HYDROGEN FUEL CELL TECHNOLOGY

Size: px
Start display at page:

Download "HYDROGEN FUEL CELL TECHNOLOGY"

Transcription

1 HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century was the century of the internal combustion engine, it is likely that the 21st century will be the century of the fuel cell. Full cells are now on the verge of being introduced commercially, revolutionizing the way we presently produce power. Fuel cells can use hydrogen as a fuel, offering the prospect of supplying the world with clean, sustainable electrical power. The article discusses fuel cells technology and PEM fuel cells. Fuel cell applications in transportation, distributed power generation, residential and portable power are discussed. The science of the PEM fuel cell is mainly discussed in this artical. Index Terms: fuel cell, PEM (proton exchange membrane) INTRODUCTION Fuel cells and fuel cell components produce electricity and heat electrochemically by combining oxygen from the air with a fuel, preferably hydrogen, from methanol, natural gas, or petroleum. Reformers are often used in conjunction with hydrogen fuel cells. There many are types of fuel cells and fuel cell components. Examples include a proton exchange membrane (PEM) fuel cell, direct methanol fuel cell (DFMC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid oxide fuel cell (SOFC). Selecting fuel cells and fuel cell components requires an understanding of hydrogen fuel cell technologies. A proton exchange membrane (PEM) fuel cell or PEM fuel cell uses hydrogen as the anode gas and pure or atmospheric oxygen as the cathode gas. PEM fuel cells use a solid polymer membrane as the electrolyte, which is much easier to handle and use than a liquid counterpart. A direct methanol fuel cell (DMFC) uses methanol in a solution of water as the anode gas and atmospheric oxygen as the anode gas. The electrolyte is made of a solid polymer membrane. A phosphoric acid fuel cell (PAFC) uses a phosphorous electrolyte to provide high reliability, quiet operation, and improved efficiency. Molten carbonate fuel cells (MCFC) use hydrogen or methane as the anode gas and atmospheric oxygen as the cathode. Alkalicarbonates such as carbonate-salt-impregnated ceramic matrix are used as an electrolyte. Solid oxide fuel cells (SOFC) are fuel cells and fuel cell components that use hydrogen or methane as anode gas and atmospheric oxygen as cathode gas and ceramic oxide electrolyte. Selecting fuel cells and fuel cell components requires an analysis of performance specifications and end-user applications. Performance specifications include percent efficiency, working temperature, components and subsystems, and materials of construction. The catalyst, a fuel cell component that activates the chemical reaction between electrodes, is also an important consideration. A PEM fuel cell typically uses a thin platinum catalyst. In terms of applications, some fuel cells and fuel cell components are designed for use with a fuel cell car or fuel cell vehicle. roton exchange membrane fuel cell Diagram of a PEM fuel cell IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 718

2 Proton exchange membrane fuel cells, also known as polymer electrolyte membrane (PEM) fuel cells (PEMFC), are a type of fuel cell being developed for transport applications as well as for stationary fuel cell applications and portable fuel cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to 100 C) and a special polymer electrolyte membrane. PEMFCs operate on a similar principle to their younger sister technology PEM electrolysis. They are a leading candidate to replace the aging alkaline fuel cell technology, which was used in the Space Why Do We Need a New Fuel Source? Currently our machinery runs on oil Oil pollutes and there are limited supplies Hydrogen is the most abundant element in the known universe Hydrogen fuel cells do not pollute How A Hydrogen Fuel Cell Works The fuel cell is composed of an anode, an electrolyte membrane in the center, and a cathode. Hydrogen flows into the fuel cell anode. Platinum coating on the anode helps to separate the gas into hydrogen ions and electrons. The electrolyte membrane allows only the protons to pass through the membrane to the cathode side of the fuel cell. The electrons cannot pass through this membrane and flow through an external circuit in the form of electric current. Reactions A Proton exchange membrane fuel cell transforms the chemical energy liberated during the electrochemical reaction of hydrogen and oxygen to electrical energy, as opposed to the directcombustion of hydrogen and oxygen gases to produce thermal energy. A stream of hydrogen is delivered to the anode side of the membrane electrode assembly (MEA). At the anode side it is catalytically split into protons and electrons. This oxidation half-cell reaction or Hydrogen Oxidation Reaction (HOR) is represented by: At the Anode: The newly formed protons permeate through the polymer electrolyte membrane to the cathode side. The electrons travel along an external load circuit to the cathode side of the MEA, thus creating the current output of the fuel cell. Meanwhile, a stream of oxygen is delivered to the cathode side of the MEA. At the cathode side oxygen molecules react with the protons permeating through the polymer electrolyte membrane and the electrons arriving through the external circuit to form water molecules. This reduction half-cell reaction or oxygen reduction reaction (ORR) is represented by: IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 719

