Chapter 5 EXISTING MAIN COMBINED SEWER IMPROVEMENT

Size: px
Start display at page:

Download "Chapter 5 EXISTING MAIN COMBINED SEWER IMPROVEMENT"

Transcription

1 Chapter 5 EXISTING MAIN COMBINED SEWER IMPROVEMENT

2 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 CHAPTER 5 EXISTING MAIN COMBINED SEWER IMPROVEMENT 5.1 Present Conditions of Main Combined Sewer (1) Existing Main Combined Sewer Network The existing combined sewer network in the study area is a large and complicated one. The study area is divided into 13 catchments based on the existing main combined sewer networks, rivers and canals. The left bank area of the Tau Hu Ben Nghe Canal is divided into 6 catchment areas and the right bank of the Doi Te Canal is divided into 3 catchment areas. The remaining 4 catchment areas of G (Khanh Hoi), H (Hung Phu), I (Tung Thien Vuong) and J (Binh Dong) locate between the Tau Hu Ben Nghe Canal and the Doi Te Canal. The 13 catchment areas are shown in Fig. 5.1 and the following table. Coverage Area by Existing Combined Sewer Sub Catchment Name Catchment Area (ha) Coverage (ha) (%) Tau Hu Ben Nghe Canal Left Bank Area 1. A B C D E F Sub Total 1, , Islands between Tau Hu Ben Nghe and Doi Te Canal Left Bank 7. G (Khanh Hoi) H (Hung Phu) I (Tung Thien Vuong) J (Binh Dong) Sub Total Doi Te Canal Right Bank 11. K (Rach Ong) L (Pham The Hien) M (Binh Dang) Sub Total Total 2, , The main combined sewer with a length of about 102 km covers 2,450 ha, which is 88 % of the study area. Main combined sewer has been completely installed in the left bank area of the Tau Hu Ben Nghe Canal and the catchment areas between Tau Hu Ben Nghe Canal and the Do Te Canal. Only two (2) catchment areas of L (Pham The Hien) and M (Binh Dang), which locate on the right bank of the Doi Te Canal, have not developed yet by combined sewer system. The coverage ratio of the 2 catchment areas of L (Pham The Hien) and M (Binh Dang) are estimated at 17 % and 14 %, respectively. 5-1

3 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 (2) Existing Drainage Condition of Catchment Areas Ho Chi Minh City Environmental Improvement Project financed by the Asian Development Bank will carry out an improvement of the drainage condition for E and F catchments. Therefore, these 2 catchment areas are excluded from this study. According to information from the Urban Drainage Company and the inundation survey of the JICA feasibility study, sewer inundation has mainly occurred in 2 catchment areas of C and D. The present condition of the 2 catchment areas is described as follows; [C Cacthment Area ] Inundation Prone Area Inundation prone areas are identified along the following streets and shown in Fig Thang 2 street - Le Hong Phong ( between 3 Thang Hai and Nga 7 rotary ) street - Su Van Hanh street - Dien Bien Phu ( between Cao Thang and Nga 7 rotary ) street Inundation Period and Depth The duration ranges from 30 minutes to 2 3 hours and the depth ranges from 0.2 m to 0.5 m. Existing Main Combined Sewer Existing main combined sewers are listed up as follows; Existing Main Combined Sewer in C-Catchment No. Street Name From to Dimensions 1 Dien Bien Phu Cao Thang Nga 7 Rotary 800 mm x 2 lines 2 Le Hong Phong 3 Thang 2 Nga 7 Rotary 1000 mm, 600 mm x 2 lines 3 ditto Nga 7 Rotary Tran Phu 600 mm x 2 lines 4 ditto Tran Phu An Duong 600 mm x 2 lines Vuong 5 ditto An Duong Vung Nguyen Trai 600 mm x 2 lines 6 Ly Thai To Nga 7 Rotary Nguyen Dinh 1200 mm Chieu House No Tran Binh Trong Nguyen Dinh Tau Hu Canal Arch 2500 mm x 2200m Chieu House No Su Van Hanh 3 Thang 2 Ly Thai To 600 mm 9 ditto Ly Thai To Ba Hat 600 mm 10 ditto Ba Hat Ngo Gia Tu 400 mm 11 ditto Ngo Gia Tu An Duong 400 mm, 600 mm Vuong 5-2

4 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 [D Cacthment Area] Inundation Prone Area Inundation prone areas are identified along the following streets and shown in Fig Ly Thuong Kiet street - Thuan Kieu street - Chau Van Liem street Inundation Period The duration ranges from 30 minutes to 3 hours and the depth ranges from 0.3 m to 0.5 m. Existing Main Combined Sewer Existing main combined sewers are listed up as follows; Existing Main Combined Sewer in D-Catchment No. Street Name from to Dimensions 1 Ly Thuong Kiet To Hien Thanh 3 Thang mm, 1000 mm 2 Le Dai Hanh Binh Thoi Nguyen Chi 600 mm, 1500 mm Thanh 3 Thuan Kieu Le Dai Hanh Hung Vuong 600 mm, 400 mm 4 Chau Van Liem Hung Voung Hai Thuong Lan Arch 600 mm x 1200m Ong 5 Mac Cuu Hai Thuong Lan Ong Tau Hu Canal Arch 800 mm x 1400m (3) Evaluation of Existing Main Combined Sewer Discharge Capacity Modeling & Boundary Conditions The existing main combined sewer network is complex. Furthermore the outlets of the sewers are affected by the tidal time varying water levels. Thus, for consideration of the network and the hydraulic condition at the outlet, unsteady sewer pipe flow modeling software called MOUSE was applied to hydrodynamic simulation one in the JICA feasibility study. The evaluation for the discharge capacity of the main combined sewer was carried out for the design rainfall of 3 year return period and the design flood water level of 2 year return period under the condition of existing land use. The delineation of sub-cathcment area for C and D catchments is shown in Fig Simulation Results [C Cacthment Area ] Fig. 5.4 (1) shows the most critical condition that a existing main combined sewer can not discharge the storm water from its catchment area under the boundary condition above-mentioned. The simulation results the critical condition is considered to happen to 5-3

