A new MAB-series solvent that can break ultimate energy goals of 1.9 GJ/t-CO2 and 190 kwh/t-co2

Size: px
Start display at page:

Download "A new MAB-series solvent that can break ultimate energy goals of 1.9 GJ/t-CO2 and 190 kwh/t-co2"

Transcription

1 A new MAB-series solvent that can break ultimate energy goals of 1.9 GJ/t-CO2 and 190 kwh/t-co2 Kwang Soon Lee, Professor Dept. of Chem. and Biomol. Engng, Sogang Univ., Seoul, Korea The 8 th Korea CCUS International Conference Jejudo, Korea

2 CO 2 Capture from a Coal-fired Power Plant 90% CO 2 capture 40 o C 1.5% CO 2 40 o C Lean solvent CO 2, H 2 O 150bar, 40 o C CO 2 CO2 Liquefaction H 2 O electric 12-15% CO % N2 5% O2 6% H2O 40 o C 1 bar, 40 o C 15% CO 2 PP flue gas 40 o C Rich solvent 120 PP steam

3 A CC Technology = Solvent + Process Solvent (in a loaded state) Operability: Low viscosity, Low foaming, No phase separation Environment: Low toxic chemical emissions Energy demand: Large cyclic capacity, Low heat capacity, Low heat of absorption CAPEX: Low corrosion, High absorption rate Solvent makeup: Thermal and oxidative stability, Low volatility Process heat integration

4 Concept of the MAB Technology Traditional solvent Amines Water Tunable Amines Nonamine MAB Amines Water Nonamine Water MAB-E MAB-N - 50 wt% water - Low reboiler temp. for 1 bar stripper - Very large cyclic capacity GJ/tCO 2 - CO2 production not for compression wt% water - Very little thermal degradation - Hi reboiler temp. for 5+ bar stripper - Very fast absorption rate - Possibility to achieve very low energy values below 2.0 GJ/t-CO2 and 200 kwh/t-co2

5 Energy Demands Total electric energy demand: Hot rich solvent P str CO2 Compression E comp E total (kwh/t-co 2 ) = E reb + E comp + E blower E reb = 0.8 * Q reb *(T stm T amb )/T stm E comp ((150/P str ) ) Thermal energy demand= reboiler energy: Q reb (GJ/t-CO 2 ) = Q rxn + Q sen + Q lat CO2, H2O Q sen =mc p MTA, m 1/(cyclic capacity) Hot lean solvent Qreb Q reb Q lat P water, P str =P CO2 +P water 2.4 GJ/t-CO 2 and 235 kwh/t-co 2 are the current best.

6 P*CO 2 (kpa) VLE (thermal energy demand) Cyclic absorption capacity : similar to that of 30wt% MEA kpa MEA 30wt% - 40 P difference btn two equidistance isothermal lines is large in the low T region and small in the high T region kpa MAB-N Cyclic Capacity MEA Cyc. Cap. High P* CO2 at the reboiler T low water vaporiz small Q lat ln P Hrxn R (1/ T ) 0.01 CO2 loading(gco 2 /kgsolv) Small Q rxn 6

7 Heat of rxn(kj/molco2) Heat of reaction ln P Hrxn R (1/ T ) Low Q rxn at reboiler T and high CO 2 loading MEA CO2 loading(gco 2 /kgsolv) 7

8 P*CO2(kPa) P*CO2(kPa) P*CO2(kPa) MAB-N MEA 30wt% PZ 30wt% CO2 loading (mol/mol) 0.01 CO2 loading (mol/mol) 0.01 CO2 loading (mol/mol)

9 Heat capacity (kj/kgk) Heat capacity MEA 30wt% - fresh MEA 30wt% gco2/kgsolv MAB-N - fresh MAB-N 55 gco2/kgsolv Temperature ( ) Low c p low Q sen Q sen = m c p MTA MAB-N : kj/kg K MEA : kj/kg K 9

10 Absorption rate (molco2/m2skpa) Viscosity (cp) Absorption rate and Viscosity (40 ) High absorption rate MAB-N 15 MAB-N shorter absorber ** Large T rise in a short region by large MEA 30wt% MEA 30wt% evolution of absorption heat CO2 loading(gco 2 /kgsolv) CO2 loading (gco 2 /kgsolv) 10

11 Stability - Thermal Degradation Norm FID1 A, Front Signal (Junghwan \101F0101.D) FID1 A, Front Signal (Junghwan \102F0201.D) MEA 30wt% 72 h Before degradation After 3 days at 150 under full CO 2 loading 0 Norm FID1 A, Front Signal (Junghwan \101F0101.D) FID1 A, Front Signal (Junghwan \102F0201.D) % Amine degradation Low thermal degradation at high T enables high T and min 10 high P stripper operation MAB-N 72 hr 8 small E comp FID1 A, Front Signal (Junghwan \101F0101.D) FID1 A, Front Signal (Junghwan \101F0101.D) min 4 pa MAB-N 668 hr DP DP MEA 30wt% (72 h) MAB-N (72 h) MAB-N (668 h) min 11

