Detailed Experimental data of Indoor Air and Thermal Environment in the Working Spaces using Under-floor Air Distribution (UFAD) System

Size: px
Start display at page:

Download "Detailed Experimental data of Indoor Air and Thermal Environment in the Working Spaces using Under-floor Air Distribution (UFAD) System"

Transcription

1 Detailed Experimental data of Indoor Air and Thermal Environment in the Working Spaces using Under-floor Air Distribution (UFAD) System PC Chou a, *, CM Chiang b, NT Chen b, CW Liao a, PR Chung a a Department of Interior Design, Shu-Te University, Taiwan b Department of Architecture, National Cheng-Kung University, Taiwan * address: paul@mail.stu.edu.tw Abstract The state-of-the-art development shows the under-floor air distribution (UFAD) system is beneficial for energy saving and thermal comfort, because of supplying air directly to the occupants zone. However, most of these researches were conducted from the developed countries located in the temperate/frigid zone. In order to identify the performance of the UFAD system, which was adopted in Taiwan (Subtropical hot-and-humid climate), this paper presents a set of detailed experimental data of thermal stratifications in working spaces. These data were obtained from a new two-room full-scale chamber and test facilities at Shu-Te University (STU). The thermal stratifications of the UFAD system were measured under the summertime. The results are showed the different phenomenon between the daytime and nighttime, and these data are especially essential for the validating CFD simulation for numerical prediction. 1. Introduction Arthur Rosenfeld, Ph.D., founder of the Center of Building Science at Lawrence Berkeley Laboratory, cited a study showing that the huge link between IAQ and productivity in an office building and the serious initiative to improve indoor air quality will have a tremendous return (Turner, 1998). The indoor environment is important to occupants health and mental sensation because up to % of a typical person s time is spent indoors, i.e. most of employees with sedentary lifestyles take more than 2 hours per day in their offices (Platts-Mills, 1998). And the Thermal Comfort and Indoor Air Quality as the key issues of indoor environment have been presented (Fanger, 1996). The above performances can be improved by utilizing ventilation system. Modern buildings were obviously found to lean increasingly on the HVAC system, which was used for controlling the indoor climate via driving the heat exchanger. After the year of 1973, the energy crisis led the investor to reduce the air-exchange rate to build the energy-saving building (Fanger, 1988). However, recent research was shown that the occupants in high airtight buildings broke out the SBS (sick building syndrome), besides, the components of HVAC system would emit indoor air pollutants (Godish and Spengler, 1996). In order to solve the above problems, two approaches (the experiments and numerical simulations) have been adopted to describe the characteristics of stack effect of displacement ventilation (Chiang and Chou, et al., 1998). A recent literature review, the interviews with engineers have shown that the use of UFAD system results in measurable improvements in thermal comfort, indoor air quality, and user satisfaction, comparing their performance to traditional ceiling-based systems (Brahme and Loftness, et al., 22). This paper presents experiment data obtained under the subtropical climate. The thermal stratification was monitored by data-logger with 12-channel thermo-couples, and PMV-PPD values were also measured.

2 2. Experimental Facility 2.1. The chambers and HVAC systems The purpose of the test facility built at STU is proposed for research and teaching thermal comfort, indoor air quality, energy efficiency, ventilation mechanism, and HVAC systems. The two-room type chamber with modular components is designed for changing the different setting to observe the physical parameters of indoor environment. The test chamber, as shown in Figure 1(1), consists of one buffer-room and two test-rooms. The enclosure is combined from partition panels with thermal resistance of 3.7 m 2 k/w. The geometry of these two test-rooms is extremely similar. Each test room is installed a separate HVAC system and distributes make-up air from UFAD system in Room A and traditional ceiling-based system in Room B respectively. All the diffusers and exhausts can be moved and operated simultaneously or individually in both chambers. Table 1 shows the dimensions of the chambers and also shows the capacity of HVAC systems. Figure 1(2) illustrates the HVAC system configuration and control interface. The interface allows an interactive control of the systems. An operator can set an overall temperature and humidity or change any parameters, such as the percentage of the cooling load, heating load, and humidifying rate, by clicking the icon and typing the number into the pop-up window. Outdoor Room A Room B (1) Two-room chamber (2) The control interface of HVAC system Figure 1. Sketch of the test facility Table 1. Dimension and HVAC system capacity of the test facility Items Test Room Room A Room B Dimension Length 2.21 m 3.38 m 3.38 m Width 3. m 3. m 3. m 2.7 m 2.4 m 2.4 m Modular system. m. m. m Window size none 2.89 m(w) 1.7 m(h) none Capacity of HVAC system Chiller 15, kcal/hr for all chambers system FCU (fan coil unit) AHU (air handling unit) AHU Supply fan 51 m 3 /hr 24 m 3 /hr 24 m 3 /hr Heater none 4 kw 4 kw Humidifier none 8 kg/hr 8 kg/hr Fresh air 12 m 3 /hr for all chambers

