Optimal use of energy

Size: px
Start display at page:

Download "Optimal use of energy"

Transcription

1 Optimal use of energy Thomas Stenhede Wärtsilä

2 Optimal use of energy Energy distribution diagram of an engine

3 Measured data from m/s Spaarneborg Load 90% 62% 45% 100% 62% 3 O2 14,6% 15,4% 15,3% 14,5% 15,4% 4 Tin 268 C 255 C 277 C 270 C 255 C 5 Tout 231 C 218 C 238 C 232 C 218 C 6 Fuel 2040 kwth 1385 kwth 1050 kwth 2270 kwth 1385 kwth 7 Exhaust 25,2 kg/s 19,4 kg/s 14,5 kg/s 27,6 kg/s 19,4 kg/s 8 Steam 7 bar s 1,77 ton/h 1,35 ton/h 1,07 ton/h 1,99 ton/h 1,37 ton/h 9 kw Dump Used kw Excess ton/h 0,32 0,30 0,34 0,33 Used ton/h 1,45 1,05 0,73 1,66

4 Expected steam generation of m/s Spaarneborg 2,50 ton/h 2,00 ton/h 1,50 ton/h 1,00 ton/h Series1 0,50 ton/h 0,00 ton/h 0% 20% 40% 60% 80% 100% 120%

5 Energy savings from speed controls and heat storage Design Full load Half load Sea water Fresh water Lub oil Ventilation Fuel booster Lighting Total kwe Hot water Thermal oil Heat demand kwth Store temp C Return temp C cp 4,19 2,01 kj/kg K Density kg/m3 Tank size m3 Flow 10,6 6,6 kg/s

6 Standard steam cycle Exhaust gas in Superheater Superheated steam (12..20bar) Steam Turbine (one/plant) Generator G Evaporator Steam Drum HT water heat recovery Condenser (one/plant) Condensate Cooling water (or air cooling) Economiser Make-up water Exhaust gas out (min 180 C with sulphuric fuels) Feed water (min 130 C with sulphuric fuels) Feed water Tank (one/plant) Feed water pump

7 Advanced steam cycle

8 Optimal use of energy Organic Rankine Cycle

9 ORC for a two stroke engine ORC 1 Turbine Generator EGB Thermal oil Evaporator Condense r kw Air intake 10 MW Compressed and cooled air Compressed air Lube oil Air cooling HT out Air cooling HT in LO LO cool COOLE R LO cool Air cooling LT out Jacket cooling out Jacket cooling in Air cooling LT in Evaporator ORC 2 Condense r Turbine Generator kw ORC (Organic Rankine Cycle) Central cooler

10 ORC installation

11 Absorption chiller for air conditioning

12 Flow diagram for maximum heat recovery

13 Maximum hear recovery vs. fuel System Fuel HFO MeOH CH4 CH4 HFO Engine type Diesel/CI Diesel/CI Dual fuel SI 2-stroke Shaft pow er kwm Shaft eff 47,2% 47,2% 46,9% 47,5% 48,6% Steam cap 7,63 7,63 8,65 7,89 5,80 ton/h Steam turbin kwe ORC turbine kwe Total pow er kw Tot efficiency 54,3% 54,3% 54,7% 54,9% 54,8% ISO Spec CO g/kwh

14 Hybrid propulsion Engine/steam turbine/orc/wetech design 100% Diesel engine 1905 kwf 1905 kwf 800 kwe 800 kwe kwf Hz 500 kwe kwm kwm 2811 kwe 1000 kwe 1299 kwe 412 kwe 70% kwp 1418 kn Bow thrusters Steam turbine ORC

15 Specific energy vs. speed & heat recovery 2,6 2,4 2,2 MWhf/nm vs speed in knots 2,0 1,8 1,6 ST 2-st old ORC 1,4 1,

16 Simplified heat recovery

17 Conclusions Steam generation from exhaust ORC from HT water Absorption chiller from HT water Hot water for heat and storage from HT water Speed control of pumps and fans Due to ambitions and economics 10-20% energy saving could be obtained

18 Optimal use of energy Thank you Thomas Stenhede