Payback period of renewable and efficient energy technologies at buildings

Size: px
Start display at page:

Download "Payback period of renewable and efficient energy technologies at buildings"

Transcription

1 Consense 2012 Stuttgart Payback period of renewable and efficient energy technologies at buildings Dipl.-Ing. Peter Voit Transsolar Energietechnik GmbH Stuttgart Munich New York 19 June 2012

2 The building - View from sun in summer

3 View from sun in winter

4 Energy consumption by use annual energy consumption Regelbüro Temperaturstatistik nach DIN EN Dreifachglas - Sonnenschutz außen 350' ' '000 Operative Raumtemperatur ( C) ' Mittelwert der Außentemperatur ( C) kwh 150'000 heat cooling 100'000 50'000 0 Januar Februar März April Mai Juni Juli August September Oktober November Dezember

5 electric demand boiler 1'200 1'000 gross consumption 2'036 MWh 66 kwh/m²a building only, no user 38 kwh/m²a consumption - whole building MWh plugload light pumps fan cooling heating 2'036 gross demand annual powr consumption in MWh plugload 42% 0 0 minus from CHP from PV 2'036 net demand heating 4% 66 kwh/m²a cooling 7% fan 12% pumps 6% 200 light 29% 0 foyer workshop administration restaurant other

6 heating and cooling demand boiler heat 1'768 chilled water 396 annual energy consumption in MWh 1'400 1'200 1' MWh MWh heating and cooling heat chilled water 57 kwh/m²a 13 kwh/m²a Q_DHW Q_c-RAD Q_h-RAD Q_deh-AHU Q_hum-AHU Q_c-AHU Q_h_AHU Q_deh-FCU Q_hum-FCU Q_c-FCU Q_h-FCU foyer workshop administration restaurant other

7 natural gas demand base case boiler gross demand 1'688 MWh 55 kwh/m²a natural gas consumption - whole building 1' '688 CHP gas boiler gas 800 annual gas consumption in MWh foyer workshop administration restaurant other

8 Heat generation techniques natural gas 100% gas boiler 90% efficiency heat 90% District heat SSF % natural gas 100% station conversion source to site energy SSF 3.34 geothermal heat pump COP 5 35 F/90 F heat 150% natural gas 100% CHP combined heat plant 35% 35% geothermal heat pump COP 5 35 F/90 F heat 55% heat 175%

9 Cooling energy generation techniques natural gas 100% station conversion source to site energy SSF 3.34 High efficient electric Chiller COP 6 Chilled water 200% natural gas 100% Absorption chiller Double effect COP 1.4 Chilled water 140% natural gas 100% station conversion source to site energy SSF 3.34 Centrifugal Chiller COP 4 Chilled water 120% District Chilled water SSF % natural gas 100% CHP combined heat plant 35% 55% heat 35% Absorption chiller COP 0.7 geothermal heat pump COP 5 Chilled water 38% heat 175%

10 Power generation techniques natural gas 100% station conversion source to site energy SSF % natural gas 100% CHP combined heat plant 35% heat 55% 35% natural gas 100% CHP combined heat plant 35% Absorption chiller single effect COP 0.7 chilled water 42% 35%

11 Source to site ratio ratio SOURCE to SITE energy consumption heat 1 2 heat Standard heat pump plus grid heat pump plus CHP CHP plus grid CHP plus boiler CHP plus HP

12 Life cycle cost analysis (LCC) case: electric generation by photovoltaics Life expectation: 20 years Interest rate: 5% Annuity rate 8% Initial investment costs: 1500 EUR/kWp annual maintenance costs: 1% of investment cost 1% x 1500 = 15 EUR p.a. annual capital costs annuity x investment 8% x 1500 = 120 EUR p.a.