3 2.2. Equipment The major measuring equipment includes: A thermo-couple system for measuring outdoor/indoor air temperatures, A thermal comfort system for evaluating the thermal comfort of indoor climate and heat stress, and A multi-purpose meter for air velocity, air volume flow, temperature, and relative humidity measurements. We use a 12-channel data logger with thermo-couples to measure air temperature. First two channels are for monitoring the temperatures of the outdoors and buffer room, and the rest ten channels are to measure the indoor temperature profiles. The error of temperature measurements by the entire system is about.3 C. The INNOVA 1221 data logger with comfort module UA1276 is adopted to measure the physical parameters used in evaluating thermal comfort such as (in accordance with ISO 77) PMV and PPD. The probe position is set at middle of the room and FL +1.1m height, where represents the occupants breathing zone in seat. The air movement is generally slow in a room. There is factually no one perfect instrument to provide reliable results when the air velocity is lower than.1 m/s at many locations in a room. Therefore, we use a thermo-anemometer in measuring the inlet velocity from the UFAD system. The accuracy is ±.3 m/s or ±.5% of the readings Test procedure In order to observe the characteristics of the UFAD system performed in Taiwan, we conducted several measurements in summertime with different vent systems, time periods, and measured positions. The indoor climate of both test rooms was controlled at the temperature of 26 C and relative humidity of 5% by DDC system, and the remote sensors were installed at the sided wall of test rooms at the height of breathing zone. The heat sources indoors were one real PC system generated 25W and four sets of overhead lighting used the sixteen 2W fluorescent lamps totally. The occupants in the test room were arranged by two researchers, and operated the test instruments. A total of ten thermo-couples were used to measure the vertical temperature profile, which were supported on a movable pole from the floor to ceiling in equidistance. Measurements were conducted under steady-state conditions by stabilizing the room thermal and fluid parameters for more than two hours before recording the data. Figure 2 shows the pre-test results of the test facility. Good stability of this 12 thermo-couples monitored in a same point, because the standard error was.3 C. The benchmarks of the capacity of the HVAC system in Room A were measured at the positive change rate of C/hr and the negative change rate of 6.35 C/hr in temperature Temperature ( ) : :2 :4 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P11 P12 :6 :8 :1 :12 :14 Time (min) :16 :18 :2 :22 :24 Temperature ( ) : :6 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1 P11 P12 :12 :18 :24 : :36 Time (min) (1) Stability test for the thermo-couple system (2) Capacity curve of the HVAC system Figure 2. Pre-test results of the test facility :42 :48 :54 1:

4 3. Results 3.1. Comparison of thermal stratifications between UFAD and Ceiling diffuser system Table 2 shows the measured results of the thermal stratifications. The temperature magnitude of three sections of both test room were measured. The stratification was plotted as the contour of shading value by visualization software. Seven tones of the gray were represented as the temperature scale from 21 to 27 C. These post-process plots are practical for designers to identify the thermal profiles from the different air supply system. Table 2. Comparison of thermal stratifications between the UFAD and CD systems Room A: UFAD System Room B: Ceiling Diffuser System A1 S3 section in Room A B1 S3 section in Room B A2 S4 section in Room A B2 S4 section in Room B A3 S5 section in Room A B3 S5 section in Room B

5 3.2. Thermal profiles in the room with UFAD system Figure 3 shows three scene of the comparisons on the temperature profiles. Compared to the traditional ceiling diffuser system, the shading value of the plots in the UFAD case performs the blend grays, which represents a moderate temperature of 23.3 C at the height of 1.2 m. Because of maintaining the same temperature in the breathing zone, it can be measured the lower inlet air velocity from the multi-apertured elevated floor. In Room B (the traditional ceiling diffuser case), cold air was jetted out from the ceiling side to the breathing zone directly with higher air velocity, which caused the Cold Draft, and accumulated in the upper zone of the room space. In Room A (the UFAD case), cold air spread from the floor diffuser and exhausted through the vent on the ceiling Outdoors Outdoors Rm.A P Rm.A P2 Nighttime Room A Rm.A P3 Daytime Room B (1) Different positions in Room A (2) Differences between daytime and nighttime (3) Central positions of both rooms Figure 3. Temperature Profiles in rooms 3.3. Comparisons on thermal profiles measured in the daytime and nighttime Figure 4 shows the measured results of temperature profiles of Room A. The curves with circle mark represent the measurement in daytime, and the curves with square mark stand for the measurement in nighttime. Although the difference of outdoor daytime temperature and nighttime temperature is significant, the profiles of most indoor positions are similar. 4. Conclusions This paper presents the detailed thermal data of a room with UFAD system. The data are beneficial for validating a CFD program. This phenomenon of displacement ventilation, which induced by the UFAD system, is not only reasonable to mix the heats fluxed from the equipment and occupants, but also favorable to relieve the cold draft. It is also useful for indoor environment design. Acknowledgements Support from the National Science Council of ROC through grant No. NSC Z in this study is gratefully acknowledged. Also, we are especially grateful to ARCHILIFE Research Foundation for their financial support.

6 References Brahme, R. and Loftness, V.; et al. (22). IAQ, energy, and cost implications of under- floor air distribution systems. Proceedings of Indoor Air 22, 4, Chiang, C.M. and Chou, P.C.; et al. (1999). The influence of HVAC systems on indoor air quality in the office buildings in commercial districts in Taiwan. Proceedings of 1999 Asia-Pacific Conference on the Built Environment, F5, 1-6. Chiang, C.M. and Chou, P.C.; et al. (21). A methodology to assess the indoor environment in care centers for senior citizens, Building and Environment, 36(4), OA A5 A4 A OA B5 B4 B3 B2 B OA C5 C4 C3 C2 C OA D5 D4 D3 D2 D OA Temperature Figure 4. Key Map E5 E4 E3 E2 E Temperature profiles in the room with UFAD system Chou, P.C. and Chiang, C.M.; et al. (1998). Effects of window positions on the air flow distribution in a cross-ventilated residential bedroom. Indoor+Built Environment, 7(5-6), -7. Fanger, P.O. (1996). The Philosophy behind Ventilation: Past, Present and Future. Proceedings of Indoor Air 96, 4, Kim, J.J.; Chang, J.D. and Park, J.C. (22). Computer modeling of underfloor air supply system. Proceedings of Indoor Air 22, 4, Turner, F. (1998). Achieving IAQ and Efficiency. ASHRAE Journal, 4(12), Webster, T.L. and Bauman, F.S.; et al. (22). Thermal stratification performance of underfloor air distribution (UFAD) systems. Proceedings of Indoor Air 22, 4, Holland, D. and Livchak, A. (22). Improving indoor air quality in schools by utilizing displacement ventilation system. Proceedings of Indoor Air 22, Vol. 4,

These systems are offered an alternative to overhead, mixing ventilation (MV), systems. Due to their potential advantages which are [1]:

