Comparison of Bowen ratio of the world s oceans and its temperature sensitivity among GCMs and air sea flux products

Size: px
Start display at page:

Download "Comparison of Bowen ratio of the world s oceans and its temperature sensitivity among GCMs and air sea flux products"

Transcription

1 耶鲁大学 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment Comparison of Bowen ratio of the world s oceans and its temperature sensitivity among GCMs and air sea flux products Wang Wei Yale NUIST Center on Atmospheric Environment Nanjing University of Information Science & Technology, Nanjing, China YNCenter Video Conference Nanjing, May 31, 2013

2 Outlines 1. Introduction 2. Results Air sea flux products Bowen ratio spatial distribution; time series; zonal average; temperature sensitivity GCMs with RCP4.5 experiment Bowen ratio spatial distribution; time series; zonal average; temperature sensitivity 3. Next steps

3 Introduction The oceans, where 78% of global precipitation occurs, hold 97% of the planet water and contribute 80% of the global evaporation (NASA, 2013). Bowen ratio variability of oceans is crucial for evaluating hydrological cycle (Perez et al., 2008). Bowen ratio varies (IPCC, 2007), negative relationship between Bowen ratio and air temperature (Brutsaert 1982). Motivated by the scarcity research on energy partitioning response of oceans to global warming (Wilson et al., 2002; Cho, J., T. Oki, et al., 2012).

4 Basic knowledge Ocean surface energy balance G R H E F n eo R n λe 109 W m 2 98W m 2 H 11W m 2 Atmosphere Ocean G F eo Bulk transfer approach H c C U( ) a p H s a E LC U( q q ) a v E s a (Hartmann, 1994) (Liu et al., 1979; Garratt, 1994)

5 15 air sea flux products Type Product Period Temporal resolution Spatial resolution In-situ Reanalysis Satellite Hybrid NOCS monthly 1 lat 1 lon FSU monthly 1 lat 1 lon MERRA monthly 1/2 lat 2/3 lon ERA monthly 2.5 lat 2.5 lon ERA-Interim monthly T255 NCEP-NCAR monthly T62, 192lon 94lat NCEP-DOE monthly T62, 192lon 94lat CFSR monthly 1/4-1/2 lat 1/2 lon JRA monthly T106 IFREMER monthly 1 lat 1 lon HOAPS monthly 0.5 lat 0.5 lon J-OFURO monthly 1 lat 1 lon OAFlux monthly 1 lat 1 lon GSSTF monthly 1 lat 1 lon GSSTF monthly 0.25 lat 0.25 lon Common period: Jan to Dec. 2000

6 Annual mean Bowen ratio ( ) NOCS Bowen ratio FSU3 Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S MERRA Bowen ratio OAFlux Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S 0 o

7 ERA-40 Bowen ratio ERA-Interim Bowen ratio 80 o N N 40 o N N 0 o 40 o S S 80 o S S IFREMER Bowen ratio HOAPS3.2 Bowen ratio 60 o N 30 o N 0 o 30 o S 60 o S 0 o 7

8 J-OFURO Bowen ratio NCEP-DOE Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S 0 o GSSTF2 Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S 8

9 Bowen ratio time series 9

10 Sensible heat flux series 10

11 Latent heat flux series 11

12 Zonal average Bowen ratio 12

13 Zonal average sensible heat flux 13

14 Zonal average latent heat flux 14

15 Temperature sensitivity of Bowen ratio 0.12 NOCS FSU MERRA Bowen Ratio y=-0.05( 0.02)x R=-0.07, P= y=-0.04( 0.01)x+1.01 R=-0.46, P< y=0.02( 0.01)x-0.27 R=0.07, P= OAFlux ERA ERA-Interim Bowen Ratio y=-0.03( 0.01)x+0.77 R=-0.44, P< Air temperature C y=-0.04( 0.01)x+0.78 R=-0.07, P= Air temperature C y=-0.03( 0.01)x+0.77 R=-0.75, P< Air temperature C15

16 Bowen Ratio IFREMER y=-0.03( 0.01)x+0.75 R=-0.80, P< HOAPS y=0.05( 0.02)x-0.8 R=0.17, P= J-OFURO y=-0.04( 0.01)x+0.84 R=-0.83, P< NCEP-DOE GSSTF2 Bowen Ratio y=-0.04( 0.01)x+0.95 R=-0.73, P< Air temperature C y=-0.02( 0.01)x+0.46 R=-0.59, P< Air temperature C 16

17 Summary Products H λe β T a β/ T a W m -2 W m -2 per NOCS FSU MERRA OAFlux ERA ERA-Interim IFREMER HOAPS J-OFURO NCEP-DOE GSSTF

18 10 GCMs from CMIP5 (Coupled Model Intercomparison Project Phase 5) Institute ID Model Period Temporal resolution lon lat BCC BCC-CSM monthly CCCMA CanESM monthly GCESS BNU-ESM monthly CSIRO-BOM ACCESS monthly INM INM-CM monthly NCAR CCSM monthly NIMR/KMA HadGEM2-AO monthly NCC NorESM1-M monthly MIROC MIROC monthly IPSL IPSL-CM5A-MR monthly ( pcmdi.llnl.gov/cmip5/) 18

19 Annual mean Bowen ratio ( ) BBC-CSM1.1 Bowen ratio CanESM2 Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S BNU-ESM Bowen ratio ACCESS1.3 Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S

20 INM-CM4 Bowen ratio CCSM4 Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S HadGEM2-AO Bowen ratio NorESM1-M Bowen ratio 80 o N N 40 o N N 0 o 40 o S S 80 o S S 20

21 MIRCO5 Bowen ratio IPSL-CM5A-MR Bowen ratio 80 o N 40 o N 0 o 40 o S 80 o S 21

22 Air temperature series 22

23 Bulk variables series 23

24 Sensible heat flux series 24

25 Latent heat flux series 25

26 Bowen ratio series 26

27 Zonal average air temperature 27

28 Zonal average of other bulk variables 28

29 Zonal average sensible heat flux 29

30 Zonal average latent heat flux 30

31 Zonal average Bowen ratio 31

32 Temperature sensitivity of Bowen ratio Bowen Ratio BCC-CSM1.1 y=-0.013( )x+0.39 R=-0.97, P< CanESM2 y=-0.015( )x+0.46 R=-0.99, P< BNU-ESM y=-0.012( )x+0.37 R=-0.98, P< ACCESS1.3 INM-CM CCSM4 Bowen Ratio y=-0.01( )x+0.29 R=-0.99, P< Air temperature C y=-0.015( )x+0.47 R=-0.99, P< Air temperature C y=-0.011( )x R=-0.97, P< Air temperature C

33 Bowen Ratio HadGEM2-AO y=-0.009( )x+0.28 R=-0.99, P< NorESM1-M y=-0.013( )x+0.37 R=-0.97, P< Bowen ratio MIROC5 y=-0.007( )x+0.18 R=-0.88, P<0.01 Bowen Ratio IPSL-CM5A-MR y=-0.013( )x+0.39 R=-0.98, P< Air temperayure C Air temperature C 33

34 Summary GCM models T a T s q a U K H λe β β/ T a K K kg kg -1 m s -1 W m -2 W m -2 W m -2 per BCC-CSM CanESM BNU-ESM ACCESS INM-CM CCSM / HadGEM2-AO NorESM1-M / MIROC IPSL-CM5A-MR

35 Next steps Point wise correlation between ocean Bowen ratio and air temperature. Reasons for biases or uncertainty of Bowen ratio among products. Diversities in GCMs performance of modeling Bowen ratio and its temperature sensitivity. 35