5 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 the sewer installed along the following street and to continue for about 40 minutes in this catchment area. - Le Hong Phong ( between 3 Thang Hai and Nga 7 rotary ) street - Su Van Hanh street - Dien Bien Phu ( between Cao Thang and Nga 7 rotary ) street - Nguyen Bieu street This result nearly presents to actual conditions of the existing main combined sewer discharge capacity. [D Cacthment Area] Fig. 5.4 (3) shows the most critical condition that a existing main combined sewer can not discharge the storm water from its catchment area under the boundary condition above-mentioned. The simulation results the critical condition is considered to happen to the sewer installed along the following street and to continue for about 40 minutes in this catchment area. - Ly Thuong Kiet street - Thuan Kieu street - Hung Vuong street - Chau Van Liem street This result nearly presents to actual conditions of the existing main combined sewer discharge capacity. 5.2 Planning Concept and Design Criteria (1) Planning Concept The existing main combined sewer networks shall be utilized to minimize the project cost and to achieve an immediate improvement of the main combined sewer system. Consequently, two (2) options for the sewer improvement are considered as follows; (2) Design Criteria 1) In case that the road width is sufficient to install, an additional sewer is proposed to supplement the shortage. 2) In case that the road width is insufficient to install, the existing sewer is proposed to be replaced to a sewer dealing with the full discharge. Design criteria are stipulated are applied to design the new sewer according to the Vietnamese design standard. Earth covering Minimum covering is determined to be 1.2 m because these streets have a heavy traffic. 5.3 Conclusion 5-4

6 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 (1) Proposed Improvement Plan Hydrodynamic simulation model established based on the existing conditions is used to determine a proposed plan for each catchemnt. The route is selected to discharge the storm water from the north to the Tau Hu Canal. [C Cacthment Area ] Fig. 5.5 shows the proposed route of the improvement. There are 5 main routes of improvement. LINE 1: φ 1000mm 722m LINE 2: φ mm 677m LINE 3: Box2000x x2000mm 1,361m LINE 4: φ 1500-Box2000x2000mm 1,723m LINE 5: φ 1000-Box2000x2000mm 2,326m The plan and the longitudinal profile of the proposed plan are shown Fig. 5.5 and 5.6. [D Cacthment Area ] Fig. 5.4 shows the proposed route of the improvement. There is 1 main route of improvement. LINE 6: φ 2000-Box2500x2000mm 2,713m The plan and the longitudinal profile of the proposed plan are shown Fig. 5.5 and

7 A B G K L A M C D E F H I J N E W S 1:42000 SCALE Kilometers FIG. 5.1 DELINEATION OF 13 CATCHMENT AREAS AND EXISTING MAIN COMBINED SEWER COVERAGE IN STUDY AREA JICA - The Detailed Design Study on HCMC Water Environment Improvement Project LEGEND Sewer Network Catchment Boundary Existing Main Combined Sewer 5-6

8 A B C D E F G H I J K L M Chau Van Liem N E W S 1:42000 SCALE Kilometers FIG. 5.2 INUNDATION PRONE AREAS IN STUDY AREA JICA - The Detailed Design Study on HCMC Water Environment Improvement Project LEGEND SewerNetwork Catchment Boundary Existing Main Combined Sewer Covered Area by Existing Combined Sewer Ly Thuong Kiet 3 Thang 2 Le Hong Phong Dien Bien Phu Thuan Kieu Su Van Hanh 5-7