These systems are offered an alternative to overhead, mixing ventilation (MV), systems. Due to their potential advantages which are [1]: Prediction of thermal comfort, IAQ, and Energy consumption in a dense occupancy environment with the under floor air distribution system Ghassem Heidarinejad 1, Mohammad Hassan Fathollahzadeh 2, Hadi Pasdarshahri

More information

A STUDY ON THE INFLUENCE OF HORIZONTAL LOUVERS ON NATURAL VENTILATION IN A DWELLING UNIT

A STUDY ON THE INFLUENCE OF HORIZONTAL LOUVERS ON NATURAL VENTILATION IN A DWELLING UNIT A STUDY ON THE INFLUENCE OF HORIZONTAL LOUVERS ON NATURAL VENTILATION IN A DWELLING UNIT CM Chiang 1, NT Chen 1, PC Chou, YY Li, IC Lien 1 1 Dept. of Architecture, National Cheng Kung University, Chinese

More information

LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS

LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS Elena Buchberger - ebuch@iuav.it Luca Porciani, porciani@iuav.it Fabio Peron, fperon@iuav.it Universita IUAV di Venezia,

More information

REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS. Galway, Ireland

REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS. Galway, Ireland REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS Magdalena Hajdukiewicz 1,2,3, Padraig O Connor 1, Colin O Neill 1, Daniel Coakley 1,2,3, Marcus M. Keane 1,2,3, Eoghan Clifford 1,2,3 1 Department

More information

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1 BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY Dr Mirek Piechowski 1, Adrian Rowe 1 Meinhardt Building Science Group, Meinhardt Australia 1 Level 12, 501

More information

COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM

COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM JJ Kim, JD Chang, and JC Park Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, MI, USA ABSTRACT An underfloor air

More information

Indoor Air 2005, Beijing, China Effectiveness of confluent jets ventilation system for classrooms

Indoor Air 2005, Beijing, China Effectiveness of confluent jets ventilation system for classrooms Effectiveness of confluent jets ventilation system for classrooms T. Karimipanah 1, H.B. Awbi 2, C. Blomqvist 3 and M. Sandberg 3 ABSTRACT 1 Fresh AB, Sweden, taghi.k@comhem.se 2 University of Reading,

More information

DISPLACEMENT VENTILATION

DISPLACEMENT VENTILATION DISPLACEMENT VENTILATION D3 OVERVIEW The fundamental approach to displacement ventilation utilizes the natural buoyancy forces created by the convective flows from heat sources in the space. As supply

More information

Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis

Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis Ali Alajmi Associate Professor College of Technological Studies, Kuwait Outline Introduction Motivation HVAC s Air Distribution

More information

The Pennsylvania State University. The Graduate School. Department or Architectural Engineering THERMAL AND VENTILATION PERFORMANCE

The Pennsylvania State University. The Graduate School. Department or Architectural Engineering THERMAL AND VENTILATION PERFORMANCE The Pennsylvania State University The Graduate School Department or Architectural Engineering THERMAL AND VENTILATION PERFORMANCE OF COMBINED PASSIVE CHILLED BEAM DISPLACEMENT VENTILATION SYSTEMS A Thesis

More information

The Performance of the Passive Ventilation of Vertical Chimney in Taiwan Considering Global Warming

The Performance of the Passive Ventilation of Vertical Chimney in Taiwan Considering Global Warming The Performance of the Passive Ventilation of Vertical Chimney in Taiwan Considering Global Warming Wei-Ying Chang 1, Po-Cheng Chou 1, Che-Ming Chiang 2 1 Graduate Institute of Architecture and Environment

More information

Floor-Supply Displacement Ventilation in a Small Office

Floor-Supply Displacement Ventilation in a Small Office Kobayashi, N. and Chen, Q. 2003. Floor-supply displacement ventilation in a small office, Indoor and Built Environment, 12(4), 281-292. Floor-Supply Displacement Ventilation in a Small Office Nobukazu

More information

New Climate-Oriented Designing and Controlling Strategy for Sustainable Building in Subtropical Region

New Climate-Oriented Designing and Controlling Strategy for Sustainable Building in Subtropical Region New Climate-Oriented Designing and Controlling Strategy for Sustainable Building in Subtropical Region Che-Ming Chiang 1 Huey-Jen Jenny Su 2 Kee-Chiang Chung 1 Fung-Ming Lin 1 Po-Cheng Chou 1 Yen-Yi Li

More information

Performance Investigation of Building Ventilation System by Calculating Comfort Criteria through HVAC Simulation

Performance Investigation of Building Ventilation System by Calculating Comfort Criteria through HVAC Simulation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684Volume 3, Issue 6 (Nov. - Dec. 2012), PP 07-12 Performance Investigation of Building Ventilation System by Calculating Comfort

More information

Designing Air-Distribution Systems To Maximize Comfort

Designing Air-Distribution Systems To Maximize Comfort Designing Air-Distribution Systems To Maximize Comfort By David A. John, P.E., Member ASHRAE An air-distribution system that provides occupant thermal comfort can be a complicated system to predict and

More information

Underf loor For Schools

Underf loor For Schools The following article was published in ASHRAE Journal, May 2008. Copyright 2008 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes

More information

A DEVELOPMENT OF A HVAC EXPERIMENTAL CHAMBER AND ITS NUMERICAL MODELâ ÒNUMERICAL HVAC EXPERIMENTAL CHAMBER,Ó ON A COMPUTER

A DEVELOPMENT OF A HVAC EXPERIMENTAL CHAMBER AND ITS NUMERICAL MODELâ ÒNUMERICAL HVAC EXPERIMENTAL CHAMBER,Ó ON A COMPUTER A DEVELOPMENT OF A HVAC EXPERIMENTAL CHAMBER AND ITS NUMERICAL MODELâ ÒNUMERICAL HVAC EXPERIMENTAL CHAMBER,Ó ON A COMPUTER Masayuki Oguro, Koji Ono, Kazuyoshi Harimoto, Yoshiko Teranishi, Yasushige Morikawa,

More information

On the performance of the Stravent ventilation system in an office space Numerical and experimental investigations

