Cost-effective primary frequency response at high asynchronous generation levels

Size: px
Start display at page:

Download "Cost-effective primary frequency response at high asynchronous generation levels"

Transcription

1 Cost-effective primary frequency response at high asynchronous generation levels Juha Kiviluoma Wind Integration VTT Technical Research Centre of Finland Espoo, Finland Frans Van Hulle XP Wind Herent, Belgium Andrej Gubina Electricity Research Centre University College Dublin Dublin, Ireland Nicolaos Cutululis DTU Wind Energy Technical University of Denmark Roskilde, Denmark Abstract Restrained generation from wind and solar PV can provide a frequency response that is fast in comparison to conventional generation. However, the reduced inertia in a dispatch with little conventional generation can cause very fast initial drop in the frequency and it may be difficult to mitigate that with wind and solar PV alone. In the paper, we outline a method to compare frequency control strategies in such a system, present typical response characteristics of different options, and simulate some example cases for frequency containment in the Iberian power system. The results are demonstrative and additional analysis is required to draw more robust conclusions and to conclude on the costs and benefits of using wind and PV for frequency response. Keywords- primary frequency control; asynchronous generation; wind power; solar PV; unit commitment; economic dispatch; cost comparison I. INTRODUCTION In a power system, an outage results in a change of system frequency. While synchronous generators provide inertia, which slows down the frequency decline immediately after an outage asynchronous wind power and PV generation don t inherently do the same. If no actions are taken, at high instantaneous penetration levels of asynchronous generation (AG), such as wind power and PV generation, the power system s frequency response to outages or other so-called N-1 events will be inadequate. There are several options to mitigate the problem. In the current approach AG is restrained preventively to keep enough synchronous generation online to provide an adequate primary response. In the second option, AG participates in the primary response by operating wind and solar PV at less than the currently available AG capacity (restrained) and the AG s control systems enable a primary response based on frequency at the point of connection. The increased response from AG can act against the change of system frequency, decreasing the minimum required online synchronous generation. As the third option, some wind generators can provide the so-called synthetic inertia for a short period of time by extracting energy from the rotational momentum of the wind turbine. The fourth option is to use dedicated network-based fast-responding hardware like capacitor banks, batteries, flywheels or pumped hydro units in combination with the fast power electronics devices or FACTS. All of these options and their combinations entail different costs as well as a different frequency response levels and characteristics. Also wind and PV generators have distinct curtailment-related costs and response characteristics. In order to compare the options, it is necessary to establish what constitutes an adequate response from each option before the cost comparison. This paper explores a methodology for the cost comparison, presents typical parameters for the response options, and shows initial results. The analysis is limited to the first seconds after the fault and only primary reserve under droop control is simulated. In the proposed ENTSO-E terminology this is frequency containment reserve (FCR) for conventional generation and a combination of FCR and fast frequency response (FFR) for wind and PV generation. The latter has been proposed by the Irish TSOs and adopted in the REserviceS EU-project setup [1] and used in this paper. II. THE METHOD A. Unit commitment and economic dispatch model In order to evaluate the economics of various frequency control options, one has to consider the cost of running thermal or hydro units at part-load, which is necessary to provide primary frequency response. Similarly, the possible cost of restraining wind and solar generation for the

2 provision of upward reserve has to be optimized from the system point of view. An approximation of this can be achieved with a unit commitment and dispatch model that includes part-load efficiencies, power plant cycling costs and power plant start-up costs. In our case the WILMAR model is used to provide an hourly dispatch for a full year in a high wind penetration scenario. WILMAR is run in a MIP mode where power plant start-ups and shutdowns are modeled with a binary decision. The part-load efficiencies [1], [3] and the cost of wear and tear due to cycling [4] have been approximated based on the sources. The WILMAR model reserves a pre-defined amount of primary reserve. The model does not include frequency or voltage related constraints and can therefore decide on a dispatch schedule that would not be secure. B. Primary response model Occasions where frequency deviations could occur are analysed with a separate dynamic frequency response model. The model takes the online units, their generation level, and demand from WILMAR as an input. For WILMAR, one hour is a flat block, but in reality within the hour the frequency reserves are used to balance the shorter term variations in the system. Therefore, situations where the intra-hour reserves have been heavily deployed should be identified in order to ensure adequate response also in these situations. The dynamic frequency response model is then used to simulate the frequency response to an outage during such situations. The model consists of blocks that represent the frequency related characteristics and controls of power plant turbines, frequency-dependent loads, rotating mass loads, wind and PV generation as well as tie-lines. The model is built in Matlab/Simulink environment. In this paper only primary frequency control is investigated. The lack of secondary frequency control and automatic regulation is parallel to a situation where they have been exhausted within the intra-hour operations. C. Iteration of dispatch and frequency response models For each of the analyzed options, a sufficiently secure frequency response is iterated. The system security after the response is approximated by the frequency nadir after the fault. If this goes below a selected level, the amount of primary response has to be increased in WILMAR and the dispatch is re-optimized. Since the primary response module is fast to solve, it is possible to estimate the increase in the frequency nadir when using different generator types for additional primary response. WILMAR can then use this information in addition to the cost per MW of primary response in the dispatch re-optimization. This paper does not yet iterate between WILMAR and the primary response module. D. Cost comparison Since each case has been iterated to provide adequate frequency response in possibly difficult operational situations, the costs of the dispatch can be compared based on the system costs provided by WILMAR. The operational cost differences are then augmented with annualized capital costs from the devices that enable the frequency response. It is assumed that conventional generators are capable of primary response in any case and no additional cost is considered for them. Cost comparison is not performed in this paper. III. FREQUENCY RESPONSES The work for the paper is carried out within the REserviceS IEE EU-project ( which has already established cost models for the response from wind and solar PV as well as for the other plants in the system [10] [11] [12]. Relevant findings are summarized here. Characteristics of load and network devices are also presented. A. Response from conventional generation The conventional generators in the study have typical values for droop control, inertia and ramp rates. The droop for all units was set so that the response is fully activated after a frequency drop of 0.5 Hz from the nominal 50 Hz. The parameters of the procured units were sent to the primary response model. The full activation time for primary response was around 5 10 seconds for thermal units and 15 seconds for hydro units. The primary response range was about 0.05 p.u. for thermal units and 0.1 p.u. for hydro units. It was assumed that nuclear units do not provide primary frequency response. B. Demand response Load behavior in the network can be similar to tacit energy storage in electrical loads with constant impedance characteristics (predominantly resistive loads). Such loads possess an inherent self-regulation capacity where by reduction of the voltage in case of an outage, their active power is reduced for a few minutes, [5]. In motors, due to their constant apparent power S characteristics the voltage drop translates into the increase in the current, exacerbating the voltage instability problem. An automated frequency response from load could be formed in at least two ways: - Interruptible contracts with large consumers: for example in Ireland, this is called Short Term Active Response (STAR), [6]. STAR is an interruptible load type service by which electricity consumers agree to have either their entire load or a portion of their load disconnected, without notice, during an under-frequency incident, typically between times per annum. With each interruption typically of the order of 5 minutes duration, STAR assists in the recovery of the power system frequency to normal operating conditions following the loss of a major generation in-feed to the power system. The TSO makes payment for the service based on the level of load that an electricity consumer makes available for interruption. - Virtual power plant: when many smaller loads on the MV and LV networks are aggregated, possibly combined with distributed generation sources and jointly dispatched, a so-called virtual power plant can provide network-based demand response of adequate size and speed to provide frequency response on the HV network. Thermostatically controlled loads may lead to temporarily significantly increased active power consumption due to the cold-load pick up phenomenon within (5-50) minutes after these loads try to simultaneously reconnect after an extended outage [5]. However, although these effects of the MV and LV-network connected loads can be felt also on the transmission network sufficiently to impact the system frequency response after the fault, the time constants are far too long for fast frequency response, impacting mainly the restoration efforts.

