低碳潔淨能源技術的開發與推廣 邱耀平 Clean Carbon as Sustainable Energy (CaSE) Program

Size: px
Start display at page:

Download "低碳潔淨能源技術的開發與推廣 邱耀平 Clean Carbon as Sustainable Energy (CaSE) Program"

Transcription

1 低碳潔淨能源技術的開發與推廣 邱耀平 Clean Carbon as Sustainable Energy (CaSE) Program

2 Outline Background Approach Energy Transition Strategic Planning Overview of CaSE* R&D activities Summary Appendices Gasification Concepts Clean Energy Research at INER Source:

3 BACKGROUND (1/2) Carbon Management Issues Undeniable Truth: Fossil fuels will remain the mainstay of energy production in the 21 st century. Anthropogenic GHG (CO 2 predominant) emissions exceed Carbon Cycle limit, causing climate change issues Taiwan 2030 Unit: Gt Carbon/yr World 2030 ETP 2DS CCS 14% B2DS CCS 32% 2

4 1. Plenary Sessions (4) (2) Clean coal in a post-cop21 era ( 圖 III ~ III )

5 1. Plenary Sessions (14) (2) Clean fossil energy in US ( 圖 III ~ III )

6 PERSPECTIVE (1-0) COP21 in Paris, Dec NDC Prior to COP21, 146 nations presented draft contributions (called INDCs), to limit global warming to 2.7 C by Paris Agreement The parties will "pursue efforts to" limit the temperature increase to 1.5 C. GHG Reduction and Management Act in Taiwan, June 2015 DDPP should be widely assessed for implementation. Taipei / OCT. 24, 2016 Source: EPA, 2016 YPC / INER_CaSE - 5

7 Approach (1/3) Bullet 1: Coal is still indispensible, according to new planning of Power Generation Portfolio in Taiwan. 520 Energy Transition More greener energy by 2025! Renewables: ~20%, Installation capacity 53.1% Electricity generation 18.5% Coal: 27%, TPC s power developing plan Retiring ancient coal- and oil-power Newer advanced units offer better efficiency and lower COE METS-26 6

8 APPROACH (3-7) Bullet 3: Energy industry is the prime mover, according to new planning of Power Generation Portfolio in Taiwan. 5+2 Flagship Program Innovative technological R&D projects! Green energy technology (GET), 1 of original 5 Cyclic economy (petro-chemical), 1 of additional 2 & 5 others GREAT Cyc-Eco Ultimate solution Green REfinery Applied To Cyclic Economy/Eco-system Forge a consistent key linkage from raw feedstock to end applications, to promote next-generation GET industry Emulate the paradigm of refinery, incorporate external sources, and through smart system integration Taipei / OCT. 24, 2016 YPC / INER_CaSE - 7 METS-26

9 GREAT Cyc-Eco (3/3) Green REfinery Applied To Cyclic Economy/Eco-system Feedstock Process (Conversion /Separation) Platform Utilization Carbonaceous fuel Hydro-compound Residue Thermochemical Electrochemical Catalytic: Reforming, FT, Biochemical Gasifier Combustor Fuel Cell SEWGS/Reformer Other reactors Thermal energy Steam / Gas Electricity Chemicals / Fuel / SNG Other carriers Ecosystem Human Society Energy resources External agent Cyclic Economy 2016JUL/YPC/CaSE/INER Smart Integration Sustainable Living 8

10 Overview of R&D INER Gasification-Based Clean Energy System Feeds : Coal Heavy oil Biomass Natural gas Wastes Combination Pet coke of feeds Oil shale shown above Key-device design ANSYS Fluent Benchmark platform Hot Model of Moving Granular Bed Filter: Oxygen Syngas Ash/Slag Gas Management Particulate removal Sulfur removal CO 2 separation Chemicals: Methanol DME Refineries: Hydrogen Power Steam Coal to gas: SNG Electricity: Polygen Refueling Repowering ASU air System design Coal,Water Pro/II O 2 Gasification Island Raw syngas Slag O 2,N 2 Raw syngas Fuel gas Power Output Clean Combined-Cycle Syngas H 2S SCOT Unit The only operating HT- MGBF (@500 C) in Taiwan. Filtration efficiency > MGBF AGR CO 2 separation 90% at elevated temp. 9 Acid Gas Removal: Stability of desulfurization solid sorbents maintains over 90% during multi-cycle tests. Claus Unit DME Process Tail gas Claus tail gas Recycle to Claus Unit CO 2 capture sorbents: DME Capture capacity > 50wt% Stability > 90% in multi-cycle process at 750 C. A kg-class sorbent manufacturing system has been commissioned.

