/sf Fuel Oil EUI kbtu/sf 73.1 kbtu/sf Building EUI kbtu/sf 97.0 kbtu/sf The Energy Cost Index (ECI) is derived by taking the annual cost and dividing it by the building square footage. The building square footage was calculated to be 3,204 square feet. This area includes the apparatus bay, residential area, and training room with offices and restrooms. The Energy Utilization Index (EUI) is a measure of a building s energy utilization per square foot of building. This calculation is completed by converting the building s utility consumption (fuel oil and electric) over a specified time period, typically one year, to British Thermal Units (BTU) and dividing this number by the building square footage. The EUI numbers for this facility are listed above. Data from the U.S. Energy Information Administration provides a table which shows U.S. Commercial Buildings Energy Intensity Using Site Energy by Census Region and Principal Building Activity. In 2003, the average EUI for U.S. buildings with similar use was 116 kbtu/sf - a factor of 0.7% better (or lower) based the average EUI from this building. AKWARM ID KONI ADQ CAEC 04 13

17 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT From Table 7.1 it is noticeable that the EUI of Women s Bay Volunteer Fire Department was significantly lower over the course of 2010 than in Additionally, the price of fuel oil is 90 per gallon higher. This leads the auditing team to believe that a severe change in building energy use occurred during this time period. This tremendous change in energy consumption could have been related to several aspects such as new tenants in the dwelling area, different setback temperatures on the heating system, or possibly even inappropriate use. 7.1 Total Energy Use and Cost Breakdown At current rates, Kodiak Island Borough pays approximately $8,052 annually for electricity and other fuel costs for the Women s Bay Volunteer Fire Department. Figure 7.1 reflects the estimated distribution of costs across the primary end uses of energy based on the AkWarm computer simulation. Comparing the Retrofit bar in the figure to the Existing bar shows the potential savings from implementing all of the energy efficiency measures shown in this report. Figure 7.1 Annual Energy Costs by End Use Figure 7.2 shows how the annual energy cost of the building splits between the different fuels used by the building. The Existing bar shows the breakdown for the building as it is now; the Retrofit bar shows the predicted costs if all of the energy efficiency measures in this report are implemented. AKWARM ID KONI ADQ CAEC 04 14

18 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT Annual Energy Costs by Fuel $10,000 $8,000 $6,000 $4,000 $2,000 $0 Existing Retrofit #2 Oil Electricity Figure 7.2 Annual Energy Costs by Fuel Type Figure 7.3 addresses only Space Heating costs. The figure shows how each heat loss component contributes to those costs; for example, the figure shows how much annual space heating cost is caused by the heat loss through the Walls/Doors. For each component, the space heating cost for the Existing building is shown (blue bar) and the space heating cost assuming all retrofits are implemented (yellow bar) are shown. Figure 7.3 Annual Space Heating Cost by Component Interestingly, Figure 7.3 suggests that the windows, after the recommended retrofit, will provide a negative cost for space heating. AkWarm is implying that the building will actually profit from new windows, as solar gain will offset the heat loss through these openings. It is important to realize that this is on an annual analysis, and will likely not hold true during the winter months. AKWARM ID KONI ADQ CAEC 04 15

19 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 8.0 ENERGY EFFICIENCY MEASURES The savings for a particular measure are calculated assuming all recommended EEMs coming before that measure in the list are implemented. If some EEMs are not implemented, savings for the remaining EEMs will be affected. For example, if ceiling insulation is not added, then savings from a project to replace the heating system will be increased, because the heating system for the building supplies a larger load. In general, all projects are evaluated sequentially so energy savings associated with one EEM would not also be attributed to another EEM. By modeling the recommended project sequentially, the analysis accounts for interactive affects among the EEMs and does not double count savings. Interior lighting, plug loads, facility equipment, and occupants generate heat within the building. When the building is in cooling mode, these items contribute to the overall cooling demands of the building; therefore, lighting efficiency improvements will reduce cooling requirements in airconditioned buildings. Conversely, lighting-efficiency improvements are anticipated to slightly increase heating requirements. Heating penalties and cooling benefits were included in the lighting project analysis. EEM #1 Replace Incandescent Lights in Building with CFL Throughout the Women s Bay Volunteer Fire Department, there are many incandescent lights used for various purposes. These purposes range from task lighting to main lighting, as may be found in the dwelling area. Based on what was observed throughout the building, a count of incandescent lights was determined. It is recommended that any incandescent lights be replaced with compact fluorescent lights (CFL) that will provide a similar, if not better, light output level while reducing the power draw required by 60% in some cases. In modeling the building, it was assumed that there are 20 incandescent lights that could be replaced. Replacement of these lights with similar CFLs is expected to cost a total of $600. Savings from this investment are expected to be $575 annually, giving a simple payback period of 1.0 year. EEM #2 Add an Occupancy Sensor to the Apparatus Bay Lighting Control The apparatus bay lights are a T5 high-bay system that has an excellent light output level, complimented by reflective troffers which add to the amount of light emitted from the bulbs. Lights are currently used on an as-need basis with a manual switch. It is conceivable that this switch is left on for an extended period while the apparatus bay is not occupied, therefore increasing the length that the lights are left on. It is recommended that an occupancy sensor is implemented in conjunction with the manual light switch to allow the lights to turn off while the apparatus bay is unoccupied. It is assumed that at least four (4) sensors would be required to provide complete coverage of the apparatus bay with a cost of $100 per sensor. This is expected to reduce the energy usage of the apparatus bay lights to yield a simple payback period of 3.0 years with a savings of $136 per year. AKWARM ID KONI ADQ CAEC 04 16