9 N 75C_1 69D_1 69C_1 E 75BB_1 W U521A_1 194_1 69BB_1 U541A_1 S 69BA_1 63DB_2 69A_1 127B_1 123D_1 65_1 63DB_1 63C_1 27DA_1 63BB_1 142_1 63A_1 139B_1 27CA_1 246_1 187B_1 33E_1 140A_1 158A_1 152_1 139A_1 33D_1 141A_1 U61A_1 JT1_031 47A_1 33H_1 JT A_1 47B_1 JT1_074 JT1_056 27A_1 U61B_1 JT1_075 JT C_1 50A_1 JT1_060 34AA_1 155A_1 U63A_1 48A_1 34BC_1 15A_1 U63C_1 48B_1 JT1_062 49_1 129A_1 40A_1 U64A_1 JT B_1 147A_1 U62A_1 JT1_063 JT B_1 JT2-036 JT A_1 146_1 JT A_1 128A_1 130_1 50B_1 JT1-020 JT A_1 JT2-009 JT _1 JT2-071 JT2-040 JT C_1 JT A_1 54A_1 U82A_1 136A_1 JT2-057 JT2-082 RB10 RB09 RB07 U117A_1 JT2_076 RDAM02 JT2-080 RB11 RB12 RB13 RB14 RB08 53A_1 136B_1 JT _1 JT2-089 U411A1 U42BB_1 RDL01 JT B_1 U43C_1 RDL02 RNGUY02 RTHI01 50EA_1 ON02 134A_1 RC01 RDL03 135A_1 U47B_1 JT2-091 JT2-101 U46_1 RDL04 RPHUM01 RA02 RA03 RLAC02 RA01 RB01 RB03 RPHUM02 RB05 RDAM03 RDAM04 RA04 RA07 RA05 RA06 RDAM06 RLAC03 RPHUM03 RA08 RA10 RB06 RDAM09 RDAM10 RE01 RA09 RPHUM04 RE02 RNGUY07 RNGUY06 RNGUY08RNGUY09 RNGUY10 RNGUY12 RHAN01 RB02 RPHUT01 RI01 RPHUM05 RI04 RHAI01 RHAN02 RHAI03 RPHUT02 RI02 RPHUM06 RD01 RHAN03 RI05 RD02 RD03 RS05 RI03 RI06 RPHUM07 RD05 RD04 RDAM01 RNGUY14 RNGUY15 RHAI04 RDAM05 RDAM08 RNGUY04 RNGUY05 RTHI02 RPHUT03 RPHUT04 RHUON03 124A_1 46C_1 JT2-105 RTHI03 U42AB_1 133_1 RNGCH01 RF05 RF06 RDL06 RS02 RS03 RS06 RS07 RS08 RS04 RDL05 RPHUM08 D C RPHUT05 RH01 RS01 137A_1 U82E_1 U47A_1 RTHI04 RPHAN01 U134A_1 U47C_1 U83A_1 RLOSI01 RDLH07 RDLH06 R-DLH01 134B_1 RDLH02 50EB_1 RG01 RDLH05 RDLH04 RDLH03 RHUVO04 RHUYO05 RHUVO01 RHUVO03 46D_1 RHUVO02 RMPHU01 RTAN01 RLAM01 JT B_1 RMPHU02 RPHUG01 LEGEND U84_1 125_1 JT1-042 JT1-044 JT1-046 JT1-048 RQS05 RQS03 JT1-083 RQS01 RQS02 UB42BB_1 RDINH01 RMPHU03 Manhole RDLT05 RDLT06 RDLT04 RDLT03 RDLT01 RDLT02 Pipe Network RPHUG02 RPV05 RPV04 RPV03 RPV02 Sub-Catchment RPV01 Area RPHUG03 FIG. 5.3 SUB-CATCHMENT AREA DELINEATION OF C AND D CACHMENTS FOR HYDRODYNAMIC MODELING JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-8

10 Start Time of Critical Condition ( t=0 min. ) FLOOD :10 Fs_3.prf 63DB_2 R63DBB1 R63DB_1 63DB_1 R63C_1 63C_1 R63BB_1 RJT1-78 R63BA _1 JT BA_1 R63A_1 63A_1 R142_1 R140A_1 142_1 R139B_1 R47A_1 R141A_1 RJT1-3147A_1 141A_1 RJT1-57 JT1-031 RU61A_1 JT1-057 R139A_1 JT1-056 RJT1-74 JT1-074 RU61B_1 RJT1_30RJT1_56 RJT1_29 JT1-030 RJT1_55 RJT1_75 R47B_1 RJT1_28 JT1-029 JT1-055 JT1-028 JT B_1 R47C_1 RU61C_1 JT1-052 JT1-053 RJT1_59 JT1-059 JT1-060 RJT1_60 RJT1_52 RJT1_53 JT1-054 RJT1_54 R129A_1 129A_1 JT1-050 RJT1_26 RJT1_50 50A_1 R50A_1 JT1-062 R48B_1 JT1-026 RJT1_62 48B_1 JT2-075 RJT2_75 JT1-064 JT1-066 JT1-065 RJT1_64 RJT1-66 R49_1 R48A_1 RJT1_65 49_1 48A_1 RJT1-63 RU62A_1 JT1-063 RJT2_64 JT2-064 JT2-073 RJT2_73 R50B_1 R130_1 50B_1 R253_1 JT2-071 RJT2_71 253_1 R129C_1 RU82A_1 U82A_1 RJT C_1 R129D_1 RJT2-68 JT2-068 JT2-070 R136A_1 46A_1 136A_1 R46A_1 R136B_1 R52A_1 136B_1 R46B_1 R124A_1 R46C_1 124A_1 R124B_1 R46D_1 R51_1 R134A_1 R134B_1U134A_1 135A_1 RU134A1 R135A_1 R50EA _1 50EA_1 R133_1 133_1 50EB_1 R50EB_1 RU82E_1 RU62_1 U62_1 U62_2 U82_2 50EBB_1 R50EBB1 50EC_2 46D_2 U89_2 Time of Most Critical Condition ( t=30 min. ) FLOOD :40 Fs_3.prf 63DB_2 R63DBB1 R63DB_1 63DB_1 R63C_1 63C_1 R63BB_1 RJT1-78 R63BA _1 JT BA_1 R63A_1 63A_1 R142_1 R140A_1 142_1 R139B_1 R47A_1 R141A_1 RJT A_1 RJT1-57 JT1-031 RU61A_1 RJT1-74 JT1-057 R139A_1 JT1-056 JT1-074 RU61B_1 RJT1_30RJT1_56 RJT1_29 JT1-030 RJT1_55 RJT1_75 R47B_1 RJT1_28 JT1-029 JT1-055 JT1-028 JT B_1 R47C_1 RU61C_1 JT1-052 JT1-053 RJT1_59 JT1-059 JT1-060 RJT1_60 RJT1_52 RJT1_53 JT1-054 RJT1_54 R129A_1 129A_1 JT1-050 RJT1_26 RJT1_50 R50A_1 JT1-062 R48B_1 JT1-026 RJT1_62 48B_1 JT2-075 RJT2_75 JT1-064 JT1-066 JT1-065 RJT1_64 RJT1-66 R49_1 R48A_1 RJT1_65 49_1 48A_1 RJT1-63 RU62A_1 JT1-063 RJT2_64 JT2-064 JT2-073 RJT2_73 R50B_1 R130_1 50B_1 R253_1 JT2-071 RJT2_71 253_1 R129C_1 RU82A_1 U82A_1 RJT C_1 R129D_1 R136A_1 JT2-068 JT2-070 RJT A_1 136A_1 R46A_1 R136B_1 R52A_1 136B_1 R46B_1 R124A_1 R46C_1 124A_1 R124B_1 R46D_1 R51_1 R134A_1 R134B_1 135A_1 U134A_1 RU134A1 R135A_1 R50EA _1 50EA_1 R133_1 133_1 50EB_1 R50EB_1 RU82E_1 RU62_1 U62_2 U82_2 50EBB_1 R50EBB1 50EC_2 46D_2 U89_2 FIG. 5.4 (1/4) SIMULATION RESULTS OF HYDRODYNAMIC MODEL C-CATCHMENT JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-9

