Cabo Verde Nacional Power Sector Master Plan Presented by: Rito Évora DSE

Size: px
Start display at page:

Download "Cabo Verde Nacional Power Sector Master Plan Presented by: Rito Évora DSE"

Transcription

1 IV SIMPÓSIO GERMANO-CABO-VERDIANO DE ENERGIA EFICIÊNCIA ENERGÉTICA E ENERGIAS RENOVÁVEIS PARA OS SETORES DO TURISMO E DA INDÚSTRIA EM CABO VERDE 05 de junho de 2018 Hotel Oásis Belorizonte, Santa Maria Cabo Verde Nacional Power Sector Master Plan Presented by: Rito Évora DSE

2 Content 1. Brief Current Energy Policy Overview The National Program for Energy Sustainability 2. The Power Sector Master Plan Current Status and Next Steeps

3 IX Legislature Government Program ( ) Strategic Alignment for the Energy Sector Strategic Plan for Sustainable Development National Program for Energy Sustainability

4 The National Program for Energy Sustainability (NPES) The long-term strategy is to accomplish the transition to an energy sector that is: secure, efficient, sustainable, without reliance on fossil fuels and, capable to insure universal access and energy security.

5 Institutional Strengthening and Improvement in Business Environment NPES main Axes Investments in Strategic Infrastructure Energy Market Reform Renewable Energy Development Promotion of Energy Efficiency

6 for the Sustainable Energy for All (SE4All) Initiative National Power Sector Master Plan Project funded by the European Union EuropeAid/Development Cooperation Instrument DCI-ENV/2013/ This project is funded by the EU and implemented by a consortium led by MWH

7 Cabo Verde s Power Sector Master Plan Expected Deliveries Electricity demand scenarios and supply options; Least-cost demand-supply scenarios and impact assessment; Grid development plan; Institutional, environmental, financial assessments and strategy formulation; Action Plan, Investment Plan and Policy Recommendation.

8 Current Status of the Project

9 MWh Cabo Verde from 2000 to Evolution of Power Consumption per Category ( ) AAGR ,5% AAGR ,3% Technical Energy Losses Internal Consumption Desalinization Public Services Tourism Com./Ind./Serv. * Domestic' for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/ * Domestic = Domestic + Non-technical Losses 9

10 MW Available Capacity in ,0 180,0 160,0 140,0 25,3 16,4 8,4 5,1 4,1 1,0 1,1 174,9 33,6 Diesel Fuel/Diesel Solar Wind 120,0 32,8 100,0 80,0 80,5 109,7 Total load in ,1 MW 60,0 40,0 20,0 0,0 5,5 26,0 for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

11 GWh Energy generation in ,0 450,0 400,0 350,0 300,0 74,0 72,7 29,6 15,0 13,2 6,6 2,7 2, ,1 Diesel Fuel/Diesel Solar Wind 250,0 225,0 309,6 Thermal: 81% 200,0 150,0 100,0 50,0 5,6 77,1 Renewable: 19% 0,0 for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

12 MWh each Scenario TMCA ,0% 8,4% 8,7% TMCA TMCA ,4% 3,7% 4,1% 2,6% 2,8% 3,9% % 3% 9% 9% 11% 19% 23% % 19% 19% 3% 3% 9% 8% 8% 3% 9% 9% 9% 13% 14% 14% 17% 17% 17% 30% 30% 29% Efficiency Scenario Base Case High Growth ES BC HG % 16% 3% 16% 16% 3% 7% 3% 3% 7% 7% 7% 10% 9% 9% 9% 12% 13% 13% 14% 16% 17% 17% 17% Efficiency Scenario 730 Base Case 753 High Growth 807 Efficiency Scenario % 3% 6% 9% 13% 17% Base Case % 3% 6% 9% 13% 17% 41% 36% 35% 35% 40% 40% High Growth ES BC HG ES BC HG for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

13 Installed capacity Legend Renewables Legend <all other values> Technology Renewables!( Solar <all other values> Technology!( Thermal!( Wind Solar Thermal Installed!( Thermal Capacity (MW)!( 0 <all Wind - 1 other values> Fuel Thermal!( 1-2,5!( 2,5 Diesel <all - other 5 values> Fuel!(!( 5 Diesel/Fuel !( 10!( Diesel/Fuel !( 15-20!( Fuel/Diesel Diesel/Fuel 180!( 20-50!( Diesel/Fuel !(!( Fuel/Diesel Wind: 5,95 MW Fuel: 33,6 MW Wind: 0,5 MW Diesel: 9,9 MW Wind: 9,4 MW Solar: 4,8 MW Fuel: 86,1 MW Diesel: 4,3 MW Diesel: 5,1MW Wind: 2,6 MW Diesel: 17,3 MW Diesel: 1,6MW Wind: 7,7 MW Solar: 2,5 MW Fuel: 16,9 MW Diesel: 4,0 MW Fuel: 4,2 MW Diesel: 3,1 MW Diesel: 1,8MW for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