11 氣化應用 Gasification-Based System Concept: Multiple feedstock possibilities (e.g. coal, petcoke, biomass, MSW, etc.) Flexible products via gasification process (electricity, chemicals, steam, H 2, etc.) Fraction of syngas utilization worldwide: Major products are chemicals, while power occupies one-fourth More than half of syngas is produced from coal * 2013 Gasification Technology Council, Gasification: An investment in our energy future 10

12 Indirect gasification Indirect gasification opens up the possibility to produce nitrogen free syngas from biomass in small and medium scale plants (<100 MW th ). Typical biosng efficiency ~60-70%. Gas cleaning Methanation CO 2 removal Raw syngas, CO, H 2, CO 2, CH 4 Biomass/ Waste Gasification Heat Flue gas Combustion BioSNG Steam Char Air 11

13 間接式氣化先導系統 (1/3) 百瓩級間接式氣化爐先導系統工程規劃與主體細部設計 利用本所氣化研究之經驗與維也納科大技轉技術, 進行百瓩級測試廠設計規範, 並彙整為概念設計及施工規劃說明書 按本地進料規格修訂 VUT 概念設計與質能平衡計算 撰寫 間接式氣化爐測試廠規劃與工程設計說明書 為設計之依據 12

14 百瓩級間接式氣化爐工程設計成果 間接式氣化先導系統 (2/3) 測試廠基本設計 :PFD 及管路內流體參數 13

15 百瓩級間接式氣化爐工程設計成果 依 PFD 完成之 P&ID 設計 間接式氣化先導系統 (3/3) (D) (C) 廢氣二次燃燒及冷卻系統 P&ID (A) 氣化爐及合成氣冷卻系統 P&ID (B) 冷卻系統 ( 合成氣 ) 冷媒熱交換與合成氣壓縮與儲存系統 P&ID (D) 冷卻系統 ( 廢氣 ) 冷媒熱交換與煙道氣冷卻排放 P&ID 14

16 反應器系統技術開發 _ 冷性能驗證系統 (1/2) 雙流體化床反應器冷性能驗證系統 已完成驗收, 結報中 主體 壓力調整與進氣控制設備 燃燒室與氣化室冷模 15

17 目的 循環經濟 : 廢棄物能 / 資源化 可行性評估 : 進行事業廢棄物經氣化產生合成氣之試驗, 確認其可行性 操作性釐清 : 於試驗之過程, 釐清於氣化應用上可能面臨之問題, 以及確認在一般之氣化操作條件之運轉狀況 料源特性分析 : 就相關料源之特性 ( 工業分析 元素分析 ) 進行分析, 作為氣化性能試驗參考以及有害物移除評估 預期效益 原料端 : 提供廢棄物料源之特性分析, 諸如元素分析與熱值等, 作為後續應用評估以及能源應用性能估算之基礎資料 程序端 : 廢棄物以氣化程序進行轉化, 經淨化後之合成氣組成與熱值 操作參數影響分析 氣化爐體內是否發生燒結現象 等 應用端 : 依試驗之結果, 提供設定條件, 作為導入氣化技術之參考 ; 就文獻收集與研析以及試驗之結果, 提供廢棄物以氣化製程處理之建議 16

18 HCl 形成選擇性 塑料 ( 如 PVC) 氯含量應高於 50 wt%, 直接燃燒有生成戴奧辛之虞! 依文獻結果指出, 高溫 (>600 C) 與高 ER 值 (>0.4) 為提高 HCl 選擇性之條件 戴奧辛

19 Strategic Planning (2/3) Establishment of Regional Gasification Center/Park Concern for Energy Security Lower reserve of imported LNG Possible cost fluctuation of LNG later? Options for poly-generation and/or SNG Will NG demand be escalating dramatically? NGCC in Taiwan * Data prepared by 18