11 End Time of Critical Condition ( t=60 min. ) FLOOD :10 Fs_3.prf 63DB_2 R63DBB1 R63DB_1 63DB_1 R63C_1 63C_1 R63BB_1 RJT1-78 R63BA _1 JT BA_1 R63A_1 63A_1 R142_1 R140A_1 142_1 R139B_1 R47A_1 R141A_1 RJT1-3147A_1 141A_1 RJT1-57 JT1-031 RU61A_1 JT1-057 R139A_1 JT1-056 RJT1-74 JT1-074 RJT1_30RJT1_56 RU61B_1 RJT1_29 JT1-030 RJT1_55 RJT1_75 R47B_1 RJT1_28 JT1-055 JT1-028 JT1-029 JT B_1 R47C_1 RU61C_1 JT1-052 JT1-053 JT1-059 JT1-060 RJT1_59 RJT1_60 RJT1_52 RJT1_53 JT1-054 RJT1_54 R129A_1 129A_1 JT1-050 RJT1_26 RJT1_50 R50A_1 JT A_1 R48B_1 JT1-026 RJT1_62 48B_1 JT2-075 RJT2_75 JT1-064 JT1-066 JT1-065 RJT1_64 RJT1-66 R49_1 R48A_1 RJT1_65 49_1 48A_1 RJT1-63 RU62A_1 JT1-063 RJT2_64 JT2-064 JT2-073 RJT2_73 R50B_1 R130_1 50B_1 R253_1 JT2-071 RJT2_71 253_1 RU82A_1 R129C_1 U82A_1 RJT C_1 R129D_1 RJT2-68 JT2-068 JT2-070 R136A_1 46A_1 136A_1 R46A_1 R136B_1 R52A_1 136B_1 R46B_1 R124A_1 R46C_1 R124B_1 R46D_1 R51_1 R134A_1 R134B_1 135A_1 U134A_1 RU134A1 R135A_1 R50EA _1 50EA_1 R133_1 133_1 50EB_1 R50EB_1 RU82E_1 RU62_1 U62_1 U62_2 U82_2 50EBB_1 R50EBB1 50EC_2 46D_2 U89_2 After Improvement FLOOD :40 Fs_3.prf 63DB_2 R63DBB1 R63DB_1 63DB_1 R63C_1 63C_1 R63BB_1 RJT1-78 JT1-078 R63BA_1 63BA_1 R63A_1 63A_1 R142_1 142_1 NEW R140A_1 12 R139B_1 NEW R47A_1 47A_1 7 R141A_1 RJT A_1 JT1-031 RJT1-57 RU61A_1 139A_1 JT1-057 R139A_1 RJT1-74 JT1-074 NEW 1 RU61B_1 RJT1_30 JT1-030 RJT1_29 RJT1_75 R47B_1 RJT1_28 JT1-028 JT1-029 JT1-054 JT1-075 NEW 2 NEW 47B_1 47C_1 R47C_1 8 RU61C_1 JT1-052 JT1-053 RJT1_54 JT1-059 JT1-060 RJT1_53 RJT1_59 R129A_1 RJT1_60 129A_1 JT1-050 RJT1_52 R50A_1 RJT1_26 RJT1_50 50A_1 JT1-062 R48B_1 JT B_1 JT2-075 RJT2_75 JT1-064 JT1-066RJT1_62 JT1-065 RJT1_64 RJT1-66 R49_1 R48A_1 RJT1_65 49_1 48A_1 RJT1-63 RU62A_1 JT1-063 NEW 3 JT2-073 RJT2_73 JT2-064 R50B_1 RJT2_64 R130_1 50B_1 JT2-071 RJT2_71 R253_1 253_1 NEW 9 R129C_1 RJT C_1 R129D_1 JT2-068 JT2-070 RJT A_1 R46A_1 R136B_1 136B_1 RU82A_1 U82A_1 R136A_1 136A_1 NEW 4 NEW 10 NEW 11 R52A_1 R46B_1 R124A_1 R46C_1 124A_1 46C_1 R124B_1 124B_1 R46D_1 46D_1 NEW 5 NEW 6 R133_1 133_1 RU82E_1 R51_1 R134A_1 R134B_1 135A_1 134B_1 R135A_1 U134A_1 RU134A1 R50EA_1 50EA_1 50EB_1 R50EB_1 RU62_1 U62_1 U62_2 NEW 13 U82_2 50EBB_1 R50EBB1 50EC_2 46D_2 U89_2 FIG. 5.4 (2/4) SIMULATION RESULTS OF HYDRODYNAMIC MODEL C-CATCHMENT JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-10