14 Load peak assessement Energy (GWh) 1 000,0 800,0 600,0 441,4 570,1 663,7 747,6 830,9 925,8 400,0 200,0 0, Santiago São Vicente Sal Boavista Santo Antão Fogo São Nicolau Maio Brava TOTAL # Hours Peak load (MW) Santiago 36,9 48,1 56,5 64,7 74,7 87,1 São Vicente 16,4 19,1 23,1 26,7 30,4 34,4 Sal 13,7 20,2 24,8 28,2 31,3 34,9 Boavista 5,9 10,9 12,7 14,5 16,0 17,9 Santo Antão 2,9 4,8 6,0 6,6 7,0 7,4 Fogo 2,6 4,9 6,4 7,2 7,8 8,5 São Nicolau 1,4 1,7 2,1 2,3 2,5 2,7 Maio 0,6 1,1 1,7 3,1 3,8 4,7 Brava 0,6 0,8 1,0 1,1 1,2 1,2 80,9 111,7 134,2 154,4 174,7 198, Santiago São Vicente Sal Boavista Santo Antão Fogo São Nicolau Maio Brava for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

15 Load peak forecast Peak load (MW) Var (MW) Var (AAGR %) Var Var (MW) (AAGR %) Var (MW) Var (AAGR %) Santiago 36,9 48,1 56,5 64,7 74,7 87,1 11,2 6,9% 8,4 3,3% 8,2 2,8% São Vicente 16,4 19,1 23,1 26,7 30,4 34,4 2,7 3,8% 4,0 3,9% 3,6 2,9% Sal 13,7 20,2 24,8 28,2 31,3 34,9 6,5 10,2% 4,6 4,2% 3,3 2,6% Boavista 5,9 10,9 12,7 14,5 16,0 17,9 5,1 16,9% 1,7 3,0% 1,9 2,8% Santo Antão 2,9 4,8 6,0 6,6 7,0 7,4 1,9 13,6% 1,2 4,6% 0,6 1,9% Fogo 2,6 4,9 6,4 7,2 7,8 8,5 2,4 17,6% 1,5 5,4% 0,8 2,4% São Nicolau 1,4 1,7 2,1 2,3 2,5 2,7 0,3 5,1% 0,4 3,8% 0,2 2,3% Maio 0,6 1,1 1,7 3,1 3,8 4,7 0,5 17,4% 0,6 9,3% 1,4 12,4% Brava 0,6 0,8 1,0 1,1 1,2 1,2 0,2 7,7% 0,2 4,7% 0,1 2,5% 80,9 111,7 134,2 154,4 174,7 198,9 30,8 8,4% 22,5 3,7% 24,2 2,6% 15

16 Priority Renewable Projects Map (650 MW) Source: Atlas Energias Renováveis de CaboVerde for the Sustainable Energy for All (SE4All) Initiative -ENV/2013/

17 Energy Costs of the Renewable Projects (LCOE) LCOE ( /MWh) Wind Solar RSU Consumo 2040 (3) Blended financing: Discount rate 7,6% Commercial: Discount rate 13,0% (1) Nine Island Study Base Scenario Energy (GWh) 17

18 Micro-generation potential per island Source: Distributed solar energy system market assessment study Scenarios should be defined as % of potential. 5% by 2030? 18

19 [Cabo Verde Power Sector Master Plan Preliminary results for Santiago, Boavista and Fogo islands] Project funded by the EUROPEAN UNION EuropeAid/Development Cooperation Instrument DCI-ENV/2013/

20 Step 1 Overall aproach Optimization of the Capacity Expansion for the period Calculation of the investments for the least-cost scenario or a policy scenario with 50% RES penetration Step 2 Improving the Capacity Expansion solution with incorporating additional investments regarding reserves, necessary due to the intermittencies of variable Renewable Energy (load following reserve, storage reserve) Step 3 Given the Capacities calculated in Steps 1 and 2, hourly simulation and Optimization of the Operation of the Generation System Step4 Dynamic Stability Analysis of the overall power system formulated from the outputs of Steps 1-3 for calculating additional primary and secondary reserves necessary in Step 4 for the desired level of variable Renewable Energy for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

21 Least Cost Capacity Expansion preliminary Calculations Santiago, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 40% total wind+pv, 35% wind Table Name: ELE_Capacity_by_Type Active Unit: KW ProcessSet\Period PV 5,400 11,800 16,600 19,000 WIND 14,450 23,800 33,150 39,100 for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

