Efficiency Improvement and Cost Saving Opportunities for the Processing Industry. Ron-Hendrik Peesel Jakarta, Indonesia

Size: px
Start display at page:

Download "Efficiency Improvement and Cost Saving Opportunities for the Processing Industry. Ron-Hendrik Peesel Jakarta, Indonesia"

Transcription

1 Efficiency Improvement and Cost Saving Opportunities for the Processing Industry Ron-Hendrik Peesel Jakarta, Indonesia

2 Agenda Presentation of upp Methodology of Energy Efficiency Steam Substitution Integration of Solar Thermal Energy Heat Recovery Cooling and Air Conditioning Seite 2

3 Sustainable Products and Processes (upp) Research focus 1. Climate, energy and resource efficient production 2. Collection, evaluation and benchmarking of energy data 3. Flexible energy supply and load management 4. Energy concepts and energy services for commercial facilities Lectures Life Cycle Engineering Measurement of energy and material flows Energy efficient production Energy management systems Simulation und controlling of production and energy systems Seite 3

4 Increasing Energy Efficiency Reducing Energy Costs Share of energy costs in gross value added Office machines, IT-equipment Production Machine building industry Automotive Food Environment Economy Textile Chemicals Industry Glas, cermics, stones, earth Basic chemicals Paper Metal production and processing 0% 5% 10% 15% 20% 25% 30% Own illustration from: VCI, VIK, BDEW, Thomson Reuters Seite 4

5 Methodology of Energy Efficiency Actions Energy Grid Utilitys Energy storage Heat recovery Machine Changing of set points Optimisation of heat exchange Heat exchanger network Integration of storage tanks Boiler, heat pumps, compression refrigerating Primary energy sources, Power plants a Process Source: Hesselbach 2012, Kemp Seite 5

6 Costs of Energy Efficiency Actions Source: Law, Harvey & Reay Seite 6

7 Steam Substitution Energy Profile Drives & Compressors for: Chilling Machines, Vapor, Air Electricity Natural Gas Electricity Steam Hot Dry Air Evaporation, Sterilisation, Cleaning Losses Source: Tetra Pak, Handbuch der Milch- und Molkereitechnik Drying, Packaging, Heating difficult to integrate solar thermal energy or combined heat and power Seite 7

8 Analysis of Steam Consumers steam condensate evaporation sterilisation preheater CIP filtration heat-holding sterilisation Seite 8

9 Steam Substitution steam condensate Hot water flow Hot water return evaporation sterilisation sterilisation preheater CIP filtration heat-holding pasteurisation Seite 9

10 Steam Substitution New Energy Profile Compressors for: Chilling Machines, Vapor, Air Source: Tetra Pak, Handbuch der Milch- und Molkereitechnik Evaporators, Sterilisation CIPs, Heating waste heat recovery Source: Tetra Pak, Handbuch der Milch- und Molkereitechnik Drying, Packaging Good profile for solar thermal energy and combined heat and power Seite 10

11 Integration of Solar Heat Source: University of Kassel, Schmitt Seite 11

12 Solar Collectors Source: Seite 12

13 Low Temperature Heat Integration Large share of process heat demand below 120 C Many washing and cleaning processes So far most popular industry sector for solar process heat Large share of low temperature heat demand Massive demand of hot water up to several 100 m³ per day with C Heated baths Source: Seite 13

14 Improved air conditioning Spot cooling Source: Wagner 2014 Housing with diffusers Localised cooling and air-conditioning saves up to 50 % of the energy Seite 14

15 Processes Use Case Food Processing Industry Dry Cooler Chiller 1 Chiller 2 Storage Tank Seite 15

16 Part-load Cfficiency of Compression Chiller Source: Yu and Chan Seite 16

17 Electrical power in kw Tradeoff between Dry Cooler and Performance of Chiller Dry cooler Chiller Sum of power Cooling load: 100 % Ambient temperature: 18 C Condensing temperature in C Seite 17

18 Electrical power in kw Tradeoff between Dry Cooler and Performance of Chiller 52kW Dry cooler Chiller Sum of power 23 C Cooling load: 100 % Ambient temperature: 18 C Condensing temperature in C Seite 18

19 Monetary Savings Use Case Savings in /a Part Load Condensing Temperature Part Load and Condensing Temperature Electricity price 16 ct/kwh Seite 19

20 Ron-Hendrik Peesel Kurt-Wolters-Str peesel@upp-kassel.de Further information:

21 References AG Energiebilanzen e.v.: Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2013 bis 2016, Berlin 2017 Deutsche Energie-Agentur (dena): Initiative Energie Effizienz, Hesselbach, J. (Ed.): Energie- und klimaeffiziente Produktion, Vieweg+Teubner, Wiesbaden 2012 Law, R., Harvey, A., Reay, D., Opportunities for low-grade heat recovery in the UK food processing industry. Applied Thermal Engineering 53, Philipp, M.: Steigerung der Energieeffizienz thermischer Prozesse der milchverarbeitenden Industrie, kassel university press 2015 Vajen, K., Wagner, J.: Lokale Klimatisierung temperatursensibler Produkte, kassel university press 2016 Yu, F. W. Chan, K., Optimization of water-cooled chiller system with load-based speed control, Applied Energy 10,

22 Backup

23 Enery Efficiency Potential of Cross-Sectional Technologies Seite 23

24 Comparison Steam Substitution Benefits one system serves all high target temperatures high energy density high transmission power at a constant temperature smaller heat transfer surfaces no pumps are required in flow smaller pipes (cross sections) Disadvantages maintenance condensate return system with holding tanks, flash steam losses wastewater feed water treatment complex and expensive threat leakage losses heat losses in pipes exergy losses in valves and HEX pressure drops Seite 24

25 Specific investment in /m² Costs of Solar Process Heat Vacuum-/CPC-Collectors Flat Plate Collectors Air Collectors Size of solar heating plant in m² Source: University of Kassel, Schmitt Seite 25

26 Efficiency Performance of Solar Collectors Vacuum tube collector CPC collector Flat plate collector Double glazed flat plate collector Uncovered collector Temperature difference in K (mean collector temperature T m - ambient temperature T a ) Source: University of Kassel, Schmitt 2017

27 Source: University of Kassel, Schmitt

28 EER EER-Optimisation of two Compression Chiller Linear Quadratic Optimised Quadratic One Chiller Two Chiller 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% Cooling capacity of chillers in % Seite 28