3 At the cathode: Overall reaction: The reversible reaction is expressed in the equation and shows the reincorporation of the hydrogen protons and electrons together with the oxygen molecule and the formation of one water molecule. Polymer -electrolyte membrane discovered, and platinum is the best option. One promising catalyst that uses far less expensive materials iron, nitrogen, and carbon has long been known to promote the necessary reactions, but at rates that are far too slow to be practical. [2] Recently, a Canadian research institute has dramatically increased the performance of this type of iron-based catalyst. Their material produces 99 A/cm 3 at 0.8 volts, a key measurement of catalytic activity. That is 35 times better than the best nonprecious metal catalyst so far, and close to the Department of Energy's goal for fuelcell catalysts: 130 A/cm 3. It also matches the performance of typical platinum catalysts. The only problem at the moment is its durability because after only 100 hours of testing the reaction rate dropped to half. Another significant source of losses is the resistance of the membrane to proton flow, which is minimized by making it as thin as possible, on the order of 50 µm. A cheaper alternative to platinum is Cerium(IV) oxide catalysator used by professor Vladimír Matolín in the developement of PEMFC. To function, the membrane must conduct hydrogen ions (protons) but not electrons as this would in effect "short circuit" the fuel cell. The membrane must also not allow either gas to pass to the other side of the cell, a problem known as gas crossover. Finally, the membrane must be resistant to the reducing environment at the cathode as well as the harsh oxidative environment at the anode. Splitting of the hydrogen molecule is relatively easy by using a platinum catalyst. Unfortunately however, splitting the oxygen molecule is more difficult, and this causes significant electric losses. An appropriate catalyst material for this process has not been The PEMFC is a prime candidate for vehicle and other mobile applications of all sizes down to mobile phones, because of its compactness. However, the water management is crucial to performance: too much water will flood the membrane, too little will dry it; in both cases, power output will drop. Water management is a very difficult subject in PEM systems, primarily because water in the membrane is attracted toward the cathode of the cell through polarization. A wide variety of solutions for managing the water exist including integration of electroosmotic pumps. Furthermore, the platinum catalyst on the membrane is easily poisoned by carbon monoxide (no more than one part per million is usually acceptable) and the membrane is sensitive to things like metal ions, which can be introduced by corrosion of metallic bipolar plates, metallic components in the fuel cell system or from contaminants in the fuel/oxidant. PEM systems that use reformed methanol were proposed, as in Daimler Chrysler Necar 5; reforming methanol, i.e. making it react to obtain hydrogen, is however a very complicated process, that requires also purification from the carbon monoxide the reaction produces. A platinum-ruthenium catalyst is necessary IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 720

4 as some carbon monoxide will unavoidably reach the membrane. The level should not exceed 10 parts per million. Furthermore, the start-up times of such a reformer reactor are of about half an hour. Alternatively, methanol, and some other biofuels can be fed to a PEM fuel cell directly without being reformed, thus making a direct methanol fuel cell (DMFC). These devices operate with limited success. CONCLUSION Its an green technology because its by product is water. And this technology can be easily implemented in cars, buses & trucks. The most commonly used membrane is Nafion by DuPont, which relies on liquid water humidification of the membrane to transport protons. This implies that it is not feasible to use temperatures above 80 to 90 C, since the membrane would dry. Other, more recent membrane types, based on polybenzimidazole (PBI) or phosphoric acid, can reach up to 220 C without using any water management: higher temperature allow for better efficiencies, power densities, ease of cooling (because of larger allowable temperature differences), reduced sensitivity to carbon monoxide poisoning and better controllability (because of absence of water management issues in the membrane); however, these recent types are not as common. APPLICATION & ADVANTAGES Hydrogen Powered Cars Hydrogen cars run clean. 500 cubic tons of carbon removed from atmosphere by 2040 New design possibilities because of compact hydrogen fuel cell stack Stack of 200 cells is the size of a home PC 500 metric tons of carbon saved each year by 2040 Reduce demand for oil by 11 million barrels per day by 2040 Child born in 2003 to drive a hydrogen car at age 16 IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 721

5 IJIRT INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 722

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

By janaka. Copyrights HIMT

By janaka. Copyrights HIMT By janaka Copyrights HIMT 2016 1 In container trade alone the equivalent of 125 million twenty-foot containers being shipped worldwide. It is these quantities that make shipping such a significant contributor

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

GENERAL CLASSIFICATION

GENERAL CLASSIFICATION GENERAL CLASSIFICATION M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 GENERAL CLASSIFICATION Type Electrolyte PEMFC DMFC DEFC PAFC AFC MCFC SOFC Proton exchange membrane fuel cell Direct methanol fuel

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved.