12 Existing Main Combined Sewer Network Standard RU47A_1 U47A_1 R33D_1 U47B_1 RU47B_1 33E_1 R33E_1 U46_2 RU46_2 U45A_1 RU45A_1 131_2 RJT1-83 RJT1-82 JT1-082 JT G_1 R33G_1 NEW1 RJT1-84 JT1-084 RU47C_1 U47C_1 U47D_1 RU43B1 U43B_1 RU47D_1 RU42AA1 U42AA_1 RJT2-08 RJT2-09 JT2-008 JT2-009 RJT2-76 RJT2-10 JT2-010 RJT2-07 JT2-076 JT2-007 RJT1-26 JT1-026 JT1-048 RJT1-48 RJT1-22 JT2-110 RJT2-11 RJT1-21 NEW2 JT1-022RJ2-105 JT2-105 RU42BB1 JT AA_1 R34AA_1 R42A_1 U42BB_1 RJT1-47 JT1-047 RJT1-19 RJT1-46 JT2-036 JT1-019 NEW3 JT1-046 RJT2-36 JT1-018 JT2-057 RJT1-18 JT1-044 RJT2-57 R34BA_1 RJ2-107 RJT1-44 R34BB_1 JT BA_1 34BB_1 JT BC_1 R34BC_1 RJT1-16 RJT2-59 JT1-016 RJT1-42 JT A_1 RJT1-41 JT1-041 RJT2-38 JT2-038 NEW4 R27A_1 R34C_1 JT2-098 JT2-101 RJT A_1 JT2-089 RJT2-98 RJ2-101 RJT2-40 JT2-040 JT B_1 R127A_1 RJT C_1 JT2-099 RJT B_1 128A_1 R127B_1 R127C_1 RJT2-91 JT2-100 RT2-100 NEW5 R128A_1 R27B_1 JT A_1 JT2-085 JT2-081 JT2-092 JT2-093 RJT2-85 RJT2-93R15A_1 JT2-086 JT2-86AJT2-094 RJT2-86 RJT2-81 RJT2-92 RJT2-94 RJ2-86A JT2-096 RJT A_1 15B_1 R14A-1 R15B_1 246_1 11A_1 247_1 R247_1 R246_1 R11A_1 23A_1 R23A_1 NEW6 23B_1 R23B_1 R27DA_1 27DA_1 R40A_1 R123A_1 R123B_1R27DB_1 R123C_1 R123D_1 40A_1 123A_1 123B_1 27DB_1 123C_1 123D_1 146_1 R146_1 23C_1 R23C_1 R27EA_1 R23DA_1 27EA_1 R27EB_1 23DA_1 R23DB_1 27EB_1 NEW7 23DB_1 40B_1 R40B_1 40B_2 27EB_2 12_2 NEW8 23DB_2 Time of Most Critical Condition ( t=30 min. ) FLOOD - M axim um Fs_4_1.prf RU47A_1 R33D_1 U47B_1 RU47B_1 33E_1 R33E_1 U46_2 RU46_2 U45A_1 RU45A_1 131_2 RJT1-83 RJT1-82 JT1-082 JT1-083 R33G_1 33G_1 RJT1-84 JT1-084 RU47C_1 U47C_1 U47D_1 RU43B1 RU47D_1 U43B_1 RU42AA1 U42AA_1 RJT2-08 RJT2-09 JT2-008 JT2-009 RJT2-76 RJT2-10 JT2-010 RJT2-07 JT2-076 JT2-007 RJT1-26 JT1-026 JT1-048 RJT1-48 RJT1-22 JT2-110 RJT2-11 RJT1-21 JT1-021 JT1-022 RU42BB1 RJ2-105 JT2-105 R34AA_1 R42A_1 U42BB_1 RJT1-47 JT1-047 RJT1-19RJT1-46 JT1-046 JT2-036 JT1-019 RJT2-36 JT1-018 RJT1-18 JT2-057 JT1-044 RJT2-57 R34BA_1 RJ2-107 RJT1-44 R34BB_1 34BA_1 JT BB_1 JT BC_1 RJT1-16 JT1-016 RJT2-59 R34BC_1 RJT1-42 JT A_1 RJT1-41 JT1-041 RJT2-38 JT2-038 R27A_1 R34C_1 127A_1 JT2-089 JT2-098 JT2-101 RJT2-89RJT2-98 RJ2-101 RJT2-40 JT B_1 R127A_1 RJT2-84 JT C_1 JT2-099 RJT A_1 27B_1 R127C_1 R127B_1 R128A_1 R27B_1 RJT2-91 JT2-100 RT2-100 JT A_1 RJT2-85 JT2-085 JT2-086 JT2-86A JT2-081 JT2-092 JT2-093 RJT2-93R15A_1 JT2-094 RJT2-86 RJT2-81 RJT2-92 RJT2-94 RJ2-86A JT2-096 RJT B_1 14A_1R15B_1 R14A-1 246_1 11A_1 247_1 R247_1 R246_1 R11A_1 R23A_1 R23B_1 R27DA_1 27DA_1 R40A_1 R123A_1 R123B_1 R27DB_1 R123C_1 R123D_1 40A_1 123A_1 123B_1 27DB_1 123C_1 123D_1 146_1 R146_1 R23C_1 R27EA_1 27EA_1 R27EB_1 40B_1 R40B_1 R23DA_1 23DA_1 R23DB_1 27EB_1 23DB_1 40B_2 27EB_2 12_2 23DB_2 FIG. 5.4 (3/4) SIMULATION RESULTS OF HYDRODYNAMIC MODEL D-CATCHMENT JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-11