On the performance of the Stravent ventilation system in an office space Numerical and experimental investigations On the performance of the Stravent ventilation system in an office space Numerical and experimental investigations S. Janbakhsh 1, 2 and.b. Moshfegh 1, 2 1 Division of Energy and Mechanical Engineering,

More information

Indoor Airflow Modeling and Data Assimilation. Hengye Yang Ph.D. Student, LISC Dec. 21, 2018

Indoor Airflow Modeling and Data Assimilation. Hengye Yang Ph.D. Student, LISC Dec. 21, 2018 Indoor Airflow Modeling and Data Assimilation Hengye Yang Ph.D. Student, LISC Dec. 21, 2018 1 Motivation Guide the design of built environment Learn about the contaminant transport Identify the pollutant

More information

UNDERFLOOR AIR DISTRIBUTION INTEGRATED WITH AN INDIRECT AND DIRECT EVAPORATIVE COOLING ASSISTED 100% OUTDOOR AIR SYSTEM

UNDERFLOOR AIR DISTRIBUTION INTEGRATED WITH AN INDIRECT AND DIRECT EVAPORATIVE COOLING ASSISTED 100% OUTDOOR AIR SYSTEM UNDERFLOOR AIR DISTRIBUTION INTEGRATED WITH AN INDIRECT AND DIRECT EVAPORATIVE COOLING ASSISTED 100% OUTDOOR AIR SYSTEM YJ Seok, HJ Cho, SK Han and JW Jeong Department of Architectural Engineering, Sejong

More information

Investigation of air quality, comfort parameters and effectiveness for two floor level air supply systems in classrooms

Investigation of air quality, comfort parameters and effectiveness for two floor level air supply systems in classrooms Investigation of air quality, comfort parameters and effectiveness for two floor level air supply systems in classrooms T. Karimipanah 1,2,3, H.B. Awbi 2, M. Sandberg 3 and C. Blomqvist 3 1 Fresh AB, Sweden,

More information

THE REVISED VERSION OF THE GB TOOL FOR SUBTROPICAL TAIWAN FROM THE BARRIER TO SUCCESS

THE REVISED VERSION OF THE GB TOOL FOR SUBTROPICAL TAIWAN FROM THE BARRIER TO SUCCESS 04-027 THE REVISED VERSION OF THE GB TOOL FOR SUBTROPICAL TAIWAN FROM THE BARRIER TO SUCCESS Chang K.F., PhD. Candidate 1, Chou P.C., PhD. 2, Chiang C.M., Dr.Eng 3, Chen I. C., PhD. 2 1 Archilife Environ-Control

More information

Modelling Thermal Comfort and Energy Saving Enhancements in an Office Room Served by Stratified Air Distribution Systems

Modelling Thermal Comfort and Energy Saving Enhancements in an Office Room Served by Stratified Air Distribution Systems Modelling Thermal Comfort and Energy Saving Enhancements in an Office Room Served by Stratified Air Distribution Systems Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

More information

THERMAL STRATIFICATION PERFORMANCE OF UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEMS

THERMAL STRATIFICATION PERFORMANCE OF UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEMS THEMAL TATIFICATION PEFOMANCE OF UNDEFLOO AI DITIBUTION (UFAD) YTEM TL Webster 1*, F Bauman 1, J eese 2 and M hi 1 1 Center for the Built Environment, University of California, Berkeley, CA, UA 2 York

More information

On the performance of confluent jets ventilation system in office space

On the performance of confluent jets ventilation system in office space On the performance of confluent jets ventilation system in office space T. Karimipanah 1 and B. Moshfegh 1, 2 1 Division of Energy and Mechanical Engineering, Department of Technology and Built Environment,

More information

Influence of Lighting Loads upon Thermal Comfort under CBAD and UFAD Systems

Influence of Lighting Loads upon Thermal Comfort under CBAD and UFAD Systems Energies 2015, 8, 6079-6097; doi:10.3390/en8066079 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Influence of Lighting Loads upon Thermal Comfort under CBAD and UFAD Systems

More information

LESSONS LEARNED IN MODELING UNDERFLOOR AIR DISTRIBUTION SYSTEM

LESSONS LEARNED IN MODELING UNDERFLOOR AIR DISTRIBUTION SYSTEM LESSONS LEARNED IN MODELING UNDERFLOOR AIR DISTRIBUTION SYSTEM Kwang Ho Lee 1, 2, Stefano Schiavon 1, Tom Webster 1, Fred Bauman 1, Jingjuan Feng 1, Tyler Hoyt 1 1 Center for the Built Environment, University

More information

A Sensitivity Analysis on Mixing Energy Loss in Air-Conditioned Rooms by Using CFD

A Sensitivity Analysis on Mixing Energy Loss in Air-Conditioned Rooms by Using CFD A Sensitivity Analysis on Mixing Energy Loss in Air-Conditioned Rooms by Using CFD S. Iizuka 1, S. Shiba 1,*, M. Sasaki 1, M. Okumiya 1 1 Nagoya University, Nagoya, Japan ABSTRACT In some office buildings,

More information

Examples of IEQ factors. Healthy IEQ and energy efficiency. What type of system is the best? Ideas and concepts from research and reality.

Examples of IEQ factors. Healthy IEQ and energy efficiency. What type of system is the best? Ideas and concepts from research and reality. Healthy IEQ and energy efficiency Ideas and concepts from research and reality Lars Ekberg Energy Management AB A Chalmers Industriteknik Company 1 Examples of IEQ factors Thermal climate -operative temp.