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved. P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM Copyright 2006 P21 GmbH. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

Fuel Cell Technology: A Review

Fuel Cell Technology: A Review Fuel Cell Technology: A Review Omkar Yarguddi 1, Dr. Anjali A. Dharme 2 Senior Undergraduate student, Dept. Of Electrical Engg, College of Engg, Pune, Maharashtra, India 1 Associate Professor, Dept. Of

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Durability studies of membrane electrode assemblies for high. temperature polymer electrolyte membrane fuel cells. Nolubabalo Hopelorant Fanapi

Durability studies of membrane electrode assemblies for high. temperature polymer electrolyte membrane fuel cells. Nolubabalo Hopelorant Fanapi Durability studies of membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells By Nolubabalo Hopelorant Fanapi A thesis submitted in fulfilment of the requirements for

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time W H I T E P A P E R - 1 2 0 FABSTRACT Fuel cells offer the means for the conversion of chemical energy in hydrogen rich fuels (fossil and renewable) directly to electricity without having to generate thermal

More information

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University Alternatives to Alternative Energy - FUEL CELLS C.J. Kobus Oakland University Take Home Lesson Fuel cells can help us generate cleaner power from conventional sources more efficiently and can be conveniently

More information

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY. Fuel Cell Introduction MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY Fuel Cell Introduction NFCRC DR. JACK BROUWER MAE 214 Lecture #1 Spring, 2005 Fuel Cell Introduction History Basic Operation Fuel Cell Stack Fuel Cell Types

More information

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas Fuel cells, myths and facts PhD candidate Ole-Erich aas 1 Outline Fuel cell, history and general principle Fuel cell types and chemical systems PEM fuel cells for transport sector Polymer membranes Electrodes

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information

Use of Renewable Energy Resources

Use of Renewable Energy Resources Use of Renewable Energy Resources Lalina 1 1 Department of Electronics &Communication Engineering, Ganga Institute of Technology and Management, Kablana, Jhajjar, Haryana, India Absract: The electricity

More information

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY SALAH I. AL-MOUSLY, member, IEEE, and ZIAD K. ALHAMDANI, member, ASA Faculty of Electronic Engineering, P.O. Box 38645, Libya ABSTRACT In the end

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

PEM Fuel Cell Investigation at Chiang Mai University, Thailand

PEM Fuel Cell Investigation at Chiang Mai University, Thailand International Energy Journal: Vol. 4, No. 2, December 23 119 PEM Fuel Cell Investigation at Chiang Mai University, Thailand Konlayutt Chailorm *, Songwut Nirunsin **, and Thirapat Vilaithong ** * Department

More information

Hydrogen and fuel cells: towards a sustainable energy future

Hydrogen and fuel cells: towards a sustainable energy future Hydrogen and fuel cells: towards a sustainable energy future Professor Peter P. Edwards Head of Inorganic Chemistry University of Oxford Co-ordinator UK Sustainable Hydrogen Energy Consortium UK representative

More information

Analysis of Residential Fuel Cell System

Analysis of Residential Fuel Cell System Analysis of Residential Fuel Cell System Raju Kumar 1, Avinash Kumar 2, Dr. K. B. Waghulde 3 Students, Department of Mechanical Engineering, J. T. Mahajan College of Engineering, Faizpur, Maharashtra,

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

ESSENCE - International Journal for Environmental Rehabilitation and Conservation

ESSENCE - International Journal for Environmental Rehabilitation and Conservation ESSENCE - International Journal for Environmental Rehabilitation and Conservation Volume VIII: No. 1 2017 [108 119] [ISSN 0975-6272] [www.essence-journal.com] Hydrogen Fuel Cell Saini, Richa Received:

More information

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles

Introduction. 1.1 Hydrogen Fuel Cells Basic Principles 1 Introduction 1.1 Hydrogen Fuel Cells Basic Principles The basic operation of the hydrogen fuel cell is extremely simple. The first demonstration of a fuel cell was by lawyer and scientist William Grove

