Life Cycle Assessment of food preservation technologies

Size: px
Start display at page:

Download "Life Cycle Assessment of food preservation technologies"

Transcription

1 VII International Conference on Life CycleAssessmentin theagri-foodsector 1 Bari, september Life Cycle Assessment of food preservation technologies Guillermo Pardo* 1, Saoia Ramos 1,Jaime Zufía 1 1 Food Research Division AZTI-TECNALIA, Spain gpardo@azti.es

2 Contents 2 Project justification and objectives Methodology Partial and final results Conclusions and recommendations

3 3 introduction methodology impact assessment conclusions FRAMEWORK Main project: INTEGRAFOOD: Strategic Research Programme for developing more efficient and sustainable food products throughout its whole life cycle Partner: Basque Government, Dept. of Agriculture, Food and Fishing Partial objective: Environmental comparison of conventional and emerging food processing technologies Typical Farm to fork LCA diagram Raw materials Transport Food processing Packaging Transport Consumption

4 4 introduction methodology impact assessment conclusions FOOD PROCESSING: Emerging technologies High pressure Infrarred Ohmnic heating Light pulses EMERGING TECHNOLOGIES Cold plasma Microwaves Active packaging NEW PRESERVATION TECHNOLOGIES: Better quality and nutritional attributes Energy consumption Reducing food spillage reduce demand for primary production Need of study for environmental evaluation

5 5 introduction LCA methodology impact assessment conclusions OBJECTIVES Life cycle and inventory of main food preservation technologies Identify the hot-spots with greatest environmental impact Propose recommendations for impact reduction Provide environmental criteria for adequate selection of the preservation technology when designing food products

6 6 introduction LCA methodology impact assessment conclusions METHODOLOGY Phase I: Definition of a Functional Unit Phase II: System boundaries and allocation rules Phase III:Inventory of main inputs and outputs of the system Phase IV:Impact assessment for every technology and compared results Phase V: Recommendations and conclusions

7 7 introduction methodology impact assessment conclusions Target product: Ready-to-eat meal based on fish and vegetable Product Weight Packaging Shelf life Fish and vegetable pre-cooked dish 200g HDPE tray/ film 30 days FunctionalUnit:application of a preservation treatment to 1000 units of the selected product achieving a shelf life of at least 30 days. Scope: extraction of raw materials manufacturing of machinery transportation food preservation processing end-of-life disposal

8 8 introduction methodology impact assessment conclusions PRESERVATION TECHNOLOGIES SELECTION: CONVENTIONAL TECHNOLOGIES THERMAL - Pasteurisation (AC) - Sterilization - Freezing - Dehydration - Blanching NON THERMAL -Chemical: - Preservatives - Modified atmosphere packaging (MAP) EMERGING TECHNOLOGIES THERMAL - DIC - Microwaves (MW) - Radio frequency - High electric field pulses - Infrared - Ohmnic heating - Oscillating magnetic fields - Dry air - Freezing (CAS, Liquid Nitrogen) NON THERMAL -Physical: - UV - Light pulses (LP) - Irradiation - High pressure processing (HPP) -Chemical: - Ozone - Biopreservation - Active packaging

9 9 introduction methodology impact assessment conclusions Selected food processing methods: Process conditions Process Description Critical factors Process conditions Thermal pasteurisation (AC) Thermal treatment using water or injected steam as heat medium. Indirect heat transfer to the product. Loss of nutritional and sensory characteristics. 65min, 95ºC Microwaves (MW) Thermal treatment by microwaves radiant exposure. Efficient heat transfer to the product. Loss of food characteristics. 45min, 95ºC High pressure processing (HPP) Non-thermal processing by subjecting food to high hydrostatic pressures. Slight changes in original food characteristics. Batch and semi continuous systems. 8min, 500MPa Modified atmosphere packaging (MAP) Enclosure in gas-barrier materials, with controlled gaseous environment. Original freshness and characteristics of food. Limited shelf life. 80%CO 2 /20%N 2 Gas/product: 1.5

10 introduction methodology impact assessment conclusions System Boundaries 10 Preservation Method Food Processing

11 11 introduction methodology impact assessment conclusions INVENTORY 1. Thermal Pasteurisation (AC) 2. Thermal Pasteurisation (MW) 3. High Pressure Processing (HPP) 4. Modified Atmosphere Packaging (MAP)