13 After Improvement FLOOD - M axim um Fs_4_1.prf RU47A_1 R33D_1 U47B_1 RU47B_1 33E_1 R33E_1 U46_2 RU46_2 U45A_1 RU45A_1 131_2 RJT1-83 RJT1-82 JT1-082 JT1-083 R33G_1 33G_1 NEW1 RJT1-84 JT1-084 RU47C_1 U47C_1 U47D_1 RU43B1 RU47D_1 U43B_1 RU42AA1 U42AA_1 RJT2-08 RJT2-09 JT2-008 JT2-009 RJT2-76 RJT2-10 JT2-010 RJT2-07 JT2-076 JT2-007 RJT1-26 JT1-026 JT1-048 RJT1-48 RJT1-22 JT2-110 RJT2-11 RJT1-21 NEW2 JT1-021 JT1-022 RU42BB1 RJ2-105 JT2-105 R34AA_1 R42A_1 U42BB_1 RJT1-47 JT1-047 RJT1-19RJT1-46 JT1-019 NEW3 JT1-046 JT2-036 RJT2-36 JT1-018 RJT1-18 JT1-044 RJT2-57 JT2-057 R34BA_1 RJ2-107 RJT1-44 R34BB_1 JT BA_1 34BB_1 JT BC_1 RJT1-16 JT1-016 RJT2-59 R34BC_1 RJT1-42 JT A_1 RJT1-41 JT1-041 RJT2-38 JT2-038 NEW4 R27A_1 R34C_1 127A_1 JT2-089 JT2-098 JT2-101 RJT2-89RJT2-98 RJ2-101 RJT2-40 JT B_1 R127A_1 RJT2-84 JT C_1 JT2-099 RJT A_1 27B_1 R127C_1 R127B_1 NEW5 R128A_1 R27B_1 RJT2-91 JT2-100 RT2-100 JT A_1 RJT2-85 JT2-085 JT2-086 JT2-86A JT2-081 JT2-092 JT2-093 RJT2-93R15A_1 JT2-094 RJT2-86 RJT2-81 RJT2-92 RJT2-94 RJ2-86A JT2-096 RJT B_1 14A_1R15B_1 R14A-1 246_1 R246_1 R11A_1 11A_1 247_1 R247_1 146_1 R146_1 R23A_1 NEW6 R23B_1 R27DA_1 27DA_1 R40A_1 R123A_1 R123B_1 R27DB_1 R123C_1 R123D_1 40A_1 123A_1 123B_1 27DB_1 123C_1 123D_1 R23C_1 R27EA_1 R23DA_1 27EA_1 R27EB_1 40B_1 R40B_1 23DA_1 R23DB_1 NEW7 27EB_1 23DB_1 40B_2 27EB_2 12_2 NEW8 23DB_2 FIG. 5.4 (4/4) SIMULATION RESULTS OF HYDRODYNAMIC MODEL D-CATCHMENT JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-12

14 Y Line 1 Ø 1000mm m Line Ø 1500mm m N E W Y Y Line Ø 1000 mm m Y Y Y Y Y Y Line 6.1 Ø 2000 mm m Line Box 2000m x 2000m m Line Ø 1500 mm m Line 3-1 Box 2000m x 2000m m Y Y Y Su Van Hanh Ly Thuong Kiet Le Hong Phong Line Ø 1800 mm m Line 6.2 Box 2500m x 2000m m Replace Line Box 2000m x 2000m Y m Y Y Hung Vuong 3 Thang 2 Nguyen Tri Phuong Y Nguyen Van Cu Tran Binh Trong Line 6.3 Box 2500m x 2000m m Replace Line Ø 2000 mm m Le Dai Hanh Ngo Gia Tu Y Line 2-1 Ø 1000mm m Y Line 4.2 Box 2000m x 2000m m Line ø m YY Y Y Line 6.4 Box 2500m x 2500m m Y Y Line x Ø 800mm m Y Y Line 5-2 Box 2000m x 2000m m Line Box 2000m x 2000m m An Duong Vuong Nguyen Chi Thanh Thuan Kieu Y Line 6.5 Box 2500m x 2000m m Replace Ú Ú Line 3-3 Box 2500m x 2000m) m Replace Line 6.6 Box 2500m x 2000m m Replace Chau Van Liem Nguyen Bieu Nguyen Thi Minh Khai An Duong Vuong Dien Bien Phu SCALE 1: Meters S Ly Thai To Line 3-2 Box 2500m x 2000m) m Replace Tran Phu Tran Hung Dao An Duong Vuong Nguyen Trai Tran Hung Dao Hung Vuong Line 2-3 Ø 1500mm m Line Box 2000m x 2000m m Ben Ham Tu Y FIG. 5.5 PROPOSED SECTION OF MAIN COMBINED SEWER IMPROVEMENT JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 5-13 Ú