20 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT EEM #3 Heating System Upgrades and Solar Thermal Domestic Hot Water Generation AkWarm does not consider individual upgrades to the heating system independently. This means that all EEMs associated with the heating system are lumped into one larger upgrade that takes into account the combined savings for all the recommended upgrades. These upgrades are explained here. The Burnham boiler, described earlier in this report in section 5.2: Heating Plant was replaced in 2011 with a modern and more efficient Energy Kinetics boiler as well as a new side-arm hot water maker. This upgrade was estimated to have cost $12,000 initially, including the cost of the unit and the installation fees associated. The savings from this upgrade are taken into account, and other retrofits are considered to provide additional results. The nameplate information of the new boiler is listed below. Nameplate Information: System 2000 Energy Kinetics Fuel Type: Fuel Oil Input Rating: 231,000 BTU/hour Steady State Efficiency: 87 % Heat Distribution Type: Water Boiler Operation: All Year Notes: Oil Fired Cast Iron It is recommended that a thermostat control be added to the dwelling area access stairwell. This area is currently heated in conjunction with another area which is causing excessive heat to be spent in an unoccupied area of the fire station. The addition of a thermostat to the stairwell area is expected to cost $500 for the product and installation. The boiler room currently has a combustion air opening that is cut through the wall. During the site visit it was learned that some of the pipes in the boiler room often freeze in the winter due to the large amount of cold outside air that is available through this opening. The burner on the boiler has the capability to have a hard duct installed to provide combustion air. Use of this availability would significantly decrease the amount of excess outside air entering the boiler room. Recommendation is to seal of the current combustion air opening and install a hard duct directly to the intake of the burner on the boiler, making it a closed combustion process. This upgrade is estimated to cost $1,500. Payback from this upgrade, the addition of a thermostat, and the new boiler upgrade is expected to be 13.0 years with a savings of $1,074 per year. During the site visit, it was asked of the auditing team to evaluate the use of solar energy as a supplement to the boiler heating water loop and domestic hot water heating system. A solar thermal system is not meant to replace either one of the systems, but rather to ease the load that may be required. A solar thermal system will increase the incoming water temperature to either or both systems, therefore decreasing the change in temperature required to achieve the set output temperature of water. For example, let us assume ground water comes piped in at roughly 40 degrees Fahrenheit ( F). If the boiler is set to provide water at 130 F, this is a 90 F change in temperature. If the incoming temperature is instead raised to 48 F, the new change in temperature would be 82 F. The ratio of temperature differences results in an 8.9% savings in water temperature, which can be directly applied to fuel savings. AKWARM ID KONI ADQ CAEC 04 17

21 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT In AkWarm, a solar thermal system is not something that can be modeled directly. Instead, the system was modeled as reducing the amount of domestic hot water produced and reducing the output temperature of the domestic hot water. A separate AkWarm file was produced for this purpose. Through investigation of solar thermal systems, CAEC has determined that a solar thermal system would cost $8,000 for a modern solar thermal system and an additional $3,000 for installation. This gives a total price estimate of $11,000. Savings from this upgrade are modeled to be $347 per year with a simple payback period of 31.7 years. EEM #4 Add Occupancy Sensors to Manual Light Controls The entirety of the building currently uses manual switching to control the lights, except in the restrooms. Excessive light use can be diminished by installing occupancy sensors for different areas of the building, as required. Occupancy sensors with installation are assumed to cost $100 per unit. It is expected that five (5) sensors would provide adequate coverage for the upstairs dwelling area and the downstairs training area. This gives a total investment cost of $500 for an estimated savings of $48 annually. This correlates to a simple payback period of 10.4 years. It is important to remember that this EEM assumes that the lights have already been upgraded to CFLs, as mentioned in the third paragraph of section 8.0: Energy Efficiency Measures, found within this report on the preceding page. EEM #5 & #6 Replace All Windows with Better Insulated Windows There are many windows on the fire department, found on each side of the building. These windows are the original windows installed at the time of construction of this building. Due to age, windows have become leaky and lost much of their insulation value. As a result, it would be beneficial to the building to replace the windows with higher quality, modern windows. U-0.30 vinyl window or better is recommended as these windows prevent much heat loss while increasing internal solar heat gain (an important factor in the winter months). The upgrade of the south-facing windows is expected to cost $1,628 for an annual energy savings of $91. This results in a simple payback period of 17.9 years. The rest of the windows, being those in the dwelling area and training room areas, are expected to cost $5,598 to replace with a savings of $340 per year and a simple payback period of 16.5 years. Replacing windows may not seem as an energy saving solution with excellent payback when compared to other options such as sensors for lights or boiler upgrades. It is important to keep in mind that new windows will help reduce the amount of unwanted air leaking into the building, which can make certain areas feel cold. Additionally, new windows are expected to require less maintenance and add to the value of the building. EEM #7 Replace Fluorescent 32-Watt Back-up Lighting with Fluorescent 28-Watt In the apparatus bay, there is one T8 fluorescent light troffer with two (2) 32-watt bulbs that operates continuously. The lamps in this fixture could easily be replaced with newer lamps that have a smaller energy draw, decreasing the monthly kwh of the building. If these lamps are replaced with T8 28-watt energy saving bulbs and the ballast in the light changed out to a highefficiency ballast, the cost would be an estimated $100 for an annual savings of $9 per year, with a simple payback of 11.2 years. AKWARM ID KONI ADQ CAEC 04 18

22 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT EEM #8 & #9 Add Blown Cellulose Insulation to Attic Area of Building Women s Bay Volunteer Fire Department has an attic space above the residential area and above the apparatus bay, both with R-38 fiberglass batt insulation. Addition of insulation to these areas will reduce heat lost through the roof of the building. This recommendation was modeled as adding R-12 blown cellulose insulation to the attic space. It is also recommended to add insulation and weather stripping to the attic access hatches, which will help reduce the amount of conditioned air that leaks into the attic areas. Addition of insulation to the attic area of the residential portion of the building is expected to cost $1,265 for a savings of $43 per year and a simple payback period of 29.3 years. Similarly, addition of insulation to the attic area of the apparatus bay is expected to cost $1,499 for a savings of $51 annually and a simple payback period of 29.4 years. EEM #10 Upgrade Training Room Lights and Add Occupancy Sensors On the bottom floor of the building in the training room area, the lights used are 2-bulb 32-watt T8 troffers. These lights are recommended to be replaced with similar T8 lamps with a lower power draw of 28-watts. Additionally, the ballasts should be changed out to programmable start ballasts, which have a softer start on the bulbs and allow them to last longer. Finally, occupancy sensors should be tied into the circuit to reduce the time the lights are left on while the building is unoccupied. This upgrade is expected to cost $2,800, including cost for the lamps, ballasts, and sensors. At this cost, the payback period is 14.2 years with a savings of $197. EEM #11 Replace Existing Refrigerators with Energy Star Rated Units The building currently has a refrigerator in the conference room as well as in the dwelling area on the top floor. With refrigeration systems, it is generally recommended to upgrade any refrigeration unit that is more than 10 years old, as recent advances in refrigeration technology have greatly reduced power consumption of these units. Replacement of the refrigerators currently in the building is expected to cost $1,800 for an annual savings of $116 and a simple payback period of 15.6 years. EEM #12 Replace Exterior Incandescent Lights with LED Lights The exterior of the building has two walls with 2-bulb incandescent 75-watt light fixtures. These lights are used at night to provide light around the entire building. LED lighting is already used on one side of the building, providing light at the entrance to the training room and dwelling area. It is recommended that LED lights be used in place of these incandescent exterior lights. An upgrade to these lights to 17-watt LEDs is expected to cost $500 for both of the exterior incandescent fixtures. This results in a savings of $32 with a simple payback period of 15.8 years. EEM #13 Replace Existing Doors This building has heavy commercial type doors. While these doors are still operable, it is visibly noticeable that they are no longer insulating the building as they were intended to upon installation during the original construction. As can be seen in Appendix E, the lower portions of the doors are beginning to rust, causing insulating value to be lost. It is recommended that the AKWARM ID KONI ADQ CAEC 04 19