22 Least Cost Capacity Expansion preliminary Calculations Santiago, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 50% total wind+pv, 45% wind Table Name: ELE_Capacity_by_Type Active Unit: KW ProcessSet\Period PV 5,400 11,800 24,600 30,200 WIND 14,450 29,750 42,500 52,700 Santiago, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 50% total wind+pv, 45% wind+storage in 2025 Table Name: ELE_Capacity_by_Type Active Unit: KW ProcessSet\Period PV 5,400 11,800 24,600 30,200 WIND 14,450 29,750 66,500 76,700 for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

23 Santiago, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 50% total wind+pv, 45% wind for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

24 Santiago Power Systems Generation Expansion To increase RES penetration the incorporation of the Cao Consalves pumped storage plant was considered: 20 MW = 10 MW+10 MW (two Francis water turbines) 320 MWh Maximum Daily Generating Capacity(reservoir content) 44 MWh Maximum Annual Generating Capacity 50M investment cost Investment lifetime 50 years for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

25 CHÃ GONÇALVES PSP FACTSHEET 1/2 LOCATION Island County River Santiago São João Baptista/Ribeira Grande de Santiago Ribeira Ribão Seco and ribeira de S. João Coordinates (WGS 84) Latitude Longitude Upper Dam 14 58'28.29"N 23 39'37.59"W Lower Dam 14 58'1.08"N 23 40'8.04"W Power House 14 58'12.25"N 23 40'5.21"W HYDROLOGICAL FEATURES Catchment area (Lower dam) 24.5 km 2 Mean annual runnof 75 mm ENERGETIC FEATURES Mean annual turbined volume 96.2 hm 3 Gross head m Installed power 20 MW Mean annual production 43.8 GWh Lower reservoir This project is funded by the EU and implemented by a consortium led by MWH Upper reservoir

26 Expansion A hybrid plant commissioned in 2025 of the PSP in combination with an additional 24 MW of wind farms in hybrid mode of operation for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

27 Santiago, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 50% total wind+pv, 45% wind+storage in 2025 for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

28 Boavista, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 40% total wind+pv, 35% wind for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

29 Boavista, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 40% total wind+pv, 35% wind+storage in Stations 5 MW Battery 30MWh storage 7MW additional Wind Farm Installation years for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

30 Fogo, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 40% total wind+pv, 35% wind for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

31 Fogo, High Demand Scenario, High Oil Prices, Least Cost Solution Instant Dynamic Constraint : 40% total wind+pv, 35% wind+storage in Station 2 MW Battery 12MWh Storage 2.8 MW Wind Farm Installation Year 2026 for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

32 Santiago, Dynamic Stability for 50% RES penetration, 45% wind Frequency Disturbance simulation Loss of Storage Plant (PSP) Total Load: 56,6 MW Total penetration of RES+Hybrid Plant: 52,7% System average frequency for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

33 Santiago, Dynamic Stability for 50% RES penetration, 45% wind Frequency Disturbance simulation Loss of Wind Power Production Total Load: 56,6 MW Total penetration of RES+Hybrid Plant: 52,7% System average frequency for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

34 Santiago, Dynamic Stability for 50% RES penetration, 45% wind Disturbance simulation Loss of wind power production A sudden loss of wind power production occurs. Wind turbines reduce production by 90% Frequency drops according to total system inertia and speed governors modify fuel supply of conventional units. As can been seen after few seconds conventional units increase production and compensate lost wind generation. Wind Turbine Active Power Conventional generators mechanical power for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

35 Santiago, Dynamic Stability for 50% RES penetration, 45% wind Disturbance simulation 3phase fault A 3phase fault occurs in one 60/20kV power transformer in Palmarejo. The fault is assumed to be cleared by transformer protection after 100ms. Voltages of the network drop instantaneously As can been seen from the figures, the system exhibits an expected overfrequency during the fault. This is based on the fact that the severe voltage drop in the system results in an inability of all generators to inject active power in the network. The overspeed and the fact that generator inertias differ, creates subsequent rotor angle deviations and active power swings. System average frequency Conventional generators rotor angles for the Sustainable Energy for All (SE4All) Initiative - ENV/2013/

36 Moving towards a more integrated approach for transition planning ( IRENA - Planning for the renewable future 2016) Power sector infrastructure requires long lead times, and given the long life of resulting projects future investment options are influenced greatly by investments that are made today. Having a clearly specified long-term transition plan with an accompanying investment strategy allows transition planning components to be executed proactively, as opposed to taking a reactive approach triggered by the need to fix immediate, visible problems. Merely taking a short-term view is likely to result in delays, possible adequacy issues and economic inefficiency in the long term. Moves from long-term through short-term planning steps, and establishes clear, internally consistent feedback loops within technoeconomic assessments.

37 Thank you! Rito Évora