3 In this paper we have assumed a composition of resistive and motor load in which a 1 % drop in frequency causes a 1 % drop in load. We did not consider large rotating motor loads, whose behavior is dependent on the derivative of the frequency. In the Iberian case study presented below, the total demand for primary reserve in the WILMAR model was 1026 MW. C. Response from wind power plants Wind power technology today in general is able to cope with the required characteristics for active power control. However, frequency support services during frequency drops require faster response. The necessary improvements in capabilities for enabling adequate frequency support services in the future seem to be directed more towards equipment and algorithms for communication and control rather than wind turbine components. The ability of delivering active power control depends on the technology used. There is a limited number of early designed fixed speed and variable speed wind turbines in which active power control is not possible or it is very constrained (up to 1-2 % active power variation). These turbines are estimated to represent less than 20 % the current installed capacity in Europe. It is therefore safe to assume the majority of the wind turbines can participate in fast frequency response. Individual variable speed wind turbines (Type 3 and 4) are able to go from the lowest power level to full rated power in a maximum time response of less than 10 seconds. According to the survey results presented in [10], the response time varies between 1-2 seconds and up to 4-6 seconds for up- and downward regulation. At wind farm level, the total response time increases with the delay of the communication. Furthermore, the response time will be influenced by the generation level or the level of curtailment of wind generation. According to one wind power plant operator, going from 10 to 100 % active power production may take up to 30 sec. In general, for variable speed wind power plants, active power control capability is generally available and very fast ramp rate control can be achieved. Wind power plants are now required to be able to automatically modify the active power output depending on the system frequency. This is also called droop control. At the wind turbine level, the maximum initial delay to provide droop control is less than 1 second according to responses from the wind industry [10]. For wind turbines it is possible to define a dead band for frequency control mode operation. At wind power plant level, the same capability is also available but there is an extra delay of the control response between 500 ms and 2 s on top of the delay at wind turbine level. This is due to the communication and/or processing time at the wind farm controller. While the capabilities for frequency control mode are in general available, how this is done is not standardized. In some cases, at wind power plant level, switching between frequency sensitive modes (FSM) remotely is a procedure that can be done only by the manufacturer even though the capability is available in the wind turbines. There might be cases that operators do not have a direct access to the wind farm to enable the functionality on the wind farm controller themselves. Regarding the capability of receiving and processing active power set points, the requirements are usually very well defined in grid codes. For example, [Energinet.dk, 2010] requires that wind power plants, in case the active power set point is to be changed, such change must be commenced within two seconds and completed no later than 10 seconds after receipt of an order. The accuracy of the control performed and of the set point must not deviate by more than ±2 % of the set point value or by ±0.5 % of the rated power, depending on which yields the highest tolerance. All wind turbine manufacturers provide with their products the methods for processing active power set points. The accuracy of response is between ±2 % and ±5 % based on 1 minute average, according to the responses provided with the questionnaire. At the wind farm level, there is an additional settling time for set points generally below 2 seconds, but it could be up to 5-10 seconds. D. Response from solar PV In order to mitigate overvoltage at distribution grids or to enable positive frequency response, solar PV installations need to be able to reduce their active power. An example of this is set by German grid codes, where the Distribution System Operator (DSO) may demand a temporal active power reduction in case of compromised system operation, overloading, frequency problems, static or dynamic system stability problems. The generators must be capable of reducing their active power at steps of maximally 10 % of the agreed active connection power P ac. [11] Reduction alone is not sufficient for frequency response; also droop control has to be enabled. Based on the interviews conducted in REserviceS project and described in Deliverable 4.1 [11], the maximum initial delay to provide droop control at the inverter level is < 500 ms according to responses from the questionnaires. However an inverter manufacturer mentioned that the maximum response delay could be increased to 2-4 s when the control mode is based on a hysteresis. [11] At PV system level, the capability is also available but there is an extra delay of the control response between 500 ms and 2 s on top of the delay at the inverter level. This is due to the communication and/or processing time at the plant controller. [11] E. Response from network devices Frequency control mainly involves rapid shifting of energy to the system to increase the frequency or from the system to reduce it. As most of the energy storage equipment store energy in DC, flexible power electronics devices are typically used to connect storage to the network. The network-based response can be broadly classified into following two categories: - Energy storage: in HV network, serially connected storage devices such as batteries, superconducting magnetic energy storage (SMES), flywheels and super condensers are employed usually in combination with the power electronics to control active power in the network and therefore provide for frequency control, [7][8][9]. The role of power electronics (either IGBT or some other advanced FACTS devices, e.g. SSSC or STATCOM) lies mainly in fast and optimal adjustment of the injected/withdrawn power from the system to the energy source or vice versa. In fact, the best arrangement is to use storage systems for short-duration spinning reserves of about 15 minutes duration, and then use fast-starting turbines as standing reserves, [7]. Although the storage and FACTS devices are tied to significant