13 Life cycle cost analysis (LCC) case: electric generation by photovoltaics annual harvest: 900 kwh / 1 kwp Electric energy tariff 20 ct/kwh annual earnings total annual costs annual profit 0.20 x 900 = 180 EUR = 135 EUR 45 EUR Return of Investment ROI 45 / 1500 = 3% Payback period 1500 / (180 15) = 9.1 years

14 natural gas demand combined heat and plant (CHP) CHP plus peak demand boiler gross demand 2'508 MWh 81 kwh/m²a natural gas consumption - whole building 1'600 1'400 2' CHP gas boiler gas 1'200 annual gas consumption in MWh 1' foyer workshop administration restaurant other gas 100% hot water 65 C heat heat 80 C 60% space heating 35 C 60% 35% 35%

15 electric demand CHP plus peak demand boiler 1'200 1'000 gross consumption 2'036 MWh 66 kwh/m²a building only, no user 38 kwh/m²a consumption - whole building MWh plugload light pumps fan cooling heating 2'036 gross demand annual powr consumption in MWh minus from CHP from PV 1'318 net demand 43 kwh/m²a foyer workshop administration restaurant other

16 Power demand with natural gas engine (CHP) 1000 natural gas CHP operated according to heat demand of heating systems 150 kw electric net demand feed-in to grid supply by CHP eta electric eta thermal min. throttle 35.0% 60.0% 45% kw statistical year

17 Heating demand and supply by CHP 4'647 full operation hours 71% CHP heat rate 1'200 natural gas CHP operated according to demand of heating systems 150 kw electric eta electric eta thermal min. throttle 35.0% 60.0% 0% process heat HW heating HW heat from CHP 1' kw statistisches Jahr

18 Heating demand and supply by CHP 1'800 annual heat balance natural gas CHP control by heating systems 1'600 29% 1'400 1'200 1'000 MWh demand reuse of rejected heat heat by boiler thermal output CHP heating HW process heat HW 71% supply

19 Heating demand and supply by CHP 4'127 full operation hours 63% CHP heat rate 1'200 natural gas CHP operated according to demand of heating systems 150 kw electric eta electric eta thermal min. throttle 35.0% 60.0% 45% process heat HW heating HW heat from CHP 1' kw statistisches Jahr

20 Heating demand and supply by CHP 1'800 annual heat balance natural gas CHP control by heating systems 1'600 37% 1'400 1'200 1'000 MWh demand reuse of rejected heat heat by boiler thermal output CHP heating HW process heat HW 63% supply

21 CHP with absorption chiller in summer and heating in winter gas 100% heat 90 C 60% 35% absorption chiller COP 0.7 chilled Water 42% 35% gas 100% hot water 65 C heat heat 80 C 60% space heating 35 C 60% 35% 35%

22 Heating demand and supply by CHP additional absorption chiller 5'504 full operation hours 69% CHP heat rate 1'200 CHP plus absorption chiller operated according to demand of heating and cooling systems 150 kw electric eta electric eta thermal min. throttle 35.0% 60.0% 45% process heat HW heating HW heat from CHP 1'000 gas 100% 800 heat 90 C 60% 35% absorption chiller COP 0.7 chilled Water 42% 35% kw statistisches Jahr

