Towards an intermittency-friendly energy system

Size: px
Start display at page:

Download "Towards an intermittency-friendly energy system"

Transcription

1 Towards an intermittency-friendly energy system Morten Boje Blarke M.Sc. Eng. Ph.D. Sustainable Energy Planning Assist. Prof. Department of Development and Planning Aalborg University

2 DKK/MWh MWh Wind-friendly technologies? 400,00 350,00 300,00 250,00 200,00 150,00 100,00 50,00 0,00-50,00 Hourly wind production and electricity spot market prices West Denmark January 10th ,0 2000,0 1500,0 1000,0 500,0 Spot market price Wind production Hour/Price (DKK/MWh) ,00 0,0

3 Options for increasing the energy system s intermittency-friendliness : Electro-chemical storage (batteries) Electric vehicle with battery Heat pump with thermal storages Flexible demand behaviour Hydrogen conversion and storage Compressed air storage Refrigeration with ice storage Wind-friendly co-generation with heat pump and storage Transnational cable connection (export/import)

4 MW Wind, Demand West Denmark, January January 2007

5 MW Wind, Distributed Generation, Demand West Denmark, January January 2007

6 MW Wind, Distributed Generation, Demand, Spot Market Price West Denmark, January January 2007

7 Important historical correlations in West-Denmark (2006-9) Wind power production Electricity demand: 0,19 Electricity demand Spot market: 0,55 Wind production Spot market: -0,30 Electricity demand minus wind production Spot market: 0,67

8 The relocation coefficient ( intermittency-friendliness ) 1. The relocation coefficient: the statistical correlation between net electricity exchange between plant and grid (e), and the electricity demand minus intermittent renewable electricity production (d). R ( 2. The relocation coefficient is useful for... c ( e e e e m 1. Policy analysis: Evaluating the overall intermittency friendliness of distributed generation with respect to a maximum relocation coefficient given by market conditions and operational strategies. 2. Project planning: Evaluating the intermittency friendliness of individual power producers, storage options, and electricity consumers. The relocation coefficient may be used to identify alternative options for increasing the intermittency friendliness of supply or demand. ) m 2 )( d d ( d m ) d m ) 2

9 Gasoil boiler versus Air-Water CO2 heat pump

10 Relocation Coefficient Wind-friendliness 4.5 kw HP, 6 kw EB, 24h optimization 18 kw HP, 6 kw EB, 24h optimization 0,14 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 0,24 0,23 0,22 0,21 0,2 0,19 0,18 0,17 0,16 0,15 0,14 0,13 0,12 0,11 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 Reference 0L 100L 200L 300L 400L 500L 1000L 10000L Options 0L 100L 200L 300L 400L 500L 1000L 10000L Options

11 System-Wide CO2 Emissions NPV System-wide CO2-emissions 4.5 kw HP, 6 kw EB, 24h optimization 18 kw HP, 6 kw EB, 24h optimization Reference 0L 100L 200L 300L 400L 500L 1000L 10000L Options Reference 0L 100L 200L 300L 400L 500L 1000L 10000L Options

12 COMPOSE / EnergyInteractive.NET Interactive planning framework Combinomics (distributional analysis of costs and benefits) System-wide energy, environmental, and economic consequences The relocation efficiency ( intermittency-friendliness ) R c ( e ( e e e m ) m 2 )( d d m ) ( d d m ) 2 Monte Carlo risk analysis on more than 20 variables Linear programming model for operational optimization of projects

13 * Break? *

14 The pre-sustainable energy system Mobility Power exchange Power-only plants Electricity Electricity Fuels Cooling Heat-only boilers Heat Heating Resources Conversion Exchange Demand

15 First generation sustainable energy system (1G) Wind etc. Fuels Solar etc. Power-only plants Heat-only boilers Intermittent power CHP Electricity Heat Intermittent heat Power exchange Mobility Electricity Cooling Heating Resources Conversion Exchange Demand

16 Intermittency calls for supply-demand intelligence 2008 (20 % wind) 2025 (50 % wind)

17 Electricity Production (TJ) A challenge for distributed co-generation Distributed cogeneration Wind power

18 Electricity demand 8 Central power plants 550 Distribution cogeneration 4100 Wind power MW

19 Electricity demand Total capacity Distributed capacity MW

20 MW Wind, Distributed Generation, Demand West Denmark, January January 2007

21 Wind-friendly cogenerator with heat pump, heat recovery, and cold storage Cold Storage Option B-C Flue gas condensing Option A-C Evaporator Compressor Transcritical heat pump Option A-E Expansion Gas cooler Engine room and intercooling Option A-C District heating Thermal Storage Electricity grid Mechanical drive Option A Alternative Electrical drive

22 Next generation sustainable energy system (2G) Fuel storage Mobility Vindkraft Wind power etc. etc. Intermittent Diskont. elektricitet power Power Eludveksling Exchange Electricity Elektricitet Electricity Brændsler Fuels Kraftvarme Tri- and Kraftvarme Quad-gen (el. QUAD) Mechanical Varmepumpe Heat Cooling Electricity storage Cooling Køling Heat Varme Heat Solvarme Solar heat etc. etc. Intermittent Diskont. varme heat Thermal Termisk Storage lagring Exchange Resources Conversion Relocation Demand and storage

23 Strategic Challenge Domestic integration Import/ Export

24 Choosing the best strategy for Denmark: A choice that has potential global implications A unique global experiment Domestic integration Import/ Export Known technology From wind turbine success to wind system success Local innovation, employment, and resources Mainstream operators, markets, and producers System integration

25 * Thank you *