23 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT exterior doors be replaced with new doors and weather stripping to reduce heat losses. New doors are estimated to cost $1,868 and provide an annual savings of $49 per year. Simple payback for this retrofit is calculated to be 38.1 years. EEM #14 & #15 Reduce Air Leakage, Seal Off Hose Tower Vent, and Improve Insulation Women s Bay Volunteer Fire Department currently has wood siding that has been on the building since its original construction. New siding and the addition of rigid foam board between the new siding and the structural sheathing will help to improve the buildings heat retention as well as prolong the life of the stud wall through reduced condensation build up on the sheathing. The hose tower in the building is an area of high heat loss, and is recommended to be opened and closed via a humidity controlled damper. This will reduce the amount of heated air lost through the vent while still allowing the hose tower to be used for its primary purpose. AkWarm allows the reduction in air leakage to be accomplished as a percentile and giving an associated cost. It is assumed that reducing leakage will be affected by changing out windows, doors, adding a humidity controlled damper, and in the process of applying new siding with better insulated sheathing, modeled as R-15. The cost associated with this reduction is set to $1,000 as the rest of the cost should be taken up by EEMs for doors, windows, and the new siding. New siding, in addition to the reduced air leakage, is expected to cost $23,341. The combination of both of these retrofits is modeled to produce an annual savings of $579 for an estimated simple payback period of 42.1 years. As with the windows, new siding will add to the value of the building while reducing unwanted cold spots and possibly eliminating problem areas of high heat loss. It would be beneficial for Women s Bay Volunteer Fire Department to have a thermography study done on the building. This would allow areas of high heat loss to become known and more confidently addressed. This could potentially save on costs for siding, as problem areas can be addressed more directly. EEM #16 Add Slab-Edge Insulation Women s Bay Volunteer Fire Station is built on a slab on grade foundation. Currently, the building in question has no insulation on the slab edge insulation. Insulation along the slab edge reduces the heat lost through the ground into surroundings such as snow and water from rain. It is recommended that slab edge insulation be added to the building, using 2-inches of rigid board for a final insulating value of R-10. This upgrade is expected to cost $1,678 for a savings of $29 annually and a simple payback period of 58.3 years. There are several more EEMs addressed by AkWarm that have proven to be less profitable. Less effective EEMs are addressed in Appendices B and D, which are reports generated by AkWarm. EEMs are considered to no longer be cost effective when the SIR, described in section 1.0: Executive Summary, becomes less than one (1). Some of the EEMs with lesser SIRs have been included in the previous pages as it is important to understand the reasoning for some of the recommended upgrades. AKWARM ID KONI ADQ CAEC 04 20

24 WOMEN S BAY FIRE STATION ENERGY AUDIT REPORT 9.0 CONCLUSION Through inspection of the energy-using equipment on-site and discussions with site facilities personnel, this energy audit has identified several energy-saving measures. The measures will reduce the amount of fuel burned and electricity used at the site. The projects will not degrade the performance of the building and, in some cases, will improve it. Several types of EEMs can be implemented immediately by building staff, and others will require various amounts of lead time for engineering and equipment acquisition. In some cases, there are logical advantages to implementing EEMs concurrently. For example, if the same electrical contractor is used to install both lighting equipment and motors, implementation of these measures should be scheduled to occur simultaneously. AKWARM ID KONI ADQ CAEC 04 21

25 KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Appendix A Benchmark Reports APPENDIX A

26 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT REAL Preliminary Benchmark Data Form PART I FACILITY INFORMATION Facility Owner Facility Owned By Date Kodiak Island Borough Municipal 03/12/11 Building Name/ Identifier Building Usage Building Square Footage Womans Bay Fire Station Public Order and Safety 3,204 Building Type Community Population Year Built Mixed Facility Address Facility City Facility Zip Kodiak Island, AK Womens Bay, AK Contact Person First Name Last Name Middle Name Phone Robert Tucker Btucker@kodiakak.us Mailing Address City State Zip 710 Mill Bay Rd Kodiak AK Primary Operating Hours Average # of Occupants During Monday Saturday Sunday Holidays Friday Renovations Date Details 2000 New heating system PART II ENERGY SOURCES 1. Please check every energy source you use in the table below. If known, please enter the base rate you pay for the energy source. 2. Provide utilities bills for the most recent two year period for each energy source you use. Heating Oil Electricity Natural Gas Propane Wood Coal $ /gallon $ / kwh $ / CCF $ / gal $ / cord $ / ton Other energy sources? APPENDIX A

27 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Womens Bay Fire Station Buiding Size Input (sf) = 3, Natural Gas Consumption (Therms) 2009 Natural Gas Cost ($) 2009 Electric Consumption (kwh) 20, Electric Cost ($) 3, Oil Consumption (Therms) 3, Oil Cost ($) 4, Propane Consumption (Therms) 2009 Propane Cost ($) 2009 Coal Consumption (Therms) 2009 Coal Cost ($) 2009 Wood Consumption (Therms) 2009 Wood Cost ($) 2009 Thermal Consumption (Therms) 2009 Thermal Cost ($) 2009 Steam Consumption (Therms) 2009 Steam Cost ($) 2009 Total Energy Use (kbtu) 427, Total Energy Cost ($) 8,050 Annual Energy Use Intensity (EUI) 2009 Natural Gas (kbtu/sf) 2009 Electricity (kbtu/sf) Oil (kbtu/sf) Propane (kbtu/sf) 2009 Coal (kbtu/sf) 2009 Wood (kbtu/sf) 2009 Thermal (kbtu/sf) 2009 Steam (kbtu/sf) 2009 Energy Utilization Index (kbtu/sf) Annual Energy Cost Index (ECI) 2009 Natural Gas Cost Index ($/sf) 2009 Electric Cost Index ($/sf) Oil Cost Index ($/sf) Propane Cost Index ($/sf) 2009 Coal Cost Index ($/sf) 2009 Wood Cost Index ($/sf) 2009 Thermal Cost Index ($/sf) 2009 Steam Cost Index ($/sf) 2009 Energy Cost Index ($/sf) 2.51 APPENDIX A

