2016 FSRUG Columbia Station Feed Flow Fix

Size: px
Start display at page:

Download "2016 FSRUG Columbia Station Feed Flow Fix"

Transcription

1 2016 FSRUG Columbia Station Feed Flow Fix Carolyn John Columbia Station Program Engineering John Zielinski Columbia Station Program Engineering Frank Todd True North Consulting

2 Columbia Station Feed Flow Long Standing Indications Of Problems With Plant Generation Some Evidence Of Significant Feed Flow Error Factors That Complicated The Issue Predicting The Losses Due To Feed Flow Error Solution To The Problem Ultrasonic Flow Measurement Installation Results Of Installation Slide 2

3 Feed Flow in the Cycle Columbia Parameters Slide 3

4 History of Feed Flow Changes August 1990 Feb 1992: 1994: Spring 1995: Summer 1995: Winter 1995/96: June 2005: August 2005: Sept. 2005: September 2007: January 2012: Sodium Tracer Test LP Rotor Replacement Test Modified MSR s - Possible event that increased pressure drop across MSR Refueling outage - implement power uprate Rubidium tracer test flow 2.55% - calibrated transducers (GE) Sodium tracer test Flow 1.32% Installed external UFM Calibrated to plant flow Sodium tracer and UFM measurement close to nozzle flow (ABB) Calibrated flow nozzle transducers Flow Rescaled DP on A transmitter following R18 outage Flow Digital transmitters for flow measurement Slide 4

5 Complications Krieg Cycle Various parameters floated through the operating cycle Dependent on atmospheric conditions. Slide 5

6 Correcting For Signal Drift Slide 6

7 Evaluation of the Problem Apply Correction To Data To Account For Krieg Cycle Trending Of Plant Parameters Using Alternate Power Indications Using Data Reconciliation Independent known voltage source to determine error Based on voltage deviation correct data First stage pressure Heater extraction pressures Final feed temperature Plant generation Others TP-Plus TSM power predictor Predict power based on deviation of plant parameter from baseline Statistically combine results Process Plus Robust first principals and statistical analysis of data. Slide 7

8 TSM Estimation of Loss Due to Feed Flow MW Accounting Report Gross Dependable Capacity MWe Actual Gross Output MWe MW Deficit MWe Current Gross Heat Rate Btu/kw-hr Current Gross Corrected Heat Rate Btu/kw-hr /1/2015-8/4/2015 Main Menu Power Predictor Cooling Tower Steam Turbines FW Heaters Condensers Feed Pumps MSRs TP Status Report Trends ACCOUNTED MW DEVIATIONS (-Loss +Gains) Units Today Baseline Deviation MWe Impact Final Feedwater Heater TTD deg f Throttle Steam Pressure psia Condenser Efficiency in hga Circ Water Pump Out of Service na 0.00 Condenser C Subcooling deg f MSR TTD deg f Core Thermal Power MWt RWCU Power MWt Recirc Pump Power MWt CRD Power MWt H2 Purity % Miscellaneous (from Manual Input) MWe 0.00 Performance Summary Data Preparation Accounted MW Deviations (-Loss +Gains) Unaccounted MWes Raw Data Input Manual Inputs Utility Menu Slide 8

9 TSM Estimation of Loss Due to Feed Flow 2008 Slide 9

10 Process Plus Results Slide 10

11 Process Plus Results Slide 11

12 Flow Venturi Permutit Not a true ASME shape Slide 12

13 Slide 13

14 Slide 14

15 Flow Nozzle Location From HP Feedwater Heaters Slide 15

16 Slide 16 LEFM Chordal Meter Numerically integrate velocity across multiple paths 4 Acoustic Paths Spool Piece Pipe Section 8 Acoustic Transducers M= Mass flow rate ρ = Density PF = Profile Correction Factor W i = Weighting Factor applied to path velocities to correctly calculate avg velocity (Gaussian numerical techniques) V i = average axial fluid velocity along path (i)

17 Chordal LEFM Slide 17

18 Check Plus Meter Slide 18

19 LEFM Installation Location LEFM Location Slide 19

20 LEFM Installation Location Line A LEFM Location Slide 20

21 LEFM Installation Location Line B LEFM Location Slide 21

22 Predicted Power Before LEFM Installation Thermal Power Predictor MW Accounting 8/4/2015 Description Tag Name Units Today Licensed Historical Average Predicted Uncertainty Main Menu Power Health CORE THERMAL POWER ENW.CGS.CTPHB MWt % -1.99% Power Calculation Independent. Description Tag Name Units Today Benchmark Data Predicted CTP Systematic Uncertainty Random Uncertainty Total Uncertainty TURB 1ST STAGE PRESS ENW.CGS.T017 PSIA % % % TURB 1ST STG PRESS ENW.CGS.X365 PSIA % % % TURB 1ST STG PRESS ENW.CGS.T3_1232A PSIA % % % FEED HEATER 5A SHELL PRESS ENW.CGS.F045 PSIA % % % FEED HEATER 5B SHELL PRESS ENW.CGS.F046 PSIA % % % FEED HEATER 6A SHELL PRESS ENW.CGS.F047 PSIA % % % FEED HEATER 6B SHELL PRESS ENW.CGS.F048 PSIA % % % TURB STEAM TO MSR 1A PRESS ENW.CGS.T081 PSIA % % % TURB STEAM TO MSR 1B PRESS ENW.CGS.T082 PSIA % % % FEED LOOP A TEMP A1 ENW.CGS.B050 DEG F % % % FEED LOOP A TEMP A2 ENW.CGS.B051 DEG F % % % FEED LOOP B TEMP B1 ENW.CGS.B052 DEG F % % % FEED LOOP B TEMP B2 ENW.CGS.B053 DEG F % % % TURB 1A CROSSOVER PRESS ENW.CGS.T011 PSIA % % % TURB 1A CROSSOVER PRESS ENW.CGS.T012 PSIA % % % TURB 1B CROSSOVER PRESS ENW.CGS.T013 PSIA % % % TURB 1B CROSSOVER PRESS ENW.CGS.T014 PSIA % % % TURB 1C CROSSOVER PRESS ENW.CGS.T015 PSIA % % % TURB 1C CROSSOVER PRESS ENW.CGS.T016 PSIA % % % TURB BLEED PRESS TO MS REHEAT ENW.CGS.T007 PSIA % % % COND BOOSTER PUMP DISCH FLOW ENW.CGS.L113 GPM % % % FEED PUMP A FLOW ENW.CGS.X420 GPM % % % FEED PUMP B FLOW ENW.CGS.X359 GPM % % %

23 Predicted Power After LEFM Installation Slide 23

24 First Stage Pressure Slide 24

25 Results of Implementation And there was joy Transducer Failure Slide 25