4 investment costs, it is safe to assume that in high AG penetration scenarios, there will already be a significant number of these network devices installed for voltage support. They can be readily used for frequency control without much additional investment involved. - Inter-area frequency control: universal power flow controller (UPFC) can be used to control the frequency in one area (system) through shifting of the active power flow between two areas, influencing the frequency in both of them as desired. For the purpose of this study, we will model a typical energy storage system with a fast-acting grid interface setup as batteries with STATCOM, as described in detail in [9]. IV. PARAMETERS FOR THE SCENARIOS The study case is the Iberian system (Spain and Portugal) with time series from 2012 modified by increased penetration of wind and PV generation with respective annual energy shares of 28.5 % and 13.7 %. It was assumed that there is no connection to the rest of the Europe, which has a large impact on the frequency response. This assumption was taken in order to simplify the model. The results are therefore not accurate for a large interconnection like the former UCTE. The scenarios used in the results sections had different conventional generation units online as can be seen from the aggregated parameters visible in Table I. In all scenarios a hypothetical 1 GW unit was tripped one second to the simulation. TABLE I. ONLINE CONVENTIONAL FLEET PARAMETERS IN THE SCENARIOS No FCR/FFR from wind / PV Scenarios FCR/FRR from Wind FCR/FRR from solar PV Inertia constant (s) Capacity of online conventional units (GW) For wind and PV generation there was an initial response delay of 1 s and 500 ms respectively. After that PV increased generation in direct relation to frequency, but wind had a ramp limitation of p.u./s. V. EXAMPLE RESULTS FROM THE SCENARIOS This section presents a couple of examples of FCR/FRR in the Iberian system. In the first comparison, a response to a hypothetical 1 GW unit trip is investigated for three cases of WILMAR simulations. A dispatch hour with high share of renewables was chosen (at noon 11 th of June). In the first scenario, noprimwindpv, Wind and solar PV were not allowed to participate in the primary frequency response. Therefore more conventional power had to be online than in scenarios where wind or PV were allowed to participate in the FCR/FRR ( PrimWind and PrimPV respectively). In these scenarios, wind and PV could have in principle covered the whole load, but the unit commitment decided against that mainly due to the start-up costs it was more cost-efficient to keep some coal and gas generation online. Still, the amount of online conventional generation was lower in these scenarios, which led to lower inertia and faster initial drop in frequency after a fault (Fig. 1). After the initial frequency drop, the response from wind and especially from PV is faster than that from conventional units. Wind has a longer delay than PV and it is slower to ramp up. For PV the ramp-up was assumed to be instantaneous after the initial communication delay. Frequency (Hz) Simulation time (s) Figure 1. noprimwindpv PrimWind PrimPV FCR/FRR in three scenarios The longer communication delay of wind power leads to some oscillations in the frequency. These get worse if the amount of wind in primary response is increased. Fig. 2 shows what happens if half or all of the wind generation intentionally running below available capacity would be under FCR/FRR droop control. The base case has approximately 1 GW of primary response, which consists of 930 MW of restrained wind generation and 100 MW of thermal units. In the 50% case additional 1 GW of restrained wind generation is included in the primary response. In the 100% case rest of the available restrained wind generation, a further 2 GW, is added to the primary response. Frequency (Hz) PrimWind 50% wind 100% wind Simulation time (s) Figure 2. Frequency response from wind power as more wind participates in the primary frequency response.

5 VI. CONCLUSIONS A method to compare the cost-effectiveness of different types of frequency response was outlined. The paper presents typical response characteristics for different categories of response: conventional units, wind power, solar PV, network devices with storage and demand response. Example results from the Iberian system are presented. Based on the example results, wind generation and solar PV generation intentionally running below full capacity can provide a frequency response that is fast in comparison to conventional generation. However, the reduced inertia in a dispatch with little conventional generation can cause a very fast initial drop in the frequency and it may be difficult to mitigate that with wind and solar PV alone. The results of the paper are for demonstration purpose only and additional analysis is required to draw more robust conclusions and to analyze also the costs and benefits of using wind and PV for frequency response. From these preliminary results it is already clear that there is a need to dampen the response from wind power or to decrease the communication delay in order to eliminate the oscillations visible in Fig. 2. ACKNOWLEDGMENT The writing of the paper has been funded by the IEE EUproject REserviceS. The WILMAR model for Iberia was set-up by Miguel Azevedo at VTT and part of data came from Gustavo Quiñonez Varela from Acciona. Data for frequency response from wind and PV are derived from the REserviceS deliverable D3.1 and D4.1. Their authors are gratefully acknowledged. REFERENCES [1] H. Holttinen, J. Kiviluoma, N.A. Cutululis, A. Gubina, A. Keane, F. van Hulle, Ancillary services: technical specifications, system needs and costs. REserviceS Deliverable D2.2., December [2] B. Kirby, Ancillary services: technical and commercial insights, July, [3] D. Lew, G. Brinkman, N. Kumar, P. Besuner, D. Agan, S. Lefton, Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint, 10 pp.; NREL Report No. CP , August [4] N. Kumar, P. Besuner, S. Lefton, D. Agan and D. Hilleman, Power Plant Cycling Costs. NREL/SR , Apr [5] F. Gubina, Power System Operation. Facutly of Electrical Engineering, Unviersity of Ljubljana Press, 2006, ISBN [6] Eirgrid, Short Term Active Response (STAR), An Interruptible Load Service, Application Information Pack, April 2009, pdf [7] E. M. John et al., FACTS devices with battery-based energy storage - extending the reach of traditional grid stability systems, IEEE PES T&D 2012, Orlando, May [8] M. L. Lazarewitz, A. Rojas, Grid frequency regulation by recycling electrical energy in flywheels, IEEE PES GM 2004 [9] M. Holmberg et al., SVC Light with Energy Storage for Frequency Regulation, 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, paper ID 667 [10] M. Faiella, T. Hennig, N.A. Cutululis, F. van Hulle, Capabilities and costs for ancillary services provision by wind power plants, REserviceS Deliverable D 3.1., April, [11] P. Kreutzkamp, K. De Brabandere, O. Gammoh, J. De Decker, M. Rekinger, S. Varga, D. Craciun, Ancillary Services by Solar PV Capabilities and Costs, REserviceS Deliverable D 4.1, May [12] J. Kiviluoma, A. Gubina, Ancillary services costs for different services and different conventional generators, REserviceS D2.3., January 2013.