28 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT 2010 Natural Gas Consumption (Therms) 2010 Natural Gas Cost ($) 2010 Electric Consumption (kwh) 22, Electric Cost ($) 3, Oil Consumption (Therms) 2, Oil Cost ($) 4, Propane Consumption (Therms) 2010 Propane Cost ($) 2010 Coal Consumption (Therms) 2010 Coal Cost ($) 2010 Wood Consumption (Therms) 2010 Wood Cost ($) 2010 Thermal Consumption (Therms) 2010 Thermal Cost ($) 2010 Steam Consumption (Therms) 2010 Steam Cost ($) 2010 Total Energy Use (kbtu) 310, Total Energy Cost ($) 8,518 Annual Energy Use Intensity (EUI) 2010 Natural Gas (kbtu/sf) 2010 Electricity (kbtu/sf) Oil (kbtu/sf) Propane (kbtu/sf) 2010 Coal (kbtu/sf) 2010 Wood (kbtu/sf) 2010 Thermal (kbtu/sf) 2010 Steam (kbtu/sf) 2010 Energy Utilization Index (kbtu/sf) 97.0 Annual Energy Cost Index (ECI) 2010 Natural Gas Cost Index ($/sf) 2010 Electric Cost Index ($/sf) Oil Cost Index ($/sf) Propane Cost Index ($/sf) 2010 Coal Cost Index ($/sf) 2010 Wood Cost Index ($/sf) 2010 Thermal Cost Index ($/sf) 2010 Steam Cost Index ($/sf) 2010 Energy Cost Index ($/sf) 2.66 Note: 1 kwh = 3,413 Btu's 1 Therm = 100,000 Btu's 1 CF 1,000 Btu's APPENDIX A

29 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Womens Bay Fire Station Electricity Btus/kWh = 3,413 Provider Customer # Month Start Date End Date Billing Days Consumption (kwh) Consumption (Therms) Demand Use Electric Cost ($) Unit Cost ($/kwh) Demand Cost ($) Feb 09 2/1/2009 2/28/ $305 $ Mar 09 3/1/2009 3/31/ $305 $ Apr 09 4/1/2009 4/30/ $304 $ May 09 5/1/2009 5/31/ $173 $ Jun 09 6/1/2009 6/30/ $200 $ Jul 09 7/1/2009 7/31/ $179 $ Aug 09 8/1/2009 8/31/ $201 $ Sep 09 9/1/2009 9/30/ $117 $ Oct 09 10/1/ /31/ $276 $ Nov 09 11/1/ /30/ $293 $ Dec 09 12/1/ /31/ $372 $ Jan 10 1/1/2010 1/31/ $416 $ Feb 10 2/1/2010 2/28/ $363 $ Mar 10 3/1/2010 3/31/ $402 $ Apr 10 4/1/2010 4/30/ $457 $ May 10 5/1/2010 5/31/ $348 $ Jun 10 6/1/2010 6/30/ $312 $ Jul 10 7/1/2010 7/31/ $239 $ Aug 10 8/1/2010 8/31/ $194 $ Sep 10 9/1/2010 9/30/ $229 $ Oct 10 10/1/ /31/ $229 $ Nov 10 11/1/ /30/ $242 $ Dec 10 12/1/ /31/ $362 $ Jan 11 1/1/2011 1/31/ $344 $0.16 Feb 09 to Jan 10 total: $3,140 $0 Feb 10 to Jan 11 total: $3,721 $0 Feb 09 to Jan 10 avg: $0.16 Feb 10 to Jan 11 avg: $0.17 APPENDIX A

30 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Womens Bay Fire Station Electric Consumption (kwh) vs. Electric Cost ($) 3000 $500 $ $400 $ Electric Consumption (kwh) 1500 $300 $250 $200 Electric Cost ($) Electric Consumption (kwh) Electric Cost ($) 1000 $150 $ $50 0 $0 Date (Mon Yr) APPENDIX A

31 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Womens Bay Fire Station Oil Btus/Gal = 132,000 Provider Customer # Month Start Date End Date Billing Days Consumption (Gal) Consumption (Therms) Demand Use Oil Cost ($) Unit Cost ($/Therm) Demand Cost ($) NPF Jan 09 1/1/2009 1/31/ $ NPF Feb 09 2/1/2009 2/28/ $1, NPF Mar 09 3/1/2009 3/31/ $ NPF Apr 09 4/1/2009 4/30/ $ NPF May 09 5/1/2009 5/31/ $ NPF Jun 09 6/1/2009 6/30/ $1, NPF Jul 09 7/1/2009 7/31/ $ NPF Aug 09 8/1/2009 8/31/ $ NPF Sep 09 9/1/2009 9/30/ $ NPF Oct 09 10/1/ /31/ $ NPF Nov 09 11/1/ /30/ $ NPF Dec 09 12/1/ /31/ $ NPF Jan 10 1/1/2010 1/31/ $ NPF Feb 10 2/1/2010 2/28/ $ NPF Mar 10 3/1/2010 3/31/ $ NPF Apr 10 4/1/2010 4/30/ $ NPF May 10 5/1/2010 5/31/ $1, NPF Jun 10 6/1/2010 6/30/ $ NPF Jul 10 7/1/2010 7/31/ $ NPF Aug 10 8/1/2010 8/31/ $ NPF Sep 10 9/1/2010 9/30/ $ NPF Oct 10 10/1/ /31/ $1, NPF Nov 10 11/1/ /30/ $1, NPF Dec 10 12/1/ /31/ $ Jan 09 to Dec 09 total: 2, , $4,910 $0 Jan 10 to Dec 10 total: 1, , $4,798 $0 Jan 09 to Dec 09 avg: 1.45 Jan 10 to Dec 10 avg: 2.01 APPENDIX A

32 CENTRAL ALAKSA ENGINEERING COMPANY KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Womens Bay Fire Station Oil Consumption (Therms) vs. Oil Cost ($) 1200 $1, $1, $1, Oil Consumption (Therms) 600 $1, $ $ Oil Cost ($) Oil Consumption (Therms) Oil Cost ($) 400 $ $ $0.00 Date (Mon Yr) APPENDIX A