23 Life cycle cost analysis (LCC) case: supply by CHP with additional absorption chiller base case - boiler w/o CHP gas CHP 257 kwth heat generation cooling eta-th 100% eta-el 35% eta-th 60% COP 5.0 eta-th 100% COP 3.0 total total gas gas consumption consumption consumption generation consumption geothermal heat gas consumption consumption consumption base case base case by CHP CHP pump boiler chiller other 150 kw el mod 45% 0 kwth 768 kwth annual kwh 2'035'353 1'687' '606 2'358' '357 46'174 1'896'593 Max kw 797 1' full operating hours 2'553 1'646 5'504 5'504 #DIV/0! '661 energy tariff effektive in /kwh energy costs in 287'325 96' ' '559-30'285 6' '800 Energy costs Income and savings 113'633 Gross Energy costs 383' '115 Total 383' '482 all Energy savings payback period w/o maintenance 3.0 yrs 83'325 interest 6.5% Capital costs peak performance specific investment life time annuity CHP heat and 150 kwel 1200 /kwel 180' yrs 10.6% 19'144 ACH and CHP 180 kwth 500 /kwth 90' yrs 10.6% 9'572 savings boiler cost -257 kwth 80 /kwth - 20' yrs 10.6% - 2'188 heatpump 0 kwth 500 /kwth - 15 yrs 10.6% - geothermal system 0 kwth 900 /kwth - 50 yrs 6.8% - 249'429 26'527 Maintenance costs maintenance factor CHP heat and 8.0% 14'400 ACH and CHP 2.0% 1'800 heatpump 2.0% - geothermal system 0.5% - payback period with maintenance 3.7 yrs 16'200 annual profit return of investment (ROI) 16.3% 40'598 gas 0.22 kgco2/kwh 1687 MWh 2999 MWh net feed-in 0.55 kgco2/kwh 2035 MWh 1117 MWh 183 MWh CO2 savings by investment 1.27 kg/ CO2/Balance 1491 toco toco2 101 toco2 savings CO2 21.3% 317 toco2 primary energy balance 7892 MWh PE 6514 MWh PE savings PE 17.5% 1379 MWh PE

24 Combination of geothermal heat exchanger (GHX) and heat pump gas 100% Gas boiler Hot water 65 C heat station Source to site factor Germany 38% heat pump COP 5 5 C/35 C Space heating 35 C 190% 0% 2,6 Chilled water 16 C Geothermal Heat Exchanger GHX

25 Life cycle cost analysis (LCC) case: heating and cooling supply 100% by geothermal base case - boiler w/o CHP gas CHP 0 kwth heat generation cooling eta-th 100% eta-el 35% eta-th 60% COP 4.1 eta-th 100% COP 7.3 total total gas gas consumption consumption consumption generation consumption geothermal heat gas consumption consumption consumption base case base case by CHP CHP pump boiler chiller other 0 kw el mod 45% 1025 kwth 0 kwth annual kwh 2'035'353 1'687' ' '309 1'896'593 Max kw 797 1' full operating hours 2'553 1'646 8'760 8'760 1'646 #DIV/0! 409 2'661 energy tariff effektive in /kwh energy costs in 287'325 96' '457-7' '807 Energy costs Income and savings 0 Gross Energy costs 383' '846 Total 383' '846 all Energy savings payback period w/o maintenance 27.2 yrs 53'961 interest 6.5% Capital costs peak performance specific investment life time annuity CHP heat and 0 kwel 1200 /kwel 0 15 yrs 10.6% 0 ACH and CHP 0 kwth 500 /kwth 0 15 yrs 10.6% 0 savings boiler cost kwth 80 /kwth - 82' yrs 10.6% - 8'724 heatpump 1025 kwth 610 /kwth 625' yrs 10.6% 66'491 geothermal system 1025 kwth 900 /kwth 922' yrs 6.8% 62'670 1'465' '437 Maintenance costs maintenance factor CHP heat and 8.0% 0 ACH and CHP 2.0% 0 heatpump 2.0% 12'504 geothermal system 0.5% 4'614 payback period with maintenance 39.8 yrs 17'118 annual profit return of investment (ROI) -5.7% - 83'594 gas 0.22 kgco2/kwh 1687 MWh 0 MWh net feed-in 0.55 kgco2/kwh 2035 MWh 2362 MWh 0 MWh CO2 savings by investment 0.13 kg/ CO2/Balance 1491 toco toco2 0 toco2 savings CO2 12.8% 191 toco2 primary energy balance 7892 MWh PE 6615 MWh PE savings PE 16.2% 1278 MWh PE