Lesson learned about the integration of large amount of volatile Renewable Energy Resources

Lesson learned about the integration of large amount of volatile Renewable Energy Resources Francesco Rizzo, Area Manager America & Iberia III BIREGIONAL FORUM WEC N.A. AND LAC- Cancun, Dec. 6-7, 2012 How to Satisfy the Energy Demand of the Americas in a World with Greater Environmental and Financial

More information

Reliability and the Future of the Electricity Grid: A North American Bulk Power System Perspective

Reliability and the Future of the Electricity Grid: A North American Bulk Power System Perspective Reliability and the Future of the Electricity Grid: A North American Bulk Power System Perspective Mark Lauby, Senior Vice President and Chief Reliability Officer North American Electric Reliability Corporation

More information

Investigating Power System Primary and Secondary Reserve Interaction under High Wind Power Penetration Using Frequency Response Model

Investigating Power System Primary and Secondary Reserve Interaction under High Wind Power Penetration Using Frequency Response Model 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2015 Grid of the Future Symposium Investigating Power System Primary and Secondary Reserve Interaction under High Wind

More information

Integrating High Levels of Variable Renewable Energy Sources

Integrating High Levels of Variable Renewable Energy Sources Integrating High Levels of Variable Renewable Energy Sources Erik Ela EPRI Grid Ops and Planning eela@epri.com NYISO Environmental Advisory Council Troy, NY May 6, 2016 EPRI Grid Operations & Planning

More information

Wind Power Plant Capabilities and Trials

Wind Power Plant Capabilities and Trials Wind Power Plant Capabilities and Trials Wind Power Work Package Control Specialist - Mikkel Gryning 0 Agenda Role Why is wind useful for frequency support? Now Current capabilities Trials Prove the capabilities

More information

Proposal for categorization of Significant Users

Proposal for categorization of Significant Users Proposal for categorization of Significant Users First step of the iterative process Experts Group - Implementation NCs (session 3) Jonathan Sprooten Power System Operation and Security, Elia 25/02/2016

More information

Capacity reserves until 2025: declining, but sufficient

Capacity reserves until 2025: declining, but sufficient 1 Capacity reserves until 2025: declining, but sufficient Trends from ENTSO-E s Scenario Outlook & Adequacy Forecast 2015 Once a year, ENTSO-E 1 publishes a Scenario Outlook & Adequacy Forecast (SO&AF).

More information

MAY 1, Variable Generation Integration Costs

MAY 1, Variable Generation Integration Costs MAY 1, 2014 Variable Generation Integration Costs Executive Summary The addition of variable generation (wind and solar) to the electrical system introduces additional costs associated with unit dispatch

More information

Regional Impact of Renewables: ERCOT

Regional Impact of Renewables: ERCOT Regional Impact of Renewables: ERCOT Kenan Ögelman VP, Commercial Operations, ERCOT February 1, 2018 The ERCOT Region The interconnected electrical system serving most of Texas, with limited external connections

More information

Essential Reliability Services Task Force

Essential Reliability Services Task Force Essential Reliability Services Task Force A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability October 2014 I Table of Contents Preface... ii Executive Summary...

More information

ISSN Vol.07,Issue.16, November-2015, Pages:

ISSN Vol.07,Issue.16, November-2015, Pages: ISSN 2348 2370 Vol.07,Issue.16, November-2015, Pages:3181-3185 www.ijatir.org Improvement of Power Quality in A Grid Connected Induction Generator Based Wind Farm using Static Compensator K. YOSHMA 1,

More information

Ancillary Services for the European Grid with High Shares of Wind and Solar Power

Ancillary Services for the European Grid with High Shares of Wind and Solar Power Downloaded from orbit.dtu.dk on: May 03, 2018 Ancillary Services for the European Grid with High Shares of Wind and Solar Power Van Hulle, Frans; Holttinen, Hannele ; Kiviluoma, Juha ; Cutululis, Nicolaos

More information

xxx Ancillary services in the distribution network: Where are the opportunities? Assoc. Prof. Andrej Gubina

xxx Ancillary services in the distribution network: Where are the opportunities? Assoc. Prof. Andrej Gubina xxx Ancillary services in the distribution network: Where are the opportunities? ZEC 2015 10. December 2015, Zagreb, Croatia Assoc. Prof. Andrej Gubina Head, Laboratory of Energy Policy Faculty of Electrical

More information

Renewable Integration at ERCOT

Renewable Integration at ERCOT Renewable Integration at ERCOT Dan Woodfin Director of System Operations ERCOT CIGRE Chile September 12, 2016 The ERCOT Region The interconnected electrical system serving most of Texas, with limited external

More information

Analysis of System Stability in Developing and Emerging Countries

Analysis of System Stability in Developing and Emerging Countries Analysis of System Stability in Developing and Emerging Countries Impact of Variable Renewable Energies on Power System Reliability and System Security Table of Contents 1 Background... 4 2 Reliability

More information

Operating High Variable, Renewable Generation Power Systems Lessons Learned from Ireland and Northern Ireland

Operating High Variable, Renewable Generation Power Systems Lessons Learned from Ireland and Northern Ireland Operating High Variable, Renewable Generation Power Systems Lessons Learned from Ireland and Northern Ireland 16 th September 2015 Overview 2 EirGrid s Role EirGrid is the Transmission System Operator

More information

Risks and challenges results from study

Risks and challenges results from study Risks and challenges results from study Seppo Hänninen VTT Ltd Flexible nuclear power and ancillary services - Conference 23-24 Jan 2018, Stockholm, Sweden 25.1.2019 VTT beyond the obvious 1 Content Short

More information

System Operational Costs Reduction with Non-Conventional Reactive Power Sources.