15

16

17

18

19 Chapter 6 SEWER SYSTEM IN SOUTHERN NEW URBAN AREA

20 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 CHAPTER 6 SEWER SYSTEM IN SOUTHERN NEW URBAN AREA 6.1 Present Condition Southern new urban area includes Rach Ong, Phan The Hien and Binh Dang in the right bank area of Doi Te canal. This area has not been fully developed yet including road networks. Existing condition of sewer has not been developed sufficiently, either (Fig. 6.1). This area is expected to develop in near future, therefore, the sewerage system also need to be developed hormonally with the land development. Vietnamese standards stipulate that the sewerage development for newly developed area must be covered by separate sewer system. Hence the separate sewer system is proposed in Rach Ong, Phan The Hien and Binh Dang. 6.2 Sanitary Sewer System Planning Concept and Design Criteria Planning concept and design criteria are almost same as interceptor described in Chapter 7. The concept and criteria are summarized in followings. Target year: year 2020 Service area: 537 ha Unit flow: m3/c/d in 2020 Pipe material: centrifugal concrete pipe Minimum diameter: 300 mm Design flow: Hourly maximum flowrate (1.4 times of unit flowrate in year 2020 plus groundwater infiltration) Flow system: gravitation Sewer system: separation Flow equation: Manning equation n=0.013 concrete pipe Minimum velocity: 0.7 m/s Standard slope: see Table 6.1 Minimum earth covering: 1.2 m Secondary/tertiary pipe: 48m/ha Proposed Definitive Plan Sanitary sewer development in southern new urban area is designed to have main, secondary and tertiary sewer. Main sewer is designed based on unit flowrate in

21 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 Length of secondary and tertiary sewer is estimated based on an average length of secondary and tertiary sewer for each ha in District 1. Route of main sewer for Rach Ong, Phan The Hien and Binh Dang is shown in Fig. 6.2 to Fig This route is under the future planed road based on the urban plan by UPI. All main sanitary sewers are connected to interceptors installed along Doi - Te Canal. The total length of the secondary/tertiary and the main sanitary sewers are 26 km and 35 km, respectively. The construction cost is as follows: Rach Ong Phan The Hien Binh Dang Total 24 billion VND 36 billion VND 37 billion VND 97 billion VND. The pipe diameter ranges from φ 300 mm to φ 600 mm, and the main features of the new sanitary sewer pipe by each sub-zone are presented in Table Storm Sewer System Planning Concept and Design Criteria Planning concept and design criteria for storm sewer are similar to Pump Drainage Improvement in Chapter 4. The following is summarized concept and design criteria: Target Year: 2020 Design scale: 2-year return period Area: 537 ha Pipe material: centrifugal concrete pipe Flow system: gravitation Sewer system: separation Flowrate equation: Manning equation n=0.013 concrete pipe Minimum velocity: 0.7 m/s Standard slope: see Table 6.1 Minimum earth covering: 1.2 m Design rainfall for storm sewer pipe is designed by Rational formula. Qp = (1/3.6)*C*(f*I)*A where Qp: peak runoff (m3/s) C: runoff coefficient f: areal reduction factor, 1.0 (because of not large catchment) I: rainfall intensity, mm/hr 6-2

22 The Detailed Design Study on HCMC Water Environment Improvement Project Final Report Main : Volume 1 A: catchment area, km2 Rainfall intensity, I, is applied to the following equation: I = 13,567 / (t ) : t < 3 hr where t: duration, min Proposed Definitive Plan Storm sewer is proposed to install under the same road as sanitary sewer. Route of storm sewer for Rach Ong, Phan The Hien, and Binh Dang is shown in Fig. 6.5 to 6.7. The total length of storm sewer is 7, 10, and 9 km in for Rach Ong, Phan The Hien, Binh Dang, respectively. The construction cost is as follows: Rach Ong Phan The Hien Binh Dang Total 35 billion VND 55 billion VND 54 billion VND 144 billion VND. The main feature of the new storm sewer are summarized in Table

23 TABLE 6.1 STANDARD SLOPES FOR DESIGN CRITERIA Diameter (mm) Slope, I () V full (m/s) Q full Design Criteria in Vietnam (m3/d) V min (m/s) I min () TABLE 6.2 SUMMARY OF SANITARY SEWER DEVELOPMENT IN SOUTHERN NEW URBAN AREA (unit: m) Sewer Diameter (mm) Rach Ong (133 ha) Pham The Hien (196 ha) Binh Dang (208 ha) Total (537 ha) Secondary 300 6,384 9,398 9,984 25,766 /Tertiary Main 300 5,289 9,404 7,161 21, , , Sub total 7,106 9,691 8,938 25,735 Total 13,490 19,089 18,922 51,501 No. of House Connection 67,480 42,796 41, ,838 No. of Manhole ,058 Earth Covering Depth TABLE 6.3 SUMMARY OF STORM SEWER DEVELOPMENT IN SOUTHERN NEW URBAN AREA (unit: m) Diameter (mm) Rach Ong (133 ha) Pham The Hien (196 ha) Binh Dang (208 ha) Total (537 ha) , ,074 2, , ,849 4,103 3,627 9, ,956 1,221 2,302 5, ,459 2,316 4,377 Total 7,176 10,011 9,273 26,460 Earth Covering Depth

24 1: Meters N E W SCALE S 133 ha K. Tau Hu K. Doi R. Ong Lon K. Ben Nghe Rach Ong R. Ong Nhieu R. Lo Gom Pham The Hien ha Binh Dang 208 ha R. Ong Be R. Xom Cui LEGEND Road Existing Combined Sewer FIG. 6.1 EXISTING DRAINAGE PIPE IN SOUTHERN NEW URBAN AREA JICA - The Detailed Design Study on HCMC Water Environment Improvement Project 6-5 R. Ba Lao