More information

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT Up until now, most of the

More information

Fuel Cell Science & Technology

Fuel Cell Science & Technology 446.671671 Fuel Cell Science & Technology Instructor: Suk Won Cha Course Introduction Office: 301-1417, 1417, Phone: 880-1700, Email: swcha@snu.ac.kr, Office Hours: A/O TA: Young Seok Ji Office: 314-311,

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

An experimental study of kit fuel cell car to supply power

An experimental study of kit fuel cell car to supply power An experimental study of kit fuel cell car to supply power Mustafa I. Fadhel Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia. mustafa.i.fadhel@mmu.edu.my

More information

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study Research Article International Journal of Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Effect of Mass Flow Rate and Temperature

More information

Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217.

Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217. Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 217. Modeling and Analysis of a PEM Fuel cell for Electrical

More information

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1 PEFC Systems PEFC stacks require tight control of fuel and air feed quality, humidity level, and temperature for sustained high-performance operation. To provide this, PEFC stacks must be incorporated

More information

FUEL CELL. Yann Bultel. Grenoble Institute of Technology

FUEL CELL. Yann Bultel. Grenoble Institute of Technology Yann Bultel Grenoble Institute of Technology October 2012 C O N T E N T S 1. PRINCIPLE OF OPERATION... 3 1.1. INTRODUCTION TO... 3 1.2. UNIT CELL PRINCIPLE... 4 1.3. STACK... 7 1.4. SYSTEM... 7 1.5. PERFORMANCE...

More information

LIMITATIONS OF COMMERCIALIZING FUEL CELL TECHNOLOGIES

LIMITATIONS OF COMMERCIALIZING FUEL CELL TECHNOLOGIES 7 LIMITATIONS OF COMMERCIALIZING FUEL CELL TECHNOLOGIES NORMAYATI NORDIN 10 th ASIAN INTERNATIONAL CONFERENCE ON FLUID MACHINERY 21-23 OCTOBER 2009 KUALA LUMPUR MALAYSIA The 10,h Asian International Conference

More information

Fuel Cells Types and Characterisation. Nnorom Achara. MDPGA, Ministry of Defence, Wethersfield, Braintree, United Kingdom

Fuel Cells Types and Characterisation. Nnorom Achara. MDPGA, Ministry of Defence, Wethersfield, Braintree, United Kingdom Fuel Cells Types and Characterisation Nnorom Achara MDPGA, Ministry of Defence, Wethersfield, Braintree, United Kingdom nnoromeluwa@btinternet.com Abstract: Fuel cell variants have been studied. The distinguishing

More information

Alejandro Avendaño Friday April 21, 2006

Alejandro Avendaño Friday April 21, 2006 FUEL CELLS AND DISTRIBUTED GENERATION Alejandro Avendaño Friday April 21, 2006 Introduction Distributed Generation The Electric Power Research Institute (EPRI) defines distributed generation as the integrated

More information

Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History

Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History Fuel Cell A Future Powerhouse Dr Sudhir Kumar, Chief Executive, Green Energy Solutions, Pune Fuel Cell History The principle of the fuel cell was discovered by German scientist Christian Friedrich Schönbein

More information

PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE

PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE PRB 01-16E FUEL CELLS Lynne C. Myers Science and Technology Division 10 September 2001 PARLIAMENTARY RESEARCH BRANCH DIRECTION DE LA RECHERCHE PARLEMENTAIRE The Parliamentary Research Branch of the Library

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology TFRF05 Docent Jinliang Yuan October 30, 2008 Department of Energy Sciences, Lund University, Sweden Lectures: Docent Jinliang Yuan Home Works/Design Tasks: Dr. Jinliang Yuan Emails:

More information

Current Status of Fuel Cell Technology

Current Status of Fuel Cell Technology Hydrogen, Carbon-Free-Fuel Democratizing the Energy Current Status of Fuel Cell Technology By Dr.-Ing. Syed Mushahid Hussain Hashmi Professor / Chairman Dept. of Automotive & Marine Engineering, NED University

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA

System Level modelling of fuel cell driven electric vehicles. Master s thesis in Electric Engineering ALBERT CERDÁN CODINA System Level modelling of fuel cell driven electric vehicles Master s thesis in Electric Engineering ALBERT CERDÁN CODINA Elteknik Power Electronics Department CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg,

More information

Advanced Analytical Chemistry Lecture 16. Chem 4631

Advanced Analytical Chemistry Lecture 16. Chem 4631 Advanced Analytical Chemistry Lecture 16 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Effects of On/Off Cycles on the Degradation of PEMFCs