More information

Optimizing Indoor Environments for Occupant Satisfaction. Presented by: Kelli Goldstone April 2016

Optimizing Indoor Environments for Occupant Satisfaction. Presented by: Kelli Goldstone April 2016 Optimizing Indoor Environments for Occupant Satisfaction Presented by: Kelli Goldstone April 2016 Outline Function of HVAC Thermal Comfort Air Distribution Radiant Heating / Cooling Case Study Function

More information

Proceedings of Clima 2007 WellBeing Indoors

Proceedings of Clima 2007 WellBeing Indoors Experimental Study of Thermal Environment and Comfort in an Office Room with a Variable Air Volume (VAV) System under Low Supply Air Temperature Conditions Mari-Liis Maripuu Chalmers University of Technology,

More information

Sustainable Designed Air-Conditioned Mosque For Thermal Comfort

Sustainable Designed Air-Conditioned Mosque For Thermal Comfort Sustainable Designed Air-Conditioned Mosque For Thermal Comfort Presented by Prof. Dr. Essam E. Khalil, Fellow ASHRAE, Fellow ASME, Fellow AIAA Professor of Mechanical Power Engineering Prepared by Redhwan

More information

PERFORMANCE EVALUATION OF TWO AIR DISTRIBUTION SYSTEMS. T Karimipanah 1 and H B Awbi 2

PERFORMANCE EVALUATION OF TWO AIR DISTRIBUTION SYSTEMS. T Karimipanah 1 and H B Awbi 2 PERFORMANCE EVALUATION OF TWO AIR DISTRIBUTION SYSTEMS T Karimipanah 1 and H B Awbi 2 1 Air Innovation AB, Sweden 2 University of Reading, UK ABSTRACT This paper focuses on evaluating the performance of

More information

Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA

Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA GWENEDD MURRAY 1 1 Architectural Association, Inc., London, United Kingdom ABSTRACT: The primary intention

More information

STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM

STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM B Liu,*, N Zhu 2, RQ Zhang.Dep. Of Refrigeration, Tianjin University of Commerce, 334, lbtjcu@tjcu.edu.cn 2.Environment School, Tianjin

More information

EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION CFD STUDY

EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION CFD STUDY e-issn 2455 1392 Volume 2 Issue 4, April 2016 pp. 202-207 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION

More information

Ventilation performance measurement of a decentralized mechanical system with heat recovery using Tracer gas decay method

Ventilation performance measurement of a decentralized mechanical system with heat recovery using Tracer gas decay method Ventilation performance measurement of a decentralized mechanical system with heat recovery using Tracer gas decay method Youness Ajaji 1,*, Philippe André 1 1 University of Liege, Arlon Campus Environnement,

More information

CFD Study on Inter-Action between NonIsothermal Airflow and Buoyancy Plume in an AirConditioned Space

CFD Study on Inter-Action between NonIsothermal Airflow and Buoyancy Plume in an AirConditioned Space Wang et al. CFD Letters www.cfdl.issres.net Vol. 2(3) 2010 Vol. 2(3) September 2010 CFD Study on Inter-Action between NonIsothermal Airflow and Buoyancy Plume in an AirConditioned Space Xin. Wang1C and

More information

Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels

Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels Farhad Memarzadeh 1, Andy Manning 2 and Zheng Jiang 2 1 National Institutes

More information

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya (vahid.vakiloroaya@engineer.com) ABSTRACT: The overall attainable reduction in energy consumption and enhancement of

More information

Tage Møller Architect office building

Tage Møller Architect office building Architect office building presentation! It was built 1996 in windy surroundings.! It has a floor area of about 300 m 2.! The room height varies from 2.4 to 5 meters. PLAN VIEW N presentation The building

More information

CFD and Wind Tunnel Study of the Performance of a Multi- Directional Wind Tower with Heat Transfer Devices

CFD and Wind Tunnel Study of the Performance of a Multi- Directional Wind Tower with Heat Transfer Devices Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 1692 1697 The 7 th International Conference on Applied Energy ICAE2015 CFD and Wind Tunnel Study of the Performance of

More information

DYNAMIC ENERGY MODELING OF AN EXPERIMENTAL BUILDING EQUIPPED WITH AN UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM

DYNAMIC ENERGY MODELING OF AN EXPERIMENTAL BUILDING EQUIPPED WITH AN UNDERFLOOR AIR DISTRIBUTION (UFAD) SYSTEM American Journal of Engineering and Applied Sciences 7 (1): 23-35, 2014 ISSN: 1941-7020 2014 Megri and Yu, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license

More information

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building J. Zuo, L. Daniel, V. Soebarto (eds.), Fifty years later: Revisiting the role of architectural science in design and practice: 50 th International Conference of the Architectural Science Association 2016,

More information

DESIGN ANALYSIS OF AN OFFICE VENTILATION SYSTEM VIA CALIBRATED CFD APPLICATION

DESIGN ANALYSIS OF AN OFFICE VENTILATION SYSTEM VIA CALIBRATED CFD APPLICATION DESIGN ANALYSIS OF AN OFFICE VENTILATION SYSTEM VIA CALIBRATED CFD APPLICATION M. Taheri, M. Schuss, A. Fail, and A. Mahdavi Department of Building Physics and Building Ecology, Vienna University of Technology,

More information

Thermal Thermal Applications Category Version 6.4. Integrated Environmental Solutions

Thermal Thermal Applications Category Version 6.4. Integrated Environmental Solutions Thermal Thermal Applications Category Version 6.4 Integrated Environmental Solutions Contents 1. What is the Thermal Applications Category?... 4 1.1. Compliance View... 4 1.2. Apache

More information

CFD in Ventilation, case studies from REHVA CFD guidebook

CFD in Ventilation, case studies from REHVA CFD guidebook CFD in Ventilation, case studies from REHVA CFD guidebook by Peter V. Nielsen Aalborg University Peter V. Nielsen, Aalborg University pvn@civil.auc.dk 1 Outline of Lecture Study of ideas behind the air

More information

Thermal Environment evaluation in commercial kitchens

Thermal Environment evaluation in commercial kitchens Downloaded from orbit.dtu.dk on: Nov 11, 2018 Thermal Environment evaluation in commercial kitchens Simone, Angela; Olesen, Bjarne W. Publication date: 2013 Link back to DTU Orbit Citation (APA): Simone,

More information

Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space

Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space Ali Alzaid 1, Maria Kolokotroni 1, Hazim Awbi 2 1 Mechanical Engineering, Brunel University