25 Y R5 Ø1200 Y Y Y Y Y Y Y Y Y Y 1 Y Y m 272 KC 2xØ900 (-9.99) LEVEL m 179 m 211 m m 560 m 199 Ø m 369 m 308 R1 Ø m 654 m 374 m 309 RC Ø m 21 m 166 RZ Ø m 519 m 317 m 335 m 331 m m m 296 m 432 m 291 m 116 Ø m 314 m 275 Ø m 316 Ø m mø Ø m m ha ha ha 4.65 ha 5.21 ha Pumping Intermediate Station 7.25 ha 19 to WWTP 6.93 ha ha 5.16 ha ha 3.72 ha ha ha 6.37 ha ha 6.17 ha 3.11 ha ha 6.14 ha ha ha 4.93 ha ha 5.90 ha FIG. 6.2 SANITARY SEWER DEVELOPMENT IN RACH ONG Scale 1: Meters N W S E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-6

26 C-3 Ø2000 P-3 Ø m 540 Pumping Intermediate Station to WWTP Y Y 7 Y Y Y 5 Y 3 Y 2 Y Y Y Y Y ha Y m 222 m 82 m 275 m 99 6 m ha ha 5.91 ha ha ha m m 536 m 329 m 343 m 415 m 360 m 345 m m 368 m 173 m 432 m 382 m 438 Ø m 287 m 503 m 425 m 323 m 298 m 536 m 258 m 426 m ha ha m ha 6.90 ha 7.58 ha 3.68 ha ha 6.07 ha 8.04 ha 3.25 ha 3.69 ha 5.43 ha 5.49 ha 7.76 ha 2.96 ha ha 3.95 ha 7.57 ha ha ha m P P P P HC 2xØ500 (-9.55) LEVEL 160 m P ha ha FIG. 6.3 SANITARY SEWER DEVELOPMENT IN PHAM THE HIEN Scale 1: Meters N W S Y E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area m m 41 BDAC JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-7

27 Y Y Y BDA2 1.2 BDAC 1.3 m 41 Ø m Y m 506 m ha ha ha 8.55 ha TC x Ø500 (Siphon) 2 Y LEVEL(-11.05) m Y 688 m 556 m Ø m 488 Y Y m 257 m 253 Ø m ha ha ha ha Ø 2.1 m ha ha Y ha 625 m 3.62 ha 5.24 ha 453 m m 462 Y ha m ha Y 132 m ha m ha ha 493 m ha m Scale 1: Meters N W S E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area 1.5 m 1921 BDA1 Ø ha m ha 239 m FIG. 6.4 SANITARY SEWER DEVELOPMENT IN BINH DANG m 107 JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-8

28 Y R5 Ø1200 Y Y Y Y Y Y Y Y Y Y 1 Y Y m 272 KC 2xØ900 (-9.99) LEVEL m 179 m 211 m m 560 m 199 Ø m 369 m 308 R1 Ø m 654 m 374 m 309 RC Ø m 21 m 166 RZ Ø m 519 m 317 m 335 m 331 m m m 296 m 432 m 291 m 116 Ø m 314 m 275 Ø m 316 Ø m mø Ø m m ha ha ha 4.65 ha 5.21 ha Pumping Intermediate Station 7.25 ha 19 to WWTP 6.93 ha ha 5.16 ha ha 3.72 ha ha ha 6.37 ha ha 6.17 ha 3.11 ha ha 6.14 ha ha ha 4.93 ha ha 5.90 ha FIG. 6.5 STORM SEWER DEVELOPMENT IN RACH ONG Scale 1: Meters N W S E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-9

29 C-3 Ø2000 P-3 Ø m 540 Pumping Intermediate Station to WWTP Y Y 7 Y Y Y 5 Y 3 Y 2 Y Y Y Y Y ha Y m 222 m 82 m 275 m 99 6 m ha ha 5.91 ha ha ha m m 329 m 343 m 415 m 360 m 345 m m 368 m 173 m 432 m 382 m 438 Ø m 287 m 503 m 425 m 323 m 298 m 258 m 536 m 536 m 426 m ha ha m ha 6.90 ha 7.58 ha 3.68 ha ha 6.07 ha 8.04 ha 3.25 ha 3.69 ha 5.43 ha 5.49 ha 7.76 ha 2.96 ha ha 3.95 ha 7.57 ha ha ha m P P P P HC 2xØ500 (-9.55) LEVEL 160 m P ha ha FIG. 6.6 STORM SEWER DEVELOPMENT IN PHAM THE HIEN Scale 1: Meters N W S Y E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area m m 41 BDAC JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-10

30 Y Y Y BDA2 1.2 BDAC 1.3 m 41 Ø m Y m 506 m 551 TC x Ø500 (Siphon) ha 9.45 ha ha ha 8.55 ha m 257 Y LEVEL(-11.05) m Y 688 m 556 m Ø m 488 Y Y m 253 Ø m ha ha ha ha Ø 2.1 m ha Y ha 625 m 3.62 ha 5.24 ha 453 m m 462 Y ha m ha Y 132 m ha m ha ha 493 m ha m Scale 1: Meters N W S E LEGEND Pipe route Y Manhole Interceptor sewer Boundary of area 1.5 m 1921 BDA1 Ø ha m ha 239 m FIG. 6.7 STORM SEWER DEVELOPMENT IN BINH DANG m 107 JICA - The Detailed Design Study on HCMC Water Enviroment Improvement Project 6-11