Effects of On/Off Cycles on the Degradation of PEMFCs Effects of On/Off Cycles on the Degradation of PEMFCs Recently, it was reported that degradation of the MEAs could be attributed to chemical attack of hydrogen peroxide on Nafion membrane and ionomer in

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

Fuel cells From the material to the finished product

Fuel cells From the material to the finished product FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Fuel cells From the material to the finished product Partner for research, service provider for industry. Are you interested in fuel cells and looking

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

DBBD17, 28. November 2017

DBBD17, 28. November 2017 Results and experiences from IEA Annex31 (22) PEM fuel cells DBBD17, 28. November 2017 Hans Aage Hjuler 1 Operations DPS Company Overview Large-scale PBI synthesis Membrane casting MEA Assembly and QC

More information

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg Danish Power Systems Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep. 2013 Hans Aage Hjuler and Thomas Steenberg Outline Introduction MEA performance Durability Summary The two Danish test windmills

More information

Appendix A: Parameters that Used to Model PEM Fuel Cells

Appendix A: Parameters that Used to Model PEM Fuel Cells Appendix A: Parameters that Used to Model PEM Fuel Cells Name Value Description L 0.06[m] Cell 1ength H_ch 1e-3[m] Channel height W_ch 9.474e-3[m] Channel width W_rib 9.0932e-3[m] Rib width H_gdl 640e-6[m]

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa MOLTEN CARBONATE FUEL CELLS Kouichi Takizawa Tokyo Electric Power Company, Japan Keywords: alkali metal carbonate, coal gasfication gas, lithium aluminate, nickel oxide, wet seal. external reforming, internal

More information

Simulation of Dynamic Model of PMFC Using Computer Controlled Power Rectifier for High- Power Applications

Simulation of Dynamic Model of PMFC Using Computer Controlled Power Rectifier for High- Power Applications Simulation of Dynamic Model of PMFC Using Computer Controlled Power Rectifier for High- Power Applications DibinChandran St.Thomas College of Engineering And Technology Kerala, India availability and abundance

More information

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet.

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet. 1 1.1 Hydrogen energy CHAPTER 1 INTRODUCTION Energy is the most essential and vital entity to survive on this Planet. From past few decades majority of the mankind depend on fossil fuels for transportation,

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects Fuel Cells Grolik Benno,KoppJoachim November, 29th 23 1 Introduction In consideration of environmental problems and several energy crisis in the 2th century, much effort has been put into research on new

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 20040O28979A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0028979 A1 Ballantine et al. (43) Pub. Date: Feb. 12, 2004 (54) METHOD AND APPARATUS FOR ELECTROCHEMICAL COMPRESSION

More information

Low Temperature PEM vs. High Temperature PEM fuel cells

Low Temperature PEM vs. High Temperature PEM fuel cells Hochschule Ulm presentation seminar EPS (ECPS2) Low Temperature PEM vs. High Temperature PEM fuel cells Aaron Fesseler EE2 3126581 Tim Kistenfeger EE2 3126534 supervisor: Dr. Joachim Scholta WS 2017/2018

More information

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Trevor Davies, University of Chester FCH2 2015, 21 st May 2015 PEM Fuel Cell Market Predictions Outline Conventional PEM fuel cells

More information

Supply Chain Research Applied to Clean Hydrogen (SCRATCH)

Supply Chain Research Applied to Clean Hydrogen (SCRATCH) Supply Chain Research Applied to Clean Hydrogen (SCRATCH) K. Kendall, W. Bujalski, B.G. Pollet (Chem Eng) D. Book, R. Harris, A. Bevan (Metallurgy & Materials) L. Macaskie, M.D. Redwood (Biosciences) R.J.

More information

Supply Chain Research Applied to Clean Hydrogen (SCRATCH)

Supply Chain Research Applied to Clean Hydrogen (SCRATCH) Supply Chain Research Applied to Clean Hydrogen (SCRATCH) K. Kendall, W. Bujalski, B.G. Pollet (Chem Eng) D. Book, R. Harris, A. Bevan (Metallurgy & Materials) L. Macaskie, M.D. Redwood (Biosciences) R.J.