More information

Indoor comfort and air quality in spaces equipped with eco-ventilation systems

Indoor comfort and air quality in spaces equipped with eco-ventilation systems ICUC9-9 th International Conference on Urban Climate jointly with th Symposium on the Urban Environment Indoor comfort and air quality in spaces equipped with eco-ventilation systems Eusébio Z. E. Conceição,

More information

Air Distribution and Microenvironment Evaluation of a Desktop Task. Conditioning System 1

Air Distribution and Microenvironment Evaluation of a Desktop Task. Conditioning System 1 Air Distribution and Microenvironment Evaluation of a Desktop Task Conditioning System 1 Guozhong Zheng School of Energy and Power Engineering, North China Electric Power University Baoding, P.R. China,

More information

Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems

Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems Lee, K.S., Zhang, T., Jiang, Z., and Chen, Q. 2009. Comparison of airflow and contaminant distributions in rooms with traditional displacement ventilation and under-floor air distribution systems, ASRAE

More information

Evaluation of thermal comfort, indoor air quality and energy saving of a Local Exhaust Ventilation system in an Office room (LEVO)

Evaluation of thermal comfort, indoor air quality and energy saving of a Local Exhaust Ventilation system in an Office room (LEVO) Evaluation of thermal comfort, indoor air quality and energy saving of a Local Exhaust Ventilation system in an Office room (LEVO) Ahmed Qasim Ahmed 1, 2, *, Shian Gao 1, Ali Khaleel Kareem 1 1 Department

More information

Work Package 2: Performance of naturally ventilated buildings

Work Package 2: Performance of naturally ventilated buildings Work Package 2: Performance of naturally ventilated buildings Detailed Monitoring Report The architectural office of Malmö (SE1) Åke Blomsterberg, Charlotte Svensson J&W Consulting Engineers Building Physics,

More information

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS Daeho Kang 1, Richard K. Strand 2 1 Department of Environmental Control Technology, New York

More information

VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS. Stephanie Gauthier 1, David Shipworth 1

VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS. Stephanie Gauthier 1, David Shipworth 1 1 2 3 4 5 6 7 8 9 10 VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS ABSTRACT Stephanie Gauthier 1, David Shipworth 1 1 UCL Energy Institute, London, United-Kingdom

More information

Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement

Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement Downloaded from orbit.dtu.dk on: Mar 08, 2019 Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement Simone, Angela; Yu, Juan ; Levorato, Gabriele

More information

Prediction of Thermal Comfort. mech14.weebly.com

Prediction of Thermal Comfort. mech14.weebly.com Prediction of Thermal Comfort Thermal Sensation Scale (Rohles & Nevins, 1974) Fanger s Thermal Comfort Model (1982) Steady state model, applicable for M 3 met and a large group of people Fanger s Thermal

More information

Thermal Comfort Evaluation of HDB flats

Thermal Comfort Evaluation of HDB flats Thermal Comfort Evaluation of HDB flats Objective Measurements For this study, empirical data on the thermal comfort parameters (i.e. room space temperature, velocity and relative humidity) was collected

More information

Performance of Wall Confluent Jets Ventilation System in School Environment compared with Displacement Ventilation

Performance of Wall Confluent Jets Ventilation System in School Environment compared with Displacement Ventilation Performance of Wall Confluent Jets Ventilation System in School Environment compared with Displacement Ventilation Prepared by: Taghi Karimipanah 1,2, Dr Eng. (Indoor Air) Collaborators: Prof. H. Awbi

More information

Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments

Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments Topic 3. Indoor and outdoor air quality, thermal comfort and health impact related to built environment Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments Tateh Wu 1,*,

More information

HOW THE NUMBER AND PLACEMENT OF SENSORS CONTROLLING ROOM AIR DISTRIBUTION SYSTEMS AFFECT ENERGY USE AND COMFORT

HOW THE NUMBER AND PLACEMENT OF SENSORS CONTROLLING ROOM AIR DISTRIBUTION SYSTEMS AFFECT ENERGY USE AND COMFORT HOW THE NUMBER AND PLACEMENT OF SENSORS CONTROLLING ROOM AIR DISTRIBUTION SYSTEMS AFFECT ENERGY USE AND COMFORT Danni Wang Graduate Student Edward Arens Director Tom Webster Research Specialist Center

More information

Performance of Ductless Personalized Ventilation in Open-Plan Office - Field Survey

Performance of Ductless Personalized Ventilation in Open-Plan Office - Field Survey Downloaded from orbit.dtu.dk on: Dec 31, 2019 Performance of Ductless Personalized Ventilation in Open-Plan Office - Field Survey Dalewski, Mariusz; Ezzat Khalifa, H. ; Melikov, Arsen Krikor Published

More information

Thermal Comfort Zone for Thai People

Thermal Comfort Zone for Thai People Engineering, 013, 5, 55-59 http://dx.doi.org/10.436/eng.013.5506 Published Online May 013 (http://www.scirp.org/journal/eng) Thermal Comfort Zone for Thai People Juntakan Taweekun *, Ar-U-Wat Tantiwichien

More information

Energy efficient thermal comfort. Bin Yang Assistant Professor (Umeå University) Mar 24 th, 2017

Energy efficient thermal comfort. Bin Yang Assistant Professor (Umeå University) Mar 24 th, 2017 Energy efficient thermal comfort Bin Yang Assistant Professor (Umeå University) Mar 24 th, 2017 Outlines 1 Mixing ventilation (MV) 2 Displacement ventilation (DV) and underfloor air distribution (UFAD)

More information

Evaluation of Underfloor Air Distribution

Evaluation of Underfloor Air Distribution McCarran International Airport Terminal 3 L as Vegas, NV Evaluation of Underfloor Air Distribution and Displacement Ventilation Systems The Pennsylvania State University AESenior ThesisPresentation, Spring

More information

MEP's Letter of Assurance

MEP's Letter of Assurance MEP's Letter of Assurance Instructions Multifamily Residential WELL Certification is determined by onsite Performance Verification and documentation, including Letters of Assurance from the appropriate