33 Appendix B AkWarm Short Report WOMENS BAY FIRE STATION ENERGY AUDIT REPORT APPENDIX B

34 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 2 ENERGY AUDIT REPORT PROJECT SUMMARY Created 11/8/2011 2:25 PM General Project Information PROJECT INFORMATION Building: Women's Bay Volunteer Fire Department Address: 538 Sargent Creek Rd. City: Kodiak Client Name: Robert Tucker Client Address: 710 Mill Bay Road Kodiak, AK Client Phone: (907) Client FAX: Design Data Building Area: 3,126 square feet Typical Occupancy: 0 people Actual City: Kodiak Weather/Fuel City: Kodiak AUDITOR INFORMATION Auditor Company: Central Alaska Engineering Co. Auditor Name: Jerry P. Herring Auditor Address: Lakefront Drive Soldotna, AK Auditor Phone: (907) Auditor FAX: Auditor Comment: Design Heating Load: Design Loss at Space: 148,506 Btu/hour with Distribution Losses: 157,834 Btu/hour Plant Input Rating assuming 82.0% Plant Efficiency and 25% Safety Margin: 240,601 Btu/hour Note: Additional Capacity should be added for DHW load, if served. Design Indoor Temperature: 68 deg F (building average) Design Outdoor Temperature: 13 deg F Heating Degree Days: deg F days Utility Information Electric Utility: Kodiak Electric Assn Commercial Sm Average Annual Cost/kWh: $0.165/kWh Natural Gas Provider: None Average Annual Cost/ccf: $0.000/ccf Annual Energy Cost Estimate Description Space Space Water Other Clothes Ventilation Total Lighting Cooking Refrigeration Heating Cooling Heating Electrical Drying Fans Cost Existing $4,638 $0 $893 $1,932 $877 $145 $138 $34 $281 $8,937 Building With $2,447 $0 $811 $917 $848 $145 $138 $34 $165 $5,503 Proposed Retrofits SAVINGS $2,192 $0 $82 $1,015 $29 $0 $0 $0 $116 $3,433 APPENDIX B

35 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 3 Annual Energy Costs by End Use $10,000 $8,000 $6,000 Ventilation and Fans Space Heating Refrigeration Other Electrical Lighting Domestic Hot Water Cooking Clothes Drying $4,000 $2,000 $0 Existing Retrofit APPENDIX B

36 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 4 PRIORITY LIST RECOMMENDED ENERGY EFFICIENCY MEASURES Rank Feature Recommendation Annual Energy Savings 1 Lighting: Misc. Replace with 20 FLUOR Incandescent CFL, Spiral 15 W 2 Lighting: Apparatus Add new Occupancy Bay Lights Sensor 3 HVAC And DHW Add thermostat control to dwelling stairwell. Add outdoor reset on system to set boiler to low in summer. Add a hard duct to the boiler air intake and seal off the existing combustion air opening. Evaluation of use of Solar Thermal for reduced demand from HWM is modeled separately. 4 Lighting: Misc. Add new Occupancy Incandescent Sensor 5 Window/Skylight: NSFW Double Paned 6 Window/Skylight: SFW 7 Lighting: Apparatus Bay Emergency Circuit 8 Ceiling w/ Attic: Apparatus Bay 9 Ceiling w/ Attic: Dwelling/Training Room 10 Lighting: Training Room Lights 11 Refrigeration: Refrigerators 12 Lighting: Exterior Halogen Replace existing window with U 0.30 vinyl window Replace existing window with U 0.30 vinyl window Replace with FLUOR (2) T8 4' F32T8 28W Energy Saver Instant HighEfficElectronic Add R 12 blown cellulose insulation to attic space with Energy Truss. Add R 12 blown cellulose insulation to attic space with Energy Truss. Replace with 12 FLUOR (2) T8 4' F32T8 28W Energy Saver Instant LowLight HighEfficElectronic and Add new Occupancy Sensor Replace with 2 Refrigerator Replace with 2 LED (2) 17W Module StdElectronic Installed Cost SIR Payback (Years) $575 $ $136 $ $1,074 $14, $48 $ $340 $5, $91 $1, $9 $ $51 $1, $43 $1, $197 $2, $116 $1, $32 $ APPENDIX B

37 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 5 PRIORITY LIST RECOMMENDED ENERGY EFFICIENCY MEASURES Rank Feature Recommendation Annual Energy Savings 13 Exterior Door: Dwelling/Training Room Remove existing door and install standard pre hung U 0.16 insulated door, including hardware. 14 Air Tightening Perform air sealing to reduce air leakage by 10%. 15 Above Grade Wall: Install R 15 rigid foam Building Walls board to exterior and cover with T1 11 siding or equivalent. 16 On or Below Grade Floor, Perimeter: Fire Station 17 Lighting: Exterior HPS 18 Other Electrical: PC Monitors 19 Garage Door: Apparatus Bay 20 Lighting: Exterior LED Lights Install 2' of R 10 rigid board insulation around perimeter of Slab (vertical or horizontal). Replace with LED 34W Module StdElectronic and Add new Occupancy Sensor Replace with 6 PC/TV Flat screen Monitor Replace existing garage door with R 7, 2" polyurethane core replacement door. Add new Occupancy Sensor Installed Cost SIR Payback (Years) $49 $1, $58 $1, $507 $23, $29 $1, $14 $ $29 $1, $36 $3, $2 $ TOTAL $3,433 $64, ENERGY AUDIT REPORT ENERGY EFFICIENT RECOMMENDATIONS 1. Building Envelope Insulation Rank Location Existing Type/R-Value Recommendation Type/R- Value Installed Cost Annual Energy Savings APPENDIX B