12 12 introduction methodology impact assessment conclusions INVENTORY Manufacturing stage Food Processing End of life Materials: Steel, iron, copper, plastic, etc. Transport: by lorry Assembly: electricity and fuel consumption Fuel: Steam boiler Electricity and compressed air: Water consumption: For cooling requirements Gases and Chemicals: N 2, CO 2, H 2 O 2 Electricity:Dismantling and sorting Transport: by lorry End-of-life:Energy and emmissions

13 13 introduction methodology impact assessment conclusions Not considered aspects: Differences of packaging for the food product Packaging boxes and materials necessary for transport of machinery. Materials which represent less than 1% of machinery weight Infrastructures and buildings required for processing. Data Quality - Main processes: Site specific data, 2009 Personal Communication Technical data Technology suppliers -Secondary processes: -Ecoinvent 2.0, scientific papers, sectorial reports

14 14 introduction system definition Inventory impact assessment conclusions Impact Assessment Methodology SimaPro ReCiPe - New method including: RIVM, CML, PRéConsultants, RadboudUniversiteitNijmegen and CE Delft experierence

15 15 introduction system definition Inventory impact assessment conclusions 100,0 Impact Assessment 90,0 80,0 AC 70,0 60,0 MW HPP AC % 50,0 40,0 30,0 20,0 10,0 MAP 0,0 climate change ozone depletion photochemical oxidant formation terrestrial acidification freshw ater eutrophication terrestrial ecotoxicity Método: Recipe Midpoint (E) (Tec Conservación) V1.02 / Europe Recipe E / Cara freshw ater ecotoxicity w ater depletion 1. Thermal Pasteurisation (AC) 2. Thermal pasteurisation (MW) 3. High pressure processiong (HHP) 4. Modified Atmosphere Packaging (MAP)

16 introduction system definition Inventory impact assessment conclusions Impact Assessment 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 Manuf act uring (Aut oclave) Past eurisat ion process (AC) Cooling process End-of -lif e Manuf act uring (Cooling Unit ) 16 % water depletion freshwater ecotoxicity terrestrial ecotoxicity freshwater eutrophication terrestrial acidification photochemical oxidant... ozone depletion climate change water depletion freshwater ecotoxicity terrestrial ecotoxicity freshwater eutrophication terrestrial acidification photochemical oxidant formation ozone depletion climate change Manuf act uring (Aut oclave) Past eurisat ion process (AC) Cooling process End-of -lif e Manuf act uring (Cooling Unit ) 100,0 90,0 80,0 70,0 60,0 50,0 % 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 Manufacturing (HPP) Pasteurisation process (HPP) 40,0 30,0 20,0 10,0 0,0 Manufacturing (MW) Pasteurización por MW Cooling process End-of-life (MW) Cooling Unit (Manufacturing) Manufacturing (MW) Pasteurización por MW Cooling process End-of-life (MW) Cooling Unit (Manufacturing) % water depletion End-of-life (HHP) 100,0 90,0 80,0 70,0 60,0 50,0 % 1. Thermal Pasteurisation (AC) 40,0 30,0 20,0 10,0 0,0 End-of-life (Botellas gases) Cooking (Electric oven) Modified Atmosphere Packaging (MAP) Manufacturing (Gas Bottles) freshwater ecotoxicity terrestrial ecotoxicity freshwater eutrophication terrestrial acidification photochemical oxidant formation ozone depletion climate change climate change ozone depletion photochemical oxidant formation terrestrial acidification freshwater eutrophication terrestrial ecotoxicity freshwater ecotoxicity water depletion 3. High Pressure Processing (HPP) 4. Modified Atmosphere Packaging(MAP) 2. Thermal Pasteurisation (MW) 100,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 0,0 100,0 90,0 80,0 70,0 60,0 50,0 40,0 % 30,0 20,0 10,0 Manuf act uring (Aut oclave) Manuf act uring (Cooling Unit ) Manufacturing (HPP) Pasteurisation process (HPP) water depletion End-of-life (HHP) freshwater ecotoxicity water depletion terrestrial ecotoxicity freshwater ecotoxicity terrestrial ecotoxicity freshwater eutrophication freshwater eutrophication terrestrial acidification terrestria l acidification oxidant formation photochemical oxidan t for... ozone depletion ozone depletion climate change climate change 3. High 1. Thermal Pressure Pasteurisation Processing (HPP) (AC) % 0,0 Past eurisat ion process (AC) Cooling process End-of -lif e Manuf act uring (Aut oclave) Past eurisat ion process (AC) Cooling process End-of -lif e Manuf act uring (Cooling Unit ) Manufacturing (HPP) Pasteurisation process (HPP) End-of-life (HHP) Manufacturing (HPP) Pasteurisation process (HPP) End-of-life (HHP) Manufacturing (Gas Bottles) Modified Atmosphere Packaging (MAP) Cooking (Electric oven) End-of-life (Botellas gases)