System Operational Costs Reduction with Non-Conventional Reactive Power Sources. 2014 3rd International Conference on Informatics, Environment, Energy and Applications IPCBEE vol.66 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V66. 24 System Operational Costs Reduction

More information

Primary reserve studies for high wind power penetrated systems

Primary reserve studies for high wind power penetrated systems Downloaded from orbit.dtu.dk on: Feb 14, 2018 Primary reserve studies for high wind power penetrated systems Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar; Abildgaard, Hans Published

More information

WP2 VTT RESULTS OVERVIEW AND SUMMARY

WP2 VTT RESULTS OVERVIEW AND SUMMARY WP2 VTT RESULTS OVERVIEW AND SUMMARY Researchers seminar 11.12.2017 Hannele Holttinen, Esa Pursiheimo, Jussi Ikäheimo, Juha Forsström, Juha Kiviluoma VTT Research questions from the project plan Cost competitiveness

More information

Frequency Quality in the Nordic Power System: Wind Variability, Hydro Power Pump Storage and Usage of HVDC Links

Frequency Quality in the Nordic Power System: Wind Variability, Hydro Power Pump Storage and Usage of HVDC Links Available online at www.sciencedirect.com ScienceDirect Energy Procedia 35 (213 ) 62 68 DeepWind'213, 24-25 January, Trondheim, Norway Frequency Quality in the Nordic Power System: Wind Variability, Hydro

More information

SECURITY ASPECTS OF MULTI AREA ECONOMIC DISPATCH WITH RENEWABLE ENERGY AND HVDC TIE LINES.

SECURITY ASPECTS OF MULTI AREA ECONOMIC DISPATCH WITH RENEWABLE ENERGY AND HVDC TIE LINES. SECURITY ASPECTS OF MULTI AREA ECONOMIC DISPATCH WITH RENEWABLE ENERGY AND HVDC TIE LINES. PROJECT INDEX: 134. PRESENTED BY KIPKOECH C. JOHN. SUPERVISOR: MR. PETER MOSES MUSAU. EXAMINER: DR. CYRUS WEKESA.

More information

Primary Frequency Response Stakeholder Education Part 1 of 2

Primary Frequency Response Stakeholder Education Part 1 of 2 Primary Frequency Response Stakeholder Education Part 1 of 2 Primary Frequency Response Sr. Task Force September 1, 2017 Problem Statement / Issue Charge Summary Evaluate need for generator Primary Frequency

More information

Analysis of Wind Power Integration for Power System Transient Stability

Analysis of Wind Power Integration for Power System Transient Stability Analysis of Wind Power Integration for Power System Transient Stability J. K. Muriuki, C. M. Muriithi and L. M. Ngoo Abstract Many developing nations are currently undertaking huge electric power generation

More information

Renewable energy connection requirements in Spain April 2012

Renewable energy connection requirements in Spain April 2012 Renewable energy connection requirements in Spain April 2012 agustin.diaz@ree.es Challenges Red Eléctrica de España (REE) is the Spanish TSO Rapid growth of RES and intrinsic system characteristic (Iberian

More information

Maximum Admissible active power reduction at low frequencies

Maximum Admissible active power reduction at low frequencies Maximum Admissible active power reduction at ENTSO-E guidance document for national implementation for network codes on grid connection 31 January 2018 Table of Contents DESCRIPTION...3 Code(s) & Article(s)...3

More information

The Impact of Wind Generation on System Services in Ireland

The Impact of Wind Generation on System Services in Ireland The Impact of Wind Generation on System Services in Ireland Renewable Energies, an Opportunity and Challenge for Electricity Systems October 8th 2009 Dr Ivan Dudurych, EirGrid 4000 600 3600 480 Load, MW

More information

California Grid Operations: Current Conditions and Future Needs

California Grid Operations: Current Conditions and Future Needs California Grid Operations: Current Conditions and Future Needs Jim Detmers Vice President, Operations Global Climate & Energy Project November 1, 2007 STANFORD UNIVERSITY Our objective today is identify

More information

IEAWIND Task 25: Design and operation of power systems with large amounts of wind power

IEAWIND Task 25: Design and operation of power systems with large amounts of wind power IEAWIND Task 25: Design and operation of power systems with large amounts of wind power EWEC 2010 Side Event Session Hannele Holttinen, Operating Agent VTT Technical Research Centre of Finland 2 IEA WIND

More information

What makes a Wind Plant Grid Friendly?

What makes a Wind Plant Grid Friendly? Stable Renewable Plant Voltage and Reactive Power Control NERC ERSTF June 11-12, 2014 Sebastian Achilles Nicholas Miller Einar Larsen Jason MacDowell GE Energy Consulting 1 / Topics Features of modern

More information

Assessment of Energy Storage Systems for Contribution to Flexibility in Electrical Power System with High Level Intermittent Renewables Energy

Assessment of Energy Storage Systems for Contribution to Flexibility in Electrical Power System with High Level Intermittent Renewables Energy 21, rue d Artois, F-758 PARIS C6-143 DUBLIN 217 http : //www.cigre.org Assessment of Energy Storage Systems for Contribution to Flexibility in Electrical Power System with High Level Intermittent Renewables

More information

Frequency Response. Straw Proposal

Frequency Response. Straw Proposal Frequency Response Straw Proposal October 12, 2015 Table of Contents 1. Executive Summary... 3 2. Stakeholder Process and Timetable... 4 3. The New Frequency Response Obligation... 4 3.1. Frequency Response

More information

Overview. IEEE Boston Chapter ISO New England Inc.

Overview. IEEE Boston Chapter ISO New England Inc. Overview New England s power system will undergo major changes in the coming years to integrate renewables, demand response, smart grid and other new technologies Good planning helps overcome integration

More information

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION COMMENTS OF NATIONAL HYDROPOWER ASSOCIATION

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION COMMENTS OF NATIONAL HYDROPOWER ASSOCIATION UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION Electric Storage Participation in Regions ) with Wholesale Electric Markets ) Docket No. AD16-20-000 COMMENTS OF NATIONAL HYDROPOWER ASSOCIATION

More information

Integration of variable renewables: what the market can do to help or hinder. Mark O Malley.