More information

UC Berkeley HVAC Systems

UC Berkeley HVAC Systems UC Berkeley HVAC Systems Title Outlook for underfloor air distribution Permalink https://escholarship.org/uc/item/5v60x57q Authors Bauman, Fred Webster, T. Publication Date 2001-06-01 Peer reviewed escholarship.org

More information

Thermal Environment evaluation in Commercial kitchens: Procedure of data collection

Thermal Environment evaluation in Commercial kitchens: Procedure of data collection Thermal Environment evaluation in Commercial kitchens: Procedure of data collection Angela Simone *, Bjarne W. Olesen ICIEE-BYG, Technical University of Denmark, Kgs. Lyngby, Denmark * email: asi@byg.dtu.dk

More information

Evaluating Alternative Fume Hood System Technologies Using Advanced Building Simulation

Evaluating Alternative Fume Hood System Technologies Using Advanced Building Simulation Evaluating Alternative Fume Hood System Technologies Using Advanced Building Simulation William J. Kosik, P.E., C.E.M. 1 Karl Aveard, AIA Associate 2 Heather R. Beaudoin, P.E., C.E.M. 3 Erik L. Olsen 3

More information

RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM

RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM - 1 - RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM Yoshinori Suzuki, Master course Student, Masaya Hiraoka, Kajima Corporation, Shin-ichi Tanabe, Professor, Waseda University,

More information

Attaining Thermal Comfort in. Buildings with Predominantly. Glazed Facades. presented to: ANSYS Boston Regional Conference

Attaining Thermal Comfort in. Buildings with Predominantly. Glazed Facades. presented to: ANSYS Boston Regional Conference Attaining Thermal Comfort in Buildings with Predominantly Glazed Facades presented to: ANSYS Boston Regional Conference September 14, 2011 Case Study Background High floor to ceiling windows Large skylight

More information

UC Berkeley Indoor Environmental Quality (IEQ)

UC Berkeley Indoor Environmental Quality (IEQ) UC Berkeley Indoor Environmental Quality (IEQ) Title Energy savings from extended air temperature setpoints and reductions in room air mixing Permalink https://escholarship.org/uc/item/28x9d7xj Authors

More information

Analysis of the Window Side Thermal Environment Formed by Air Barrier. Technique in Winter Conditions and Its Economy

Analysis of the Window Side Thermal Environment Formed by Air Barrier. Technique in Winter Conditions and Its Economy Analysis of the Window Side Thermal Environment Formed by Air Barrier Technique in Winter Conditions and Its Economy Chen Huang 1 Yufeng Jia 1 Lan Liu 2 Xin Wang 1 Professor Post Graduate Senior Engineer

More information

Investigation and Analysis of Winter Classroom Thermal Environment. In Chongqing

Investigation and Analysis of Winter Classroom Thermal Environment. In Chongqing ESL-IC-61-8 ICEBO26, Shenzhen, China Investigation and Analysis of Winter Classroom Thermal Environment In Chongqing Jing Liu Baizhan Li Runming Yao Postgraduate Ph.D Ph.D Professor Senior researcher Chongqing,

More information

A Solar Wall System Utilized in Rural Houses of Northeast China

A Solar Wall System Utilized in Rural Houses of Northeast China A Solar Wall System Utilized in Rural Houses of Northeast China Tiantian Zhang and Yufei Tan in rural buildings, for instance, only 16.4% of the investigated houses employ solar energy to produce hot water

More information

Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions

Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions Downloaded from orbit.dtu.dk on: Oct 29, 2018 Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions Lipczynska, Aleksandra

More information

ON THE ENERGY CONSUMPTION OF HIGH- AND LOW-LEVEL AIR SUPPLIES

ON THE ENERGY CONSUMPTION OF HIGH- AND LOW-LEVEL AIR SUPPLIES ON THE ENERGY CONSUMPTION OF HIGH- AND LOW-LEVEL AIR SUPPLIES T. Karimipanah 1, H. B. Awbi 2 and B. Moshfegh 1 1 University of Gävle, Sweden 2 University of Reading, UK Email: taghi.k@comhem.se, h.b.awbi@rdg.ac.uk,

More information

Work Package 2: Performance of naturally ventilated buildings

Work Package 2: Performance of naturally ventilated buildings Work Package 2: Performance of naturally ventilated buildings Detailed Monitoring Report The Pfizer Building (NO2) Peter Blom The Norwegian Building Research Institute Technical division Table of contents

More information

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE S447 THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE by Bojan V. ANDJELKOVIĆ *,a, Branislav V. STOJANOVIĆ b, Mladen M. STOJILJKOVIĆ b, Jelena N. JANEVSKI

More information

Chapter 8: Indoor Environmental Quality

Chapter 8: Indoor Environmental Quality Chapter 8: Indoor Environmental Quality 1 Learning Objectives Minimum indoor air quality performance Environmental tobacco smoke control Enhanced indoor air quality strategies Low-emitting materials Construction

More information

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE Andjelković, V., B.et. al.: Thermal Mass Impact on Energy Performance of A Low, Medium and Heavy S507 THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE by Bojan

More information

Potential of natural ventilation in shopping centres

Potential of natural ventilation in shopping centres Indoor Air 28, 17-22 August 28, Copenhagen, Denmark - Paper ID: 758 Potential of natural ventilation in shopping centres Alice Diederichsen 1,*, Kristina Friis 1, Henrik Brohus 2 and Gitte T. Tranholm

More information

Year-round Energy Saving Potential for a Stratum Ventilated Subtropical Office. C.K. Lee Zhang Lin K.F. Fong

Year-round Energy Saving Potential for a Stratum Ventilated Subtropical Office. C.K. Lee Zhang Lin K.F. Fong Year-round Energy Saving Potential for a Stratum Ventilated Subtropical Office C.K. Lee Zhang Lin K.F. Fong Building Energy & Environmental Technology Research Unit, School of Energy and Environment &