20 Pro/II Process Simulation Synthetic Natural Gas (SNG) Production via Gasification Process with Blend of Coal and Wood Chip as Feedstock The pure KPC case has more CO and H 2 in the syngas, which can be converted into CH 4, than the other two cases. Hence, the system efficiency of the pure KPC case is higher. Process flow diagram of solid fuels to synthetic natural gas kaltim prima coal (KPC) 5% wood chip blending 10% wood chip blending Feedstock Flow Rate t/day 2,000 2,045 2,092 Thermal Energy of Feedstock (A) MWt CH 4 Production kg/h 27,299 26,890 26,336 CH 4 Production (HHV) (B) Efficiency (B/A *100) MWt %

21 Overview of CaSE* R&D INER * CaSE (Clean Carbon as Sustainable Energy) (WG 1) Clean utilisation technologies of carbonaceous fuel: gasification-based energy system, gas clean-up processes, system design and plant performance evaluation practice, etc.; (WG 2) Carbon capture technologies: pre-combustion capture technologies, solid sorbent synthesis and characterisation, etc.; (WG 3) Advanced process technologies: Chemical looping processes, Application of fluidised-bed reactor technologies, 20

22 Clean utilisation technologies of carbonaceous fuel INER: Gasification-Based Clean Energy System Fluidised-bed gasifier 8.6 cm (ID), 6 m (high) 700 C~900 C Design capacity ~100 kw circulating Fluidised-bed gasifier Dimensionless relationship of H 2 in Eucalyptus and coal gasification at 800 C Contours of CO and H 2 [%] in the syngas of Eucalyptus gasification 21

23 Chyou / INER / MAY '17 22

24 M1 R1 ENERGYGAIN TOTAL E1 E2 E3 R2 E4 F T1 E T2 M2 E6 E7 F2 SP1 R3 E8 R4 E9 F3 E10 R5 E11 F4 E12 R6 E13 F T3 E14 R7 E T4 E16 F6 M3 C1 E17 E T5 E19 E T6 V1 P1 E21 E22 E23 C2 C3 E24 E25 M4 CN1 C4 R8 EX2 E27 P2 E28 P3 EX3 M5 E29 EX4 EX5 E30 P4 E32 R9 R10 E33 F T7 E T8 E35 M7 C5 R11 E36 E37 V2 F8 V T9 V T10 SP4 M8 M9 CN2 SP3 C6 E38 M6 SP5 M10 E31 C7 E39 C8 E40 COAL1 COAL2 COAL3 WATER FEEDALL RSYNGAS RSLAG SLAGCOOL SAGCOOLO S2 S3 S4 S5 S6 S7 S8 S9 S10 S12 S13 S11 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S49 S50 S51 S52 S53 S55 S56 S57 S58 S59 S60 S61 S62 S63 S64 S65 S66 S67 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77 S78 S79 S80 ASU S82 S48 S83 S87 S88 S89 S90 S92 S93 S94 S95 S96 S97 S99 S100 S101 S102 S103 S105 S106 S54 S1 S113 S114 S115 S116 S117 S118 S119 S120 S121 S122 S123 S124 S125 S126 S127 S128 S129 S130 S131 S132 S133 S134 S135 S136 S137 S138 S139 S140 S141 S142 S143 S144 S145 S146 S147 S148 S111 S112 S149 S150 S151 S81 S84 S86 S85 S104 S109 S91 S110 S152 S98 S107 S154 S155 S156 S157 ASU air Coal,Water Gasification Island Raw syngas O 2 N 2 Clean Syngas Combined-Cycle Fuel gas Power Output H 2 S Methanol Process MEOH Claus Unit Claus tail gas SCOT Unit Tail gas Recycle to Claus Unit Slag Clean Syngas Indigenous Virtually Integrated Engineering Deployment (IVIED) Platform is proposed System-level process simulation Polygen features higher system efficiency Device-level CFD/kinetics analysis Clean utilisation technologies of carbonaceous fuel INER: system design and performance evaluation Pro/II Process simulation (Polygen-MeOH) Fluent CFD analysis (Gasifier) 23