Integration of variable renewables: what the market can do to help or hinder. Mark O Malley. Integration of variable renewables: what the market can do to help or hinder Mark O Malley mark.omalley@ucd.ie Elements of a New Target Model for European Electricity Markets, Paris, July 9 th 2015 Outline

More information

Dynamic Reactive Power issue in Wind Integrated Power Systems and LVRT Compliance of WPPs

Dynamic Reactive Power issue in Wind Integrated Power Systems and LVRT Compliance of WPPs Dynamic Reactive Power issue in Wind Integrated Power Systems and LVRT Compliance of WPPs RE integration workshop, Chennai January 23, 2018 Zakir H Rather, IIT Bombay Email: zakir.rather@iitb.ac.in Wind

More information

Table of contents. 1 Introduction System impacts of VRE deployment Technical flexibility assessment of case study regions...

Table of contents. 1 Introduction System impacts of VRE deployment Technical flexibility assessment of case study regions... Table of contents Foreword................................................................................. 3 Acknowledgements...5 Executive summary...13 1 Introduction...21 Background...21 Context...21

More information

System Services by Wind Power Plants The industrial point of view Eckard Quitmann Head of Sales - Grid Integration Dena Symposium, November 8th 2018

System Services by Wind Power Plants The industrial point of view Eckard Quitmann Head of Sales - Grid Integration Dena Symposium, November 8th 2018 System Services by Wind Power Plants The industrial point of view Head of Sales - Grid Integration Dena Symposium, November 8 th 2018 Agenda 1. System needs 2. Practical experiences 3. New features to

More information

Standard MH-TPL Transmission System Planning Performance Requirements

Standard MH-TPL Transmission System Planning Performance Requirements A. Introduction 1. Title: Transmission System Planning Performance Requirements 2. Number: MH-TPL-001-4 3. Purpose: Establish Transmission system planning performance requirements within the planning horizon

More information

GENERAL GUIDELINES FOR REINFORCING THE COOPERATION BETWEEN TSOs AND DSOs

GENERAL GUIDELINES FOR REINFORCING THE COOPERATION BETWEEN TSOs AND DSOs GENERAL GUIDELINES FOR REINFORCING THE COOPERATION BETWEEN TSOs AND DSOs The intention of this paper is to guide both DSOs and TSOs in their interaction. TSOs and DSOs understand that, as part of the energy

More information

Full Activation Time (FAT) and Deactivation

Full Activation Time (FAT) and Deactivation DRAFT: Chapter 4.1.1. Full Activation Time of the Explanatory Document to All TSOs proposal for the implementation framework for a European platform for the exchange of balancing energy from frequency

More information

RENEWABLE ENERGY INTEGRATION: VARIABILITY & UNCERTAINTY IMPACTS AND MITIGATION OPTIONS BRENDAN KIRBY

RENEWABLE ENERGY INTEGRATION: VARIABILITY & UNCERTAINTY IMPACTS AND MITIGATION OPTIONS BRENDAN KIRBY RENEWABLE ENERGY INTEGRATION: VARIABILITY & UNCERTAINTY IMPACTS AND MITIGATION OPTIONS BRENDAN KIRBY WWW.CONSULTKIRBY.COM KIRBYBJ@IEEE.ORG BALANCING IS A CRITICAL POWER SYSTEM RELIABILITY REQUIREMENT Power

More information

Harnessing Renewables in Power System Restoration

Harnessing Renewables in Power System Restoration Harnessing Renewables in Power System Restoration Dr. Wei Sun, and Amir Golshani Assistant Professor, EECS Dept. University of Central Florida (South Dakota State University) Panel: Cascading Failures:

More information

Reduced Network Modeling of WECC as a Market Design Prototype

Reduced Network Modeling of WECC as a Market Design Prototype PAPER 2011GM0942 1 Reduced Network Modeling of WECC as a Market Design Prototype James E. Price, Member, IEEE, and John Goodin Abstract California s administration, legislature, and energy regulators have

More information

WWSIS - 3: Western Frequency Response and Transient Stability Study

WWSIS - 3: Western Frequency Response and Transient Stability Study WWSIS - 3: Western Frequency Response and Transient Stability Study GE Energy Nicholas W. Miller (PM) Miaolei Shao Slobodan Pajic Rob D Aquila NREL Kara Clark (PM) NERC ERSTF Briefing Atlanta December

More information

Renewable Technologies in the Future NEM

Renewable Technologies in the Future NEM Renewable Technologies in the Future NEM 100% Renewables for Australia? Dr Jenny Riesz Australian Power Institute (API) Summer School Wednesday 24 th February 2016 Who am I? Overview 100% Renewables: Worth

More information

Real-time Cosimulations for Hydropower Research and Development

Real-time Cosimulations for Hydropower Research and Development Real-time Cosimulations for Hydropower Research and Development Manish Mohanpurkar, Ph.D. Yusheng Luo, Ph.D. Rob Hovsapian, Ph.D. www.inl.gov Power and Energy Department Idaho National Laboratory Introduction

More information

Balancing modern Power System with large scale of wind power

Balancing modern Power System with large scale of wind power Downloaded from orbit.dtu.dk on: Aug 17, 2018 Balancing modern Power System with large scale of wind power Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela; Sørensen, Poul Ejnar Published in: Proceedings

More information

Ancillary Services Market Organization in Germany

Ancillary Services Market Organization in Germany Page 1 Ancillary Services Market Organization in Germany Dr. Bernhard Ernst bernhard.ernst@iwes.fraunhofer.de Page 2 Ancillary Services Market Organization in Germany German Power System Ancillary Services

More information

Connection Study Requirements

Connection Study Requirements Document Release Released: September 20, 2010 The Customer shall comply with all the applicable requirements in this document when performing connection studies to produce the engineering study report.