More information

Centre for Sustainability of the Built Environment

Centre for Sustainability of the Built Environment Case Study Report Indoor air quality of a demandcontrolled air-conditioning system Mayfield House Lecture Theatre, Falmer Campus, University of Brighton European Regional Development Fund Executive summary

More information

Slab cooling system design using computer simulation

Slab cooling system design using computer simulation Slab cooling system design using computer simulation Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M. Published in: Proceedings of the International CESB Conference 07, 24-26 September, Czech Technical

More information

Evaluation methods for indoor environmental quality assessment according to EN15251

Evaluation methods for indoor environmental quality assessment according to EN15251 Summary of this article was published in the REHVA European HVAC Journal Vol 49, Issue 4 (August), 2012, pages 14-19, available at http://www.rehva.eu/en/rehva-european-hvac-journal. Evaluation methods

More information

An Analytical Solution for Steady Temperature Profiles in a Vertically Stratified Environment

An Analytical Solution for Steady Temperature Profiles in a Vertically Stratified Environment Modern Applied Science; Vol. 8, No. 4; 2014 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education An Analytical Solution for Steady Temperature Profiles in a Vertically

More information

Thermo Active Building Systems Using Building Mass To Heat and Cool

Thermo Active Building Systems Using Building Mass To Heat and Cool Downloaded from orbit.dtu.dk on: Jun 08, 2018 Thermo Active Building Systems Using Building Mass To Heat and Cool Olesen, Bjarne W. Published in: A S H R A E Journal Publication date: 2012 Document Version

More information

THE EFFECTS OF INDOOR ENVIRONMENT IN SUPERMARKET ON CLIENTS' AND OPERATORS' SATISFACTION

THE EFFECTS OF INDOOR ENVIRONMENT IN SUPERMARKET ON CLIENTS' AND OPERATORS' SATISFACTION THE EFFECTS OF INDOOR ENVIRONMENT IN SUPERMARKET ON CLIENTS' AND OPERATORS' SATISFACTION Wei l. Gu 1,2, Han Q. Wang 3, and Guang X. Kou 3 1 School of energy and power engineering, Central South University,

More information

SICK BUILDING SYNDROME SYMPTOMS AND PERFORMANCE IN A FIELD LABORATORY STUDY AT DIFFERENT LEVELS OF TEMPERATURE AND HUMIDITY

SICK BUILDING SYNDROME SYMPTOMS AND PERFORMANCE IN A FIELD LABORATORY STUDY AT DIFFERENT LEVELS OF TEMPERATURE AND HUMIDITY SICK BUILDING SYNDROME SYMPTOMS AND PERFORMANCE IN A FIELD LABORATORY STUDY AT DIFFERENT LEVELS OF TEMPERATURE AND HUMIDITY L Fang, DP Wyon, G Clausen and PO Fanger International Centre for Indoor Environment

More information

Ventilation and Cooling

Ventilation and Cooling Natural vs. mechanical Ventilation and Cooling Weighing the benefits and the drawbacks of each type of ventilation system helps the building occupants, owners, and the technicians integrating and monitoring

More information

in UFAD Systems The control of room-air stratification is Design Guidelines for Stratification

in UFAD Systems The control of room-air stratification is Design Guidelines for Stratification Design Guidelines for Stratification in UFAD Systems Guidance for sizing interior and perimeter zones of underfloor-air-distribution systems Editor s note: This is the first of two articles based largely

More information

Numerical Modeling of Buoyancy-driven Natural Ventilation in a Simple Three Storey Atrium Building

Numerical Modeling of Buoyancy-driven Natural Ventilation in a Simple Three Storey Atrium Building Numerical Modeling of Buoyancy-driven Natural Ventilation in a Simple Three Storey Atrium Building Shafqat Hussain and Patrick H. Oosthuizen Department of Mechanical and Materials Engineering, Queen s

More information

Technical Feasibility Study of Hybrid Ventilation for a High-rise Office Building in Shanghai

Technical Feasibility Study of Hybrid Ventilation for a High-rise Office Building in Shanghai Topic 2. Ventilation and Sustainable Development Technical Feasibility Study of Hybrid Ventilation for a High-rise Office Building in Shanghai Yiqun PAN 1,*, Sen HUANG 2, Jiachen MAO 1 1 College of Mechanical

More information

Daylight has been a primary source of lighting in buildings. Daylighting improve indoor environmental quality and visual comfort. Moreover, it reduces

Daylight has been a primary source of lighting in buildings. Daylighting improve indoor environmental quality and visual comfort. Moreover, it reduces Effect of Window on Building Energy Performance and Indoor Environmental Quality T. Aker 1, C. Deniz 2, A. Tabancacı 3 and M.S. Mert 4 1 Energy Institute, Istanbul Technical University, Istanbul, Turkey,

More information

Assessment of Indoor Climate: Learning from Buildings

Assessment of Indoor Climate: Learning from Buildings Roomvent 27: 1 th International Conference on Helsinki, June 1-15, 27 Assessment of Indoor Climate: Learning from Buildings Outdoor climate Edward Arens Center for the Built Environment UC Berkeley Indoor

More information

ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES

ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES Alan Kabanshi, Arman Ameen, Bin Yang, Hans Wigö, Mats Sandberg CORRESPONDENCE ADDRESSES: Alan Kabanshi, Ph.D., University

More information

Numerical Analysis of Ventilation Effectiveness in Occupied Zones for Various Industrial Ventilation Systems

Numerical Analysis of Ventilation Effectiveness in Occupied Zones for Various Industrial Ventilation Systems Numerical Analysis of Ventilation Effectiveness in Occupied Zones for Various Industrial Ventilation Systems Seohiro Kikuchi a *, Kazuhide Ito b, Nobuyuki Kobayashi c a Graduate Student, Tokyo Polytechnic

More information

MEP's Letter of Assurance

MEP's Letter of Assurance MEP's Letter of Assurance Instructions WELL Certification is determined by onsite Performance Verification and documentation, including Letters of Assurance from the appropriate professionals overseeing

More information