17 17 introduction system definition Inventory impact assessment conclusions 100,0 Impact Assessment 90,0 80,0 AC 70,0 60,0 AC % 50,0 40,0 30,0 20,0 10,0 0,0 climate change ozone depletion photochemical oxidant formation terrestrial acidification freshw ater eutrophication terrestrial ecotoxicity Método: Recipe Midpoint (E) (Tec Conservación) V1.02 / Europe Recipe E / Cara freshw ater ecotoxicity w ater depletion 1. Thermal Pasteurisation (AC) 2. Thermal pasteurisation (MW) 3. High pressure processiong (HHP) 4. Modified Atmosphere Packaging (MAP)

18 18 introduction system definition Inventory impact assessment conclusions 1. Thermal Pasteurisation (AC) 3,5e-6 3e-6 2,5e-6 2e-6 1,5e-6 1e-6 5e-7-8,47e-22 kg CFC-11 eq Pasteurisation process (AC) Transport, natural gas, pipeline, long distance/ru U Transport, natural gas, pipeline, long distance/rer U Crude oil, at production onshore/rme U Crude oil, at production onshore/ru U Transport, natural gas, onshore pipeline, long distance/dz U Procesos remanentes Terrestrial ecotoxicity Fossil fuels combustion processes Climate change Heavy fuel oil, burned in industrial furnace 1MW, non-modulating/rer U Discharge, produced water, onshore/glo U Tap water, at user/rer U Procesos remanentes Freshwater ecotoxity

19 19 introduction system definition Inventory impact assessment conclusions 100,0 Impact Assessment 90,0 80,0 70,0 60,0 MW HPP MW % 50,0 40,0 30,0 20,0 10,0 0,0 climate change ozone depletion photochemical oxidant formation terrestrial acidification freshw ater eutrophication terrestrial ecotoxicity Método: Recipe Midpoint (E) (Tec Conservación) V1.02 / Europe Recipe E / Cara freshw ater ecotoxicity w ater depletion 1. Thermal Pasteurisation (AC) 2. Thermal pasteurisation (MW) 3. High pressure processiong (HHP) 4. Modified Atmosphere Packaging (MAP)

20 20 introduction system definition Inventory impact assessment conclusions 2. Thermal Pasteurisation (MW) SO x CO 2 Fossil fuels combustion processes NO x kg SO2 eq 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Nitrogen oxides NMVOC, non-methane volatile organic compounds, Sulfur dioxide Carbon monoxide, fossil Procesos remanentes Photochemical oxidation Total Hard coal, burned in power plant/es U Lignite, burned in power plant/es U Heavy fuel oil, burned in power plant/es U Operation, transoceanic freight ship/oce U Procesos remanentes Analizando 1 p '2. Thermal pasteurisation (MW)'; Método: Recipe Midpoint (E) (Tec Conservación) V1.02 / Europe Recipe E / Caracterización / Excluyend Climate change Terrestial acidification

21 21 Introduction System definition Inventory Impact assessment Conclusions 3. High Pressure Processing (HPP) Freshwater eutrophication

22 22 introduction methodology impact assessment conclusions CONCLUSIONS -In general terms, emerging technologies showed reduced environmental impact in comparison to conventional thermal processes -High pressures processing (HPP) could become an interesting technology to reduce GHG emissions from processed foods while keeping their freshness and original nutritional/sensory characteristics. POTENTIAL IMPROVEMENTS can be proposed: Adequate selection of preservation technology: Optimum design and operational parameters: Fuel use efficiency: Performance of steam boilers / furnaces Fossil fuel replacement by renewable sources Water consumption: Cooling towers, heat exchangers

23 23 Thank you for your attention G.Pardo Food Research Division AZTI-TECNALIA