More information

Workshop on Fuel Cells for Automotive Applications

Workshop on Fuel Cells for Automotive Applications Workshop on Fuel Cells for Automotive Applications A.M. Kannan (amk@asu.edu) Arizona State University Chulalongkorn University December 8, 2016 Thermal Electricity Electrocatalysis for Water Electrolyzer,

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

Applicability of Dimethylether to Solid Oxide Fuel Cells

Applicability of Dimethylether to Solid Oxide Fuel Cells 17 Nov. 2011, 7th Asian DME Conference Applicability of Dimethylether to Solid Oxide Fuel Cells ~ Reforming and Cell Performance in Anode Off-gas Recycle ~ Yohei Tanaka, Katsutoshi Sato, Akihiko Momma,

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell

Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell Elizabeth Peruski, Shuichiro Miwa, Shripad T. Revankar School of Mechanical Engineering, School of Nuclear Engineering

More information

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL B.Sreenivasulu a,*, S.V.Naidu b, V.Dharma Rao c, G.Vasu d a Department of Chemical Engineering,G.V.P College of Engineering, Visakhapatnam

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Institut für

More information

DuPont Next Generation Membrane and Membrane Electrode Assembly Development

DuPont Next Generation Membrane and Membrane Electrode Assembly Development DuPont Next Generation Membrane and Membrane Electrode Assembly Development Providing Clean Energy Solutions in PEM Fuel Cell Applications Deepak Perti Global Technology Manager FC EXPO 2009 February 25-27

More information

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g FUEL CELL ENERGY POWERS THE CAR! Electrical Current ELECTRONS The movement of electrons generates electricity to power the motor. OXYGEN

More information

Physics 100 Lecture 24. Fusion Energy and Fuel Cells April 30, 2018

Physics 100 Lecture 24. Fusion Energy and Fuel Cells April 30, 2018 1 Physics 100 Lecture 24 Fusion Energy and Fuel Cells April 30, 2018 2 Class quiz Chs 16-18: What is the key advantage of using biofuels? A. They are non-polluting. B. Burning them releases no CO 2 C.

More information

Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization

Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization Copyright 2009 Tech Science Press FDMP, vol.5, no.4, pp.399-409, 2009 Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization A. B.Mahmud Hasan 1,2, S.M.Guo 1 and M.A.Wahab 1

More information

Study of the Dynamics and Cost Analysis of the Biogenerator

Study of the Dynamics and Cost Analysis of the Biogenerator Western University Scholarship@Western Electronic Thesis and Dissertation Repository May 2017 Study of the Dynamics and Cost Analysis of the Biogenerator Tariq Abou Jarboua The University of Western Ontario

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

V.0 Fuel Cells Program Overview

V.0 Fuel Cells Program Overview V.0 Fuel Cells Program Overview Introduction The Fuel Cells program supports research, development, and demonstration of fuel cell technologies for a variety of transportation, stationary, and portable

More information

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions I J C T A, 9(37) 2016, pp. 577-581 International Science Press Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions Deepti Suresh * and R. Bakiyalakshmi

More information

Temperature profiles of an air-cooled PEM fuel cell stack under active and passive cooling operation

Temperature profiles of an air-cooled PEM fuel cell stack under active and passive cooling operation Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 1735 1742 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Temperature profiles of an air-cooled PEM

More information

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL Proceedings of FUELCELL2005 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 2005, Ypsilanti, Michigan FUELCELL2005-74113 VISUALIZATION STUDY OF CATHODE FLOODING

More information

NUTC R231 DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS. Isanaka, Sriram Praneeth, Austin Das, and Frank Liou

NUTC R231 DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS. Isanaka, Sriram Praneeth, Austin Das, and Frank Liou DESIGN OF METALLIC BIPOLAR PLATES FOR PEM FUEL CELLS by Isanaka, Sriram Praneeth, Austin Das, and Frank Liou NUTC R231 A National University Transportation Center at Missouri University of Science and

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

Chemical reacting transport phenomena and multiscale models for SOFCs

Chemical reacting transport phenomena and multiscale models for SOFCs Chemical reacting transport phenomena and multiscale models for SOFCs Updated version for group seminar Martin Andersson Dept. of Energy sciences Lund University, Sweden Heat Transfer 2008, 9-11 July,

More information

Note Fabrication of Flexible Micro CO Sensor for Proton Exchange Membrane Fuel Cell Applications

Note Fabrication of Flexible Micro CO Sensor for Proton Exchange Membrane Fuel Cell Applications Int. J. Electrochem. Sci., 11 (2016) 2269-2275 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Note Fabrication of Flexible Micro CO Sensor for Proton Exchange Membrane Fuel Cell

More information