More information

Focus on the Nordic and Baltic Sea

Focus on the Nordic and Baltic Sea European Network of Transmission System Operators for Electricity Focus on the Nordic and Baltic Sea Looking at what is driving grid development in the Nordic and Baltic Sea region: integration of the

More information

High Renewable Electricity Scenarios

High Renewable Electricity Scenarios High Renewable Electricity Scenarios Trieu Mai and Doug Arent EPRI & IEA Workshop: Renewables and Clean Energy for Industries Washington DC; November 29 30, 2016 NREL/DOE Renewable Energy Vision & Integration

More information

Conseptualizing Flexibility In Power Systems

Conseptualizing Flexibility In Power Systems Conseptualizing Flexibility In Power Systems 21 st Century Power Partnership: An Initiative of the Clean Energy Ministerial Dr. Douglas Arent National Renewable Energy Laboratory Operating Agent for the

More information

Hybrid Wind-Diesel Generation System

Hybrid Wind-Diesel Generation System Hybrid Wind-Diesel Generation System Apoorva Kanthwal 1 Department of Electrical & Electronics Engineering Chandigarh University, Mohali, India. apoorva2987@gmail.com Aman Ganesh 2 Department of Electrical

More information

Inverter-Based Resources During a Cascading Failure: Present State and Future State

Inverter-Based Resources During a Cascading Failure: Present State and Future State 1 Inverter-Based Resources During a Cascading Failure: Present State and Future State IEEE PES GM 2018 - CFWG Panel 08/08/2018, Portland, OR Ryan Quint, NERC (ryan.quint@nerc.net) Andrew Groom, AEMO (andrew.groom@aemo.com.au)

More information

Terms of Reference AG 2017/01

Terms of Reference AG 2017/01 Long-term Analysis of the Chilean National Electricity System Considering Variable and Intermittent Energy Resources Terms of Reference AG 2017/01 February 2017 Index 1. Introduction... 2 2. Objectives

More information

Regulation and Frequency Response Service Capability of Modern Wind Power Plants

Regulation and Frequency Response Service Capability of Modern Wind Power Plants 1 Regulation and Frequency Response Service Capability of Modern Wind Power Plants Germán Claudio Tarnowski, Philip Carne Kjær, Søren Dalsgaard, Anders Nyborg Technology R&D, Vestas Wind Systems A/S, Denmark

More information

CENTRE FOR WIND ENERGY TECHNOLOGY CHENNAI INDIAN WIND GRID CODE

CENTRE FOR WIND ENERGY TECHNOLOGY CHENNAI INDIAN WIND GRID CODE CHENNAI INDIAN WIND GRID CODE Rajesh Katyal Unit Chief, R&D Centre for Wind Energy Technology OVERVIEW NEED FOR INDIAN WIND GRID CODE Wind energy constitutes 6% of the installed capacity in the power scenario

More information

Frequency Stability Voltage Stability Transmission congestion Angular Stability

Frequency Stability Voltage Stability Transmission congestion Angular Stability Frequency Stability Voltage Stability Transmission congestion Angular Stability CERC IEGC, 2010 Mandates action by control areas to control interstate inter changes States revise requisitions / procure

More information

Control of a Microgrid in Islanded Mode

Control of a Microgrid in Islanded Mode Faculty of Science & Engineering School of Engineering and Energy Control of a Microgrid in Islanded Mode A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Engineering

More information

Western Wind & Solar Integration Studies

Western Wind & Solar Integration Studies Western Wind & Solar Integration Studies Kara Clark, Greg Brinkman, NREL Nick Miller, Miaolei Shao, Slobodan Pajic, Rob D Aquila, Bruno Leonardi, GE 3/22/17 NREL is a national laboratory of the U.S. Department

More information

Frequency Control Ancillary Services

Frequency Control Ancillary Services Frequency Control Ancillary Services Is Australia a model market for renewable integration? Dr Jenny Riesz Wind Integration Workshop 24 th October 2013 FCAS reserves Frequency Control Ancillary Services

More information

Standard Development Timeline

Standard Development Timeline Standard Development Timeline This section is maintained by the drafting team during the development of the standard and will be removed when the standard is adopted by the NERC Board of Trustees (Board).

More information

Accommodating High Levels of Distributed Energy Resources

Accommodating High Levels of Distributed Energy Resources Accommodating High Levels of Distributed Energy Resources John Moura, Director of Reliability Assessment and System Analysis 2017 NARUC Winter Committee Meetings February 14, 2017 About NERC: Mission To

More information

Evolution of Operating Reserve Determination in Wind Power Integration Studies

Evolution of Operating Reserve Determination in Wind Power Integration Studies 1 Evolution of Operating Determination in Wind Power Integration Studies Erik Ela, Member, IEEE, Brendan Kirby, Senior Member, IEEE, Eamonn Lannoye, Student Member, IEEE, Michael Milligan, Member, IEEE,

More information

Large Scale Integration of Renewable Power Sources and Microgeneration / Microgrids

Large Scale Integration of Renewable Power Sources and Microgeneration / Microgrids JULY 2008 Campus da FEUP Rua Dr. Roberto Frias, 378 4200-465 Porto Portugal T +351 222 094 000 F +351 222 094 050 www@inescporto.pt www.inescporto.pt Large Scale Integration of Renewable Power Sources

More information

Ancillary Service. the WEM System Management. June 2018

Ancillary Service. the WEM System Management. June 2018 Ancillary Service Report for the WEM 2018-19 June 2018 System Management Important notice PURPOSE AEMO publishes the Wholesale Electricity Market Ancillary Services report under clause 3.11.13 of the Wholesale

More information

Emerging ancillary service products in large-scale renewable energy integrated system

Emerging ancillary service products in large-scale renewable energy integrated system Emerging ancillary service products in large-scale renewable energy integrated system Zakir H Rather Dept. of Energy Science and Engineering, IIT Bombay, India 1 st international conference on Large-Scale

More information

FCR prequalification design note

FCR prequalification design note FCR prequalification design note Summary This document presents market design evolutions of FCR (previously called primary control service or R1) related to the prequalification processes and data exchange