25 PERSPECTIVE Carbon Capture & Gas Separation CO 2 capture options Pre-combustion (in syngas): w. solid sorbents at elevated temperature Oxy-combustion (in reactor): Chemical looping processes (CLP) w. fluidised-bed reactors Combined Cycle (CC)-type plants exhibit economic efficiency potential IGCC PC & NG CC Source: DOE/NETL Carbon Sequestration Technology Roadmap and Program Plan

26 Overview of CaSE* R&D INER * CaSE (Clean Carbon as Sustainable Energy) (WG 1) Clean utilisation technologies of carbonaceous fuel: gasification-based energy system, gas clean-up processes, system design and plant performance evaluation practice, etc.; (WG 2) Carbon capture technologies: pre-combustion capture technologies, solid sorbent synthesis and characterisation, etc.; (WG 3) Advanced process technologies: Chemical looping processes, Application of fluidised-bed reactor technologies, 25

27 Overview of R&D INER Advanced combustion technologies CLP Concepts & Development Oxygen Carrier Development CLC CO 2 & H 2 O CLR CO, H 2, CO 2 & H 2 O Fluidised-bed Reactor Development TGA cycle tests of 60%CuO/Al 2 O 3 1 kw-class CLC DCFB Interconnected Fluidised Bed (Cold model) TGA Cycle tests of ilmenite (iron ore) 26

28 Chemical looping processes (CLP) Testing in Bench-Scale Reactor Fluidised-bed reactor Oxygen carrier: ilmenite mineral Fine filter Apparent density: ~3.9 g/cm 3 cooling Composition: 42.2% Fe 2 O %TiO % others cyclone ceramic filter Particle size: 170 μm u mf : 1.75 o C reactor preheater On-line gas analyzer Molecular analysis 6000 for CH 4, O 2, CO 2 and CO Offline Hydrogen analysis Fig. Fluidised-bed reactor GC: Agilent 7890B w/ Supelco-CarboxenTM 1010 Plot Evaluation by the fuel conversion (X f ) and the ilmenite conversion (ω OC ), where ω OC (t) W OC (t) W OC,0 = 1 27

29 Chemical looping processes (CLP) Results - Influence of flow rate Fuel: 20% CH 4 Fuels: 20% CH 4 vs. 10%CO+10%H 2 1.6% The difference is only the residence time of fuel for both cases in right figure. Thus, the yielding fuel conversion is directly proportional to the residence time, when ω OC is equal. Similarity, the CO conversion curves are almost parallel with one another with syngas as fuel. 28

30 Overview of CaSE* R&D INER * CaSE (Clean Carbon as Sustainable Energy) (WG 1) Clean utilisation technologies of carbonaceous fuel: gasification-based energy system, gas clean-up processes, system design and plant performance evaluation practice, etc.; (WG 2) Carbon capture technologies: pre-combustion capture technologies, solid sorbent synthesis and characterisation, etc.; (WG 3) Advanced process technologies: Chemical looping processes, Application of fluidised-bed reactor technologies, 29

31 Carbon capture technologies INER: Pre-combustion CO 2 capture processes kg-class sorbent manufacturing system LDH structure: Layered Double Hydroxide Ca-Al LDH sorbent TGA cyclic tests of 750 o C,100%CO 2 CaMgAl = 7:1:1 Reactor test results 10 kw-class fixed-bed reactor 30

32 Carbon capture technologies Characterisation of Ca:Al = 7:1 and Ca:Mg:Al = 7:1:1 CO 2 capture sorbents: Ca:Al = 7:1 exhibits high CO 2 capacity of 57.7 wt% in 750 o C Ca:Mg:Al = 7:1:1 shows CO 2 capacity of 43.4 wt% and excellent stability of 97.4% in the 10 th cycle Capacity and stability of CaMgAl=7:1:1 in 750 o C 10 cyclic tests w. various CO 2 % Various temperature uptake of TGA results of CaMgAl=7:1:1 in CaMgAl=7:1:1 in 100%CO 2 tests 750 o C,100%CO 2 10 cyclic tests 31