12 Corrosion weight loss (%) Vaporization loss (kgsolv/tco2) Corrosion and Vaporization Loss Calculation (40 ) Experimental in the 4 Nm3/hr unit Larger vaporization loss than 30wt% MEA 0 MEA 30wt% MAB-N *Rich loading, 150, 1 week 0 MEA 30wt% MAB-N 12

13 Simulation Process - Top Height/Dia - Top Pressure - MTA - Packing Eff. VLE - Binary VLE - CO 2 VLE - Heat of Rxn Oven Liquid reservoir Liquid in TC PT TC CO2 in TC PT CO2 in Vent and Vacuum dn CO 2 * G L CO2 CO2 L dz dn dz water dco 2 * na a KG T L,ldg PyCO P 2 CO T 2 L,ldg dz d c n T ah T T dz G,mol P G G LG G L a K T,ldg Py P T,ldg L a K T Py P T,ldg L L cplql a w L w w L dwater na a Kw TL Pyw Pw T L,ldg dz L * KG T L,ldg PyCO P 2 CO T 2 L,ldg H abs L w L w w L w LG G L dt dz K T Py P T,ldg h T T Simulator Vent and Vacuum Cell Solvent CO2 reservoir Magnetic stirrer CO2 Computer Gas bomb WWC - Abs./Des. Rate - Viscosity - Heat of Rxn CO2 15% MFC(N2) Oven Oven Wetted Insulation between Wall SUS pipe Column inner and outer surface by PTFE ph meter Magnetic stirrer Water Liquid Reservoir saturator DP Pump Vacuum pump Flowmeter Vent Flowmeter CO2 sensor (NDIR, 0~30%) Dessiccant Column Water Knock-out Cooling bath Gas flow Liquid flow Results - Energy - Lean/Rich loading - T Profiles - Vaporization loss - HX Area 1/8 in tube Liquid flowmeter 13

14 Simulation conditions 1) Absorber - Gas flowrate = 1799 Nm3/hr (0.5MW scale) - D = 0.5m, H = 15m - Inter cooling : MEA - 40, one (1/3 location of absorber) MAB-N - 40, two (1/3, 2/3 location of absorber) 2) Stripper - D = 0.5m, H = 6m - Pressure : 2, 5 atm 3) Heat exchanger - MTA :

15 Reboiler energy (GJ/t-CO2) Simulation results MEA 30wt% - 2atm / IC x1 MTA : 20 MTA : 10 MTA : 5 kwh/t-co2 = reboiler energy + compression energy up to 150atm/40C IC ~ inter-stage cooler MAB-N - IC x2 2.5 MTA : 10 / 2atm MTA : 5 / 2atm GJ/tCO 2 and 190kWh can be achieved. MTA : 5 / 5atm L/G 2.4 GJ/t-CO 2 and 235 kwh/t- CO 2 are the current best. 15

16 Energy (GJ/tCO 2 ) Simulation results Energy analysis 4 MEA 30wt% / Stripper pressure 2atm / MTA 5 / IC x1 3.5 MAB-N / Stripper pressure 2atm / MTA 5 / IC x2 3 MAB-N / Stripper pressure 5atm / MTA 5 / IC x Reboiler duty Heat of reaction Sensible heat Latent heat 16

17 Absorber position (m) Stripper position (m) Simulation results: Temperature profiles 1) Absorber 2) Stripper Temperature( ) Temperature( ) L/G = 5, two ICs Stripper pressure : 5 atm MTA = 5 17

18 Energy (GJ/tCO 2 ) Test results in the 4 Nm 3 /hr unit Energy MEA 1차 st 2차 2 n MTA=5 o C MTA=5 o C Heat Loss MEA 30wt% d L/G * One IC, 2 atm MAB-N Heat Loss <4 Nm 3 /hr> 18

19 Water Balance Control Condenser at 30 CW Lean solvent at ~ 40 Lean solvent T Gas inlet at 30 Absorber amount of water transfer to the gas phase water balance controlled 19

20 Amine Recovery from the Vaporization Loss / Amine Emission Control Scheme 1 Scheme 2 water Water wash for emission control Condensation stage 2 30 CW Water and amine condensation 30 CW Condensation stage 1?? CW Absorber T = 55 Absorber 20

21 Future Plans Optimization of process units - absorber: dimension, temperature profile, cooling method,.. - desorber: dimension,.. - heat exchanger - water wash for amine recovery Tests in pilot units of various scales - 4 Nm3/hr: Nm3/hr: Nm3/hr (0.5 MW):

22 Thank you for listening Q & A