38 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 6 8 Ceiling w/ Attic: Apparatus Bay Framing Type: Energy Truss Framing Spacing: 24 inches Insulated Sheathing: None Bottom Insulation Layer: R 38 Batt:FG or RW, 12 inches Top Insulation Layer: None Insulation Quality: Very Damaged Modeled R Value: 27.6 Add R 12 blown cellulose insulation to attic space with Energy Truss. $1,499 $51 9 Ceiling w/ Attic: Dwelling/Training Room Framing Type: Energy Truss Framing Spacing: 24 inches Insulated Sheathing: None Bottom Insulation Layer: R 38 Batt:FG or RW, 12 inches Top Insulation Layer: None Insulation Quality: Very Damaged Modeled R Value: 27.6 Add R 12 blown cellulose insulation to attic space with Energy Truss. $1,265 $43 15 Above Grade Wall: Building Walls Wall Type: Single Stud Siding Configuration: Just Siding Insul. Sheathing: None Structural Wall: 2 x 6, 16 inches on center R 19 Batt:FG or RW, 5.5 inches Window and door headers: Not Insulated Insulation Quality: Damaged Modeled R Value: 14.7 Install R 15 rigid foam board to exterior and cover with T1 11 siding or equivalent. $23,341 $ On or Below Grade Floor, Perimeter: Fire Station Insulation for 0' to 2' Perimeter: None Insulation for 2' to 4' Perimeter: None Modeled R Value: 7.9 Install 2' of R 10 rigid board insulation around perimeter of Slab (vertical or horizontal). $1,678 $29 Exterior Doors Replacement Rank Location Size/Type/Condition Recommendation Installed Cost 13 Exterior Door: Dwelling/Training Room Door Type: Metal urethane, no therm. break Modeled R Value: 2.5 Remove existing door and install standard pre hung U 0.16 insulated door, including hardware. Annual Energy Savings $1,868 $49 APPENDIX B

39 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 7 19 Garage Door: Apparatus Bay Door Type: 1 3/8" sectional door, polyurethane core Insulating Blanket: None Modeled R Value: 5.3 Replace existing garage door with R 7, 2" polyurethane core replacement door. $3,853 $36 Windows and Glass Doors Replacement Rank Location Size/Type/Condition Recommendation Installed Cost 5 Window/Skylight: NSFW Double Paned Glass: Single, Glass Frame: Aluminum, No Thermal Break Spacing Between Layers: Half Inch Gas Fill Type: Air Modeled U Value: 1.30 Solar Heat Gain Coefficient: 0.52 Replace existing window with U 0.30 vinyl window Annual Energy Savings $5,598 $340 6 Window/Skylight: SFW Glass: Single, Glass Frame: Aluminum, No Thermal Break Spacing Between Layers: Half Inch Gas Fill Type: Air Modeled U Value: 1.30 Solar Heat Gain Coefficient: 0.52 Replace existing window with U 0.30 vinyl window $1,628 $91 Air Leakage Rank Location Estimated Air Leakage Recommended Air Leakage Target 14 Air Tightness estimated as: 0.80 cfm/ft2 of above grade shell area at 75 Pascals Perform air sealing to reduce air leakage by 10%. Installed Annual Cost Energy Savings $1,000 $58 2. Mechanical Equipment Mechanical Rank Recommendation Installed Cost 3 Add thermostat control to dwelling stairwell. Add outdoor reset on system to set boiler to low in summer. Add a hard duct to the boiler air intake and seal off the existing combustion air opening. Evaluation of use of Solar Thermal for reduced demand from HWM is modeled separately. Setback Thermostat Annual Energy Savings $14,000 $1,074 APPENDIX B

40 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 8 Rank Location Size/Type/Condition Recommendation Installed Cost Annual Energy Savings Ventilation Rank Recommendation Cost Annual Energy Savings 3. Appliances and Lighting Lighting Fixtures and Controls Rank Location Existing Recommended Installed Cost 1 Misc. Incandescent 20 INCAN A Lamp, Halogen 60W with Manual Switching 2 Apparatus Bay 7 FLUOR (4) T5 45.2" F28T5 Lights 28W High Lumen (3050 L) StdElectronic with Manual Switching 4 Misc. Incandescent 20 INCAN A Lamp, Halogen 60W with Manual Switching 7 Apparatus Bay Emergency Circuit 10 Training Room Lights FLUOR (2) T8 4' F32T8 32W Standard Instant StdElectronic with Manual Switching 12 FLUOR (2) T8 4' F32T8 32W Standard Instant StdElectronic with Manual Switching 12 Exterior Halogen 2 INCAN (2) Reflector, Halogen 75W PAR30 with Manual Switching, Daylight Sensor 17 Exterior HPS HPS 100 Watt Magnetic with Manual Switching, Daylight Sensor 20 Exterior LED Lights 2 LED 17W Module StdElectronic with Manual Switching, Daylight Sensor Annual Energy Savings $600 $575 Replace with 20 FLUOR CFL, Spiral 15 W Add new Occupancy Sensor $400 $136 Add new Occupancy Sensor $500 $48 Replace with FLUOR (2) T8 4' F32T8 28W Energy Saver Instant HighEfficElectronic Replace with 12 FLUOR (2) T8 4' F32T8 28W Energy Saver Instant LowLight HighEfficElectronic and Add new Occupancy Sensor Replace with 2 LED (2) 17W Module StdElectronic $100 $9 $2,800 $197 $500 $32 Replace with LED 34W Module StdElectronic and Add new Occupancy Sensor $500 $14 Add new Occupancy Sensor $200 $2 Refrigeration Rank Location Existing Recommended Installed Cost Annual Energy Savings 11 Refrigerators 2 Refrigerator Replace with 2 Refrigerator $1,800 $116 Other Electrical Equipment Rank Location Existing Recommended Installed Cost 18 PC Monitors 6 PC/TV CRT Monitor with Manual Switching Replace with 6 PC/TV Flat screen Monitor Annual Energy Savings $1,200 $29 APPENDIX B

41 Energy Audit Energy Analysis and Cost Comparison AkWarm Commercial Audit Software Women's Bay Volunteer Fire Department Page 9 Cooking/Clothes Drying Rank Recommended Installed Cost Annual Energy Savings APPENDIX B

42 KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Appendix C Major Equipment Inventory APPENDIX C

43 KODIAK WOMENS BAY FIRE STATION ENERGY AUDIT REPORT MAJOR EQUIPMENT INVENTORY TAG LOCATION FUNCTION MAKE MODEL TYPE CAPACITY EFFICIENCY MOTOR SIZE ASHRAE SERVICE LIFE ESTIMATED REMAINING USEFUL LIFE NOTES B-1 BOILER ROOM BUILDING HEAT ENERGY KINETICS EK-2 OIL/CAST IRON 231MBH 87% 1440 W DHW-1 BOILER ROOM DOMESTIC HOT WATER - - SIDE-ARM SHELL IN TUBE P-1 BOILER ROOM BUILDING HEAT GRUNDFOS N/A INLINE PUMP 50 GPM -.25HP 10 9 P-2 BOILER ROOM DHW CIRC N/A N/A INLINE PUMP 5GPM -.13HP 10 9 UH-1 APPARATUS BAY BUILDING HEAT REZNOR N/A UNIT HEATER 300 CFM HP 20 0 UH-2 APPARATUS BAY BUILDING HEAT REZNOR N/A UNIT HEATER 300 CFM HP 20 0 UH-3 APPARATUS BAY BUILDING HEAT REZNOR N/A UNIT HEATER 300 CFM HP 20 0 EF-1 BATHROOM EXHAUST PANASONIC N/A UPBLAST 150 CFM -.06HP 20 0 EF-2 BATHROOM EXHAUST PANASONIC N/A UPBLAST 150 CFM -.06HP 20 0 EH-1 KITCHEN EXHAUST UPBLAST 150 CFM -.13HP 20 0 DM-1 APPARATUS BAY DOOR MOTOR N/A N/A CHAIN DRIVE N/A -.25HP 18 0 DM-2 APPARATUS BAY DOOR MOTOR N/A N/A CHAIN DRIVE N/A -.25HP 18 0 CM-1 APPARATUS BAY AIR COMPRESSOR CAMPBELL HAUSFELD N/A RECIPROCATING 60 GALLON - 7HP APPENDIX C