33 SUMMARY 能源產業是國家經濟之主要驅動力 煤仍是本世紀必需的能源, 故低碳潔淨能源技術為開發與推廣的重點 能源技術乃跨領域專業, 需各領域無縫整合 綠能 技術兼顧環保與經濟需求, 並維護 地球村 之永續發展 氣化技術為必要關鍵選項, 高效低排 (HELE) 為碳基能源潔淨利用之關鍵指標. Taipei / OCT. 24, 2016 YPC/ET_YTU - 32

34 Q&A Yau-Pin CHYOU, Ph. D. Senior Researcher Clean Carbon as Sustainable Energy (CaSE) Program

35 Gasification Gasification Process Introduction Gasification is a process that converts carbonaceous solid fuel such as coal, biomass and mixture of them into gas fuel which is called synthesis gas or syngas. The main components of the syngas are CO, H 2, CO 2, H 2 O and pollutants. The chemical reactions in the gasification technology consist of three processes: pyrolysis, combustion and gasification. Ash Carbon Hydrogen Nitrogen Sulfur Mercury Water Coal Gasification CO H 2 CO 2 H 2 O COS H 2 S CH 4 Hg Syngas Watanabe H., 2006, Numerical simulation of coal gasification in entrained flow coal gasifier 34

36 Gasifier Type versus Capacity Moving Bed Fluidized Bed Entrained-flow Basu, P., 2011, Biomass Gasification and Pyrolysis, Burlington, MA, USA, Elesiver. 35

37 氣化與燃燒之差異 合成氣 (CO, H 2, ) 多元應用 : 諸如替代燃氣 熱 電 化學品 替代燃料等, 應用範圍較燃燒廣 污染較小 氣化合成氣之硫化物主要形式為 H 2 S 與 COS, 其可轉換為元素硫或 H 2 SO 4 等 相較於燃燒直接產生 SO 2, 其處理之成本較低, 且副產品 ( 元素硫 ) 之應用與價值較高, 較吻合現所提倡之循環經濟 氣化反應所產生之氮氧化物 (NOx) 較少, 且其氮化物主要為 NH 3,NH 3 處理較為簡易 ( 水洗 ) 且低廉 可省去燃燒後尾氣經由 SCR 進行氮氧化物移除之程序 氯元素於氣化程序中, 主要以 HCl 之形式存在於合成氣內, 相較於燃燒會產生戴奧辛, 對於環境之影響較低 發電設備簡易 : 採用燃氣渦輪或內燃機引擎即可 相較於燃燒系統需要鍋爐 蒸汽渦輪以及冷凝器等, 其系統較為簡易 佔地面積較少 : 經氣化處理產生之合成氣體積較小, 後續氣體處理與應用單元的設備可因此縮小, 減少佔地面積並降低設置成本 輸送便利 : 氣化合成氣之 能源 輸送較為便利, 不論是氣態燃料 ( 合成氣 ) 或是液態燃料, 相較於固態燃料之輸送皆較為便利 氣化合成氣結合二氧化碳捕獲 / 分離, 其成本相較於燃燒為低 36

38 BACKGROUND (2/2) Statistics of GDP and Energy Consumption Comparison of indices per countries Synergy between Australia and Taiwan Carbon Buddy brotherhood! There is much room of improvement in terms of energy intensity Source: IEA, World Bank; Source: IEA, 2006 Data sorted by INER 37

39 Institute of Nuclear Energy Research Longtan Taiwan History: founded since 1968 and currently under the administration of Atomic Energy Council (AEC). Mission: the sole national research institute, dedicated to energy technologies R&D and promotion for peaceful applications of nuclear science in Taiwan. Location: in Longtan District, Taoyuan City, ~30 miles SW away from Taipei City (about 1 hour drive), in scenic and historic suburban surroundings close to the Shihmen Reservoir. Source:

40 Institute of Nuclear Energy Research (2) Research Fields Radiation Application Technology Nuclear Safety Technology Environmental and Energy Technology Plasma Engineering Fuel Cell (SOFC, DMFC), Flow Battery Biomass-energy (Bio-ethanol Production ) Renewable Energy (Wind, Solar), Micro Grid Clean Carbon as Sustainable Energy (CaSE) System design & optimization Advanced process development Carbon capture & reutilization Solar Photovoltaics Cellulosic Alcohol Process Wind Power Attrition System Thermogravity Analyzer Temperature Sorption Analyzer Laboratory CO 2 Capture Reactor 39