26 Life cycle cost analysis (LCC) case: heating and cooling supply 60% by geothermal, rest by boiler base case - boiler w/o CHP gas CHP 0 kwth heat generation cooling eta-th 100% eta-el 35% eta-th 60% COP 5.0 eta-th 100% COP 7.3 total total gas gas consumption consumption consumption generation consumption geothermal heat gas consumption consumption consumption base case base case by CHP CHP pump boiler chiller other 0 kw el mod 45% 200 kwth 825 kwth annual kwh 2'035'353 1'687' ' '625 54'309 1'896'593 Max kw 797 1' full operating hours 2'553 1'646 8'760 8'760 5' '661 energy tariff effektive in /kwh energy costs in 287'325 96' '850 58'578 7' '682 Energy costs Income and savings 0 Gross Energy costs 383' '660 Total 383' '660 all Energy savings payback period w/o maintenance 10.1 yrs 26'148 interest 6.5% Capital costs peak performance specific investment life time annuity CHP heat and 0 kwel 1200 /kwel 0 15 yrs 10.6% 0 ACH and CHP 0 kwth 500 /kwth 0 15 yrs 10.6% 0 savings boiler cost -200 kwth 80 /kwth - 16' yrs 10.6% - 1'702 heatpump 200 kwth 500 /kwth 100' yrs 10.6% 10'635 geothermal system 200 kwth 900 /kwth 180' yrs 6.8% 12' '000 21'158 Maintenance costs maintenance factor CHP heat and 8.0% 0 ACH and CHP 2.0% 0 heatpump 2.0% 2'000 geothermal system 0.5% 900 payback period with maintenance 11.4 yrs 2'900 annual profit return of investment (ROI) 0.8% 2'090 gas 0.22 kgco2/kwh 1687 MWh 686 MWh net feed-in 0.55 kgco2/kwh 2035 MWh 2151 MWh 0 MWh CO2 savings by investment 0.59 kg/ CO2/Balance 1491 toco toco2 0 toco2 savings CO2 10.5% 157 toco2 primary energy balance 7892 MWh PE 6915 MWh PE savings PE 12.4% 978 MWh PE

27 Combination of geothermal heat exchanger (GHX), heat pump and combined heat and plant (CHP) gas 100% Hot water 65 C Heat heat 80 C 60% Space heating 35 C 235% 35% Heat pump COP 5 5 C/35 C Power 0% Chilled water 16 C Geothermal Heat Exchanger GHX

28 Life cycle cost analysis (LCC) case: heating and cooling supply 25% by geothermal, 65% by CHP, rest by boiler base case - boiler w/o CHP gas CHP 343 kwth heat generation cooling eta-th 100% eta-el 35% eta-th 60% COP 5.0 eta-th 100% COP 7.3 total total gas gas consumption consumption consumption generation consumption geothermal heat gas consumption consumption consumption base case base case by CHP CHP pump boiler chiller other 200 kw el mod 45% 100 kwth 582 kwth annual kwh 2'035'353 1'687' '714 2'724'896 69' '331 12'532 1'896'593 Max kw 797 1' full operating hours 2'553 1'646 4'769 4'769 3' '661 energy tariff effektive in /kwh energy costs in 287'325 96' ' '312 9'680 6'754 1' '601 Energy costs Income and savings 126'825 Gross Energy costs 383' '103 Total 383' '278 all Energy savings payback period w/o maintenance 4.8 yrs 97'530 interest 6.5% Capital costs peak performance specific investment life time annuity CHP heat and 200 kwel 1200 /kwel 240' yrs 10.6% 25'525 ACH and CHP 240 kwth 500 /kwth 120' yrs 10.6% 12'762 savings boiler cost -443 kwth 80 /kwth - 35' yrs 10.6% - 3'768 heatpump 100 kwth 500 /kwth 50' yrs 10.6% 5'318 geothermal system 100 kwth 900 /kwth 90' yrs 6.8% 6' '571 45'949 Maintenance costs maintenance factor CHP heat and 8.0% 19'200 ACH and CHP 2.0% 2'400 heatpump 2.0% 1'000 geothermal system 0.5% 450 payback period with maintenance 6.2 yrs 23'050 annual profit return of investment (ROI) 6.1% 28'531 gas 0.22 kgco2/kwh 1687 MWh 2867 MWh net feed-in 0.55 kgco2/kwh 2035 MWh 1025 MWh 242 MWh CO2 savings by investment 0.92 kg/ CO2/Balance 1491 toco toco2 133 toco2 savings CO2 28.8% 429 toco2 primary energy balance 7892 MWh PE 5919 MWh PE savings PE 25.0% 1974 MWh PE