44 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Appendix D Block Format EEMs APPENDIX D

45 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Building Shell Measures Insulation Measures Rank Location Existing Type/R Value Recommendation Type/R Value 16 On or Below Grade Floor, Perimeter: Fire Station Insulation for 0' to 2' Perimeter: None Insulation for 2' to 4' Perimeter: None Modeled R Value: 7.9 Install 2' of R 10 rigid board insulation around perimeter of Slab (vertical or horizontal). Installation Cost $1,678 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $29 Breakeven Cost $765 Savings to Investment Ratio 0.5 Simple Payback yrs 58 Auditors Notes: Rank Location Existing Type/R Value Recommendation Type/R Value 15 Above Grade Wall: Building Walls Wall Type: Single Stud Siding Configuration: Just Siding Insul. Sheathing: None Structural Wall: 2 x 6, 16 inches on center R 19 Batt:FG or RW, 5.5 inches Window and door headers: Not Insulated Insulation Quality: Damaged Modeled R Value: 14.7 Install R 15 rigid foam board to exterior and cover with T1 11 siding or equivalent. Installation Cost $23,341 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $507 Breakeven Cost $13,484 Savings to Investment Ratio 0.6 Simple Payback yrs 46 Auditors Notes: Rank Location Existing Type/R Value Recommendation Type/R Value 9 Ceiling w/ Attic: Dwelling/Training Room Framing Type: Energy Truss Framing Spacing: 24 inches Insulated Sheathing: None Bottom Insulation Layer: R 38 Batt:FG or RW, 12 inches Top Insulation Layer: None Insulation Quality: Very Damaged Modeled R Value: 27.6 Add R 12 blown cellulose insulation to attic space with Energy Truss. Installation Cost $1,265 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $43 Breakeven Cost $1,146 Savings to Investment Ratio 0.9 Simple Payback yrs 29 Auditors Notes: APPENDIX D

46 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Rank Location Existing Type/R Value Recommendation Type/R Value 8 Ceiling w/ Attic: Apparatus Bay Framing Type: Energy Truss Framing Spacing: 24 inches Insulated Sheathing: None Bottom Insulation Layer: R 38 Batt:FG or RW, 12 inches Top Insulation Layer: None Insulation Quality: Very Damaged Modeled R Value: 27.6 Add R 12 blown cellulose insulation to attic space with Energy Truss. Installation Cost $1,499 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $51 Breakeven Cost $1,357 Savings to Investment Ratio 0.9 Simple Payback yrs 29 Auditors Notes: Seal and caulk close the attic access point in Apparatus Bay. Window Measures Rank Location Size/Type, Condition Recommendation 6 Window/Skylight: SFW Glass: Single, Glass Frame: Aluminum, No Thermal Break Spacing Between Layers: Half Inch Gas Fill Type: Air Modeled U Value: 1.30 Solar Heat Gain Coefficient: 0.52 Replace existing window with U 0.30 vinyl window Installation Cost $1,628 Estimated Life of Measure (yrs) 20 Energy Savings (/yr) $91 Breakeven Cost $1,738 Savings to Investment Ratio 1.1 Simple Payback yrs 18 Auditors Notes: Rank Location Size/Type, Condition Recommendation 5 Window/Skylight: NSFW Double Paned Glass: Single, Glass Frame: Aluminum, No Thermal Break Spacing Between Layers: Half Inch Gas Fill Type: Air Modeled U Value: 1.30 Solar Heat Gain Coefficient: 0.52 Replace existing window with U 0.30 vinyl window Installation Cost $5,598 Estimated Life of Measure (yrs) 20 Energy Savings (/yr) $340 Breakeven Cost $6,484 Savings to Investment Ratio 1.2 Simple Payback yrs 16 Auditors Notes: APPENDIX D

47 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Door Measures Rank Location Size/Type, Condition Recommendation 19 Garage Door: Apparatus Bay Door Type: 1 3/8" sectional door, polyurethane core Insulating Blanket: None Modeled R Value: 5.3 Replace existing garage door with R 7, 2" polyurethane core replacement door. Installation Cost $3,853 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $36 Breakeven Cost $946 Savings to Investment Ratio 0.2 Simple Payback yrs 108 Auditors Notes: Rank Location Size/Type, Condition Recommendation 13 Exterior Door: Door Type: Metal urethane, no therm. break Remove existing door and install standard pre hung Dwelling/Training Room Modeled R Value: 2.5 U 0.16 insulated door, including hardware. Installation Cost $1,868 Estimated Life of Measure (yrs) 30 Energy Savings (/yr) $49 Breakeven Cost $1,304 Savings to Investment Ratio 0.7 Simple Payback yrs 38 Auditors Notes: Air Sealing Measures Rank Location Existing Air Leakage Level (cfm@50/75 Pa) Recommended Air Leakage Reduction (cfm@50/75 Pa) 14 Air Tightness estimated as: 0.80 cfm/ft2 of abovegrade shell area at 75 Pascals Perform air sealing to reduce air leakage by 10%. Installation Cost $1,000 Estimated Life of Measure (yrs) 10 Energy Savings (/yr) $58 Breakeven Cost $591 Savings to Investment Ratio 0.6 Simple Payback yrs 17 Auditors Notes: APPENDIX D

48 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Mechanical Equipment Measures Heating/Cooling/Domestic Hot Water Measure Rank Recommendation 3 Add thermostat control to dwelling stairwell. Add outdoor reset on system to set boiler to low in summer. Add a hard duct to the boiler air intake and seal off the existing combustion air opening. Evaluation of use of Solar Thermal for reduced demand from HWM is modeled separately. Installation Cost $14,000 Estimated Life of Measure (yrs) 20 Energy Savings (/yr) $1,074 Breakeven Cost $21,456 Savings to Investment Ratio 1.5 Simple Payback yrs 13 Auditors Notes: Ventilation System Measures (There were no improvements in this category) Night Setback Thermostat Measures category) (There were no improvements in this APPENDIX D

49 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Electrical & Appliance Measures Lighting Measures The goal of this section is to present any lighting energy conservation measures that may also be cost beneficial. It should be noted that replacing current bulbs with more energy efficient equivalents will have a small effect on the building heating and cooling loads. The building cooling load will see a small decrease from an upgrade to more efficient bulbs and the heating load will see a small increase, as the more energy efficient bulbs give off less heat. Lighting Measures Replace Existing Fixtures/Bulbs Rank Location Existing Condition Recommendation 20 Exterior LED Lights 2 LED 17W Module StdElectronic with Manual Switching, Daylight Sensor Add new Occupancy Sensor Installation Cost $200 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $2 Breakeven Cost $19 Savings to Investment Ratio 0.1 Simple Payback yrs 131 Auditors Notes: Cost assumes $100 per occupancy sensor ( 1 for each light) Rank Location Existing Condition Recommendation 17 Exterior HPS HPS 100 Watt Magnetic with Manual Switching, Daylight Sensor Replace with LED 34W Module StdElectronic and Add new Occupancy Sensor Installation Cost $500 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $14 Breakeven Cost $168 Savings to Investment Ratio 0.3 Simple Payback yrs 36 Auditors Notes: Cost assumes $400 for light and installation, $100 for occupancy sensor. Rank Location Existing Condition Recommendation 12 Exterior Halogen 2 INCAN (2) Reflector, Halogen 75W PAR30 with Manual Switching, Daylight Sensor Replace with 2 LED (2) 17W Module StdElectronic Installation Cost $500 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $32 Breakeven Cost $387 Savings to Investment Ratio 0.8 Simple Payback yrs 16 Auditors Notes: Assumes $250 per fixture. APPENDIX D

50 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Rank Location Existing Condition Recommendation 10 Training Room Lights 12 FLUOR (2) T8 4' F32T8 32W Standard Instant StdElectronic with Manual Switching Replace with 12 FLUOR (2) T8 4' F32T8 28W Energy Saver Instant LowLight HighEfficElectronic and Add new Occupancy Sensor Installation Cost $2,800 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $197 Breakeven Cost $2,417 Savings to Investment Ratio 0.9 Simple Payback yrs 14 Auditors Notes: Cost assumes $200 per light with bulbs and ballast, $100 per occupancy sensor. Rank Location Existing Condition Recommendation 7 Apparatus Bay Emergency Circuit FLUOR (2) T8 4' F32T8 32W Standard Instant StdElectronic with Manual Switching Replace with FLUOR (2) T8 4' F32T8 28W Energy Saver Instant HighEfficElectronic Installation Cost $100 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $9 Breakeven Cost $98 Savings to Investment Ratio 1.0 Simple Payback yrs 11 Auditors Notes: Cost assumes $100 for new bulbs, including installation. Rank Location Existing Condition Recommendation 4 Misc. Incandescent 20 INCAN A Lamp, Halogen 60W with Manual Switching Add new Occupancy Sensor Installation Cost $500 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $48 Breakeven Cost $588 Savings to Investment Ratio 1.2 Simple Payback yrs 10 Auditors Notes: Cost assumes $30 per light, $100 per occupancy sensor. Rank Location Existing Condition Recommendation 2 Apparatus Bay Lights 7 FLUOR (4) T5 45.2" F28T5 28W High Lumen (3050 L) StdElectronic with Manual Switching Add new Occupancy Sensor Installation Cost $400 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $136 Breakeven Cost $1,664 Savings to Investment Ratio 4.2 Simple Payback yrs 3 Auditors Notes: Retrofit cost assumes $100 per wall mount occupancy sensor with installation. Rank Location Existing Condition Recommendation 1 Misc. Incandescent 20 INCAN A Lamp, Halogen 60W with Manual Switching Replace with 20 FLUOR CFL, Spiral 15 W Installation Cost $600 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $575 Breakeven Cost $7,055 Savings to Investment Ratio 11.8 Simple Payback yrs 1 Auditors Notes: Cost assumes $30 per light, $100 per occupancy sensor. APPENDIX D

51 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Lighting Measures Lighting Controls category) (There were no improvements in this Refrigeration Measures Rank Location Description of Existing Efficiency Recommendation 11 Refrigerators 2 Refrigerator Replace with 2 Refrigerator Installation Cost $1,800 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $116 Breakeven Cost $1,418 Savings to Investment Ratio 0.8 Simple Payback yrs 16 Auditors Notes: New Refrigerator Other Electrical Measures Rank Location Description of Existing Efficiency Recommendation 18 PC Monitors 6 PC/TV CRT Monitor with Manual Switching Replace with 6 PC/TV Flat screen Monitor Installation Cost $1,200 Estimated Life of Measure (yrs) 15 Energy Savings (/yr) $29 Breakeven Cost $355 Savings to Investment Ratio 0.3 Simple Payback yrs 41 Auditors Notes: Assumes $200 per screen. Cooking Measures (There were no improvements in this category) Clothes Drying Measures (There were no improvements in this category) APPENDIX D

52 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT Appendix E Site Visit Photos APPENDIX E

53 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT 1. Rear of Building Featuring Hose Tower 2. Boiler, Side Arm Domestic Hot Water Maker (Below) & Well Pressure Control Tank (Right) 3. Close Up of Boiler 4. Plate Exchanger (Left) & Boiler Control (Right) 5. Boiler Fuel Supply Tank 6. Well Pressure Control Tank & Boiler Combustion Air Supply Vent Seal Off & Hard Duct to Boiler Recommended (Right) APPENDIX E

54 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT 7. Vehicle Fuel Tank 8. Apparatus Bay Doors, Replacement Recommended 9. Windows & Siding Typical of Station, Replacement Recommended 10. Damaged Door, Replacement and Addition of Weather Stripping Recommended 11. Damaged Door, Replacement and Addition of Weather Stripping Recommended 12. Stairway in Need of Thermostat Control APPENDIX E

55 WOMENS BAY FIRE STATION ENERGY AUDIT REPORT 13. Computer Monitor Typical of Station. 14. Apparatus Bay Light Fixtures, Occupancy Sensor Recommended APPENDIX E