29 Comparison renewable energy and efficient technology systems additional investment 700' ' '000 CHP only CHP plus abs.ch. CHP plus abs.ch. plus GHX 100 kwth CHP plus abs.ch. plus GHX 200 kwth CHP plus GHX 200 kwth CHP plus GHX 100 kwth PV photovoltaics 400' ' ' '000-0 kwel 50 kwel 100 kwel 150 kwel 200 kwel 250 kwel 300 kwel electric output

30 Comparison renewable energy and efficient technology systems additional investment vs. CO2 savings 700' ' '000 CHP only CHP plus abs.ch. CHP plus abs.ch. plus GHX 100 kwth CHP plus abs.ch. plus GHX 200 kwth CHP plus GHX 200 kwth CHP plus GHX 100 kwth GHX only PV photovoltaics 400' '000 EnEV -30% 200' '000 EnEV -25% EnEV -20% - 0 toco2 50 toco2 100 toco2 150 toco2 200 toco2 250 toco2 300 toco2 350 toco2 400 toco2 450 toco2 500 toco2 CO2 savings

31 Comparison renewable energy and efficient technology systems saving effect of 1 Euro investment kg CO2 / EUR CHP only CHP plus abs.ch. CHP plus abs.ch. plus GHX 100 kwth CHP plus abs.ch. plus GHX 200 kwth CHP plus GHX 200 kwth CHP plus GHX 100 kwth GHX only PV photovoltaics 0 toco2 50 toco2 100 toco2 150 toco2 200 toco2 250 toco2 300 toco2 350 toco2 400 toco2 450 toco2 500 toco2 CO2 savings

32 Comparison renewable energy and efficient technology systems payback vs. CO2 savings 10.0 yr 9.0 yr 8.0 yr 7.0 yr payback period 6.0 yr 5.0 yr 4.0 yr EnEV -30% 3.0 yr 2.0 yr 1.0 yr 0.0 yr CHP only CHP plus abs.ch. CHP plus abs.ch. plus GHX 100 kwth CHP plus abs.ch. plus GHX 200 kwth CHP plus GHX 200 kwth CHP plus GHX 100 kwth GHX only PV photovoltaics EnEV -20% EnEV -25% 0 toco2 50 toco2 100 toco2 150 toco2 200 toco2 250 toco2 300 toco2 350 toco2 400 toco2 450 toco2 500 toco2 CO2 savings

33 Comparison renewable energy and efficient technology systems ROI vs. CO2-savings 30.0% 25.0% CHP only CHP plus abs.ch. CHP plus abs.ch. plus GHX 100 kwth CHP plus abs.ch. plus GHX 200 kwth CHP plus GHX 200 kwth CHP plus GHX 100 kwth GHX only PV photovoltaics 20.0% EnEV -20% ROI 15.0% 10.0% EnEV -25% EnEV -20% 5.0% 0.0% 0 toco2 50 toco2 100 toco2 150 toco2 200 toco2 250 toco2 300 toco2 350 toco2 400 toco2 450 toco2 500 toco2 CO2-savings

34 Comparison renewable energy and efficient technology systems Conclusion: Win-win situation for CHP technology: high financial profit and CO2 savings in parallel for even higher CO2 savings combine CHP with geothermal heat exchanger and heat pump Spend money first for well designed CHP and GHX, before buying photovoltaics