More information

POWER-SYSTEM-WIDE ANALYSIS OF THE BENEFITS OF RESERVE PROVISION FROM SOLAR PHOTOVOLTAICS IN SOUTH AFRICA

POWER-SYSTEM-WIDE ANALYSIS OF THE BENEFITS OF RESERVE PROVISION FROM SOLAR PHOTOVOLTAICS IN SOUTH AFRICA POWER-SYSTEM-WIDE ANALYSIS OF THE BENEFITS OF RESERVE PROVISION FROM SOLAR PHOTOVOLTAICS IN SOUTH AFRICA Tobias Bischof-Niemz 1, Joanne Calitz 2, Jarrad G. Wright 3 1, 2, 3 Council for Scientific and Industrial

More information

Primary control - description of main technical and design characteristics

Primary control - description of main technical and design characteristics Primary control - description of main technical and design characteristics Summary The purpose of this note is to give enough clarification on the needed requirements a market player has to respect to

More information

Electricity generation, electricity consumption, system integration, production and consumption balance

Electricity generation, electricity consumption, system integration, production and consumption balance Prof. Dr. Andrej Gubina University of Ljubljana, Faculty of Electrical Engineering Electricity generation, electricity consumption, system integration, production and consumption balance Maribor, Slovenia,

More information

Integrating Variable Renewable Energy into the Grid

Integrating Variable Renewable Energy into the Grid GREENING THE GRID Integrating Variable Renewable Energy into the Grid Key Issues and Emerging Solutions ENHANCING CAPACITY FOR LOW EMISSION DEVELOPMENT STRATEGIES (EC-LEDS) Agenda and Learning Objectives

More information

Integrating High Penetrations of Variable Renewable Generation Lori Bird and Debra Lew, NREL NCSL Webinar March 28, 2012

Integrating High Penetrations of Variable Renewable Generation Lori Bird and Debra Lew, NREL NCSL Webinar March 28, 2012 Integrating High Penetrations of Variable Renewable Generation Lori Bird and Debra Lew, NREL NCSL Webinar March 28, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

More information

The Optimal Approach to Firming Windpower

The Optimal Approach to Firming Windpower 5735 Hollister Avenue, Suite B Goleta, California 93117 T 805.683.9659 F 805.683.9671 www.gravitypower.net The Optimal Approach to Firming Windpower Summary As many regions of the world are staging massive

More information

Operating Reserves and Variable Generation

Operating Reserves and Variable Generation Operating Reserves and Variable Generation A comprehensive review of current strategies, studies, and fundamental research on the impact that increased penetration of variable renewable generation has

More information

SYNOPSIS OF THE THESIS. Enhanced Power Quality Management of Grid Connected Wind Farm

SYNOPSIS OF THE THESIS. Enhanced Power Quality Management of Grid Connected Wind Farm SYNOPSIS OF THE THESIS Enhanced Power Quality Management of Grid Connected Wind Farm INTRODUCTION OF THE THESIS Faster depletion of fossil fuels and environmental damage has resulted into increased use

More information

Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California

Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California Executive Summary Gregory Brinkman and Jennie Jorgenson National Renewable Energy Laboratory Ali Ehlen and James H. Caldwell Center

More information

Simulatie van het EU-wijde elektriciteitsysteem. Modellering van de elektriciteitsmarkt en de hierin gebruikte elektriciteitsinfrastructuur

Simulatie van het EU-wijde elektriciteitsysteem. Modellering van de elektriciteitsmarkt en de hierin gebruikte elektriciteitsinfrastructuur Document number Simulatie van het EU-wijde elektriciteitsysteem Modellering van de elektriciteitsmarkt en de hierin gebruikte elektriciteitsinfrastructuur Presentatie voor Kivi Niria Utrecht, 16 April

More information

[R]enewables 24/7 EXECUTIVE SUMMARY

[R]enewables 24/7 EXECUTIVE SUMMARY [R]enewables 24/7 EXECUTIVE SUMMARY Infrastructure needed to save the climate Grids keep power systems working The electricity grid' is a collective name for all wires, transformers and infrastructure

More information

Research Co-design Activity

Research Co-design Activity Research Co-design Activity A. Purpose of Co-design: The ultimate goals of this co-design activity are to: Directly involve all members of a group to make decisions together that would affect their daily

More information

SPECIAL PROTECTION SCHEMES

SPECIAL PROTECTION SCHEMES SPECIAL PROTECTION SCHEMES ENTSO-E SUBGROUP SYSTEM PROTECTION AND DYNAMICS MARCH 2012 Content 1 INTRODUCTION... 3 2 CLASSIFICATION OF SYSTEM STATES AND CONTINGENCIES... 3 3 DEFINITION OF TERMINOLOGY: DEFENCE

More information

Micro-Grid Technology To improve Distribution Reliability and accessibility. Dhananjay Ketkar. Sudesh Kr. Nehru. November 2012

Micro-Grid Technology To improve Distribution Reliability and accessibility. Dhananjay Ketkar. Sudesh Kr. Nehru. November 2012 Micro-Grid Technology To improve Distribution Reliability and accessibility Dhananjay Ketkar November 2012 Sudesh Kr. Nehru Agenda What is Micro Grid What a Micro Grid IS Micro Grid : Components Micr0

More information

CERTS Microgrids. Tom Jahns Professor, University of Wisconsin-Madison. LPPC Rates Roundtable May 21, 2013

CERTS Microgrids. Tom Jahns Professor, University of Wisconsin-Madison. LPPC Rates Roundtable May 21, 2013 CERTS Microgrids Tom Jahns Professor, University of Wisconsin-Madison LPPC Rates Roundtable May 21, 2013 Wisconsin Energy Institute WEI WEI provides linkage among all organizations associated with energy

More information

Integrating Variable Renewable Energy into the Grid: Sources of Flexibility Best Practices and Case Studies

Integrating Variable Renewable Energy into the Grid: Sources of Flexibility Best Practices and Case Studies Integrating Variable Renewable Energy into the Grid: Sources of Flexibility Best Practices and Case Studies Jessica Katz, Jaquelin Cochran, Michael Milligan National Renewable Energy Laboratory December

More information

Impact of Uncertainty on Wind Power Curtailment Estimation

Impact of Uncertainty on Wind Power Curtailment Estimation Proceedings of the 50th Hawaii International Conference on System Sciences 2017 Impact of Uncertainty on Wind Power Curtailment Estimation Joseph Dillon Electricity Research Centre, UCD, Ireland jody.dillon@ucd.ie

More information

ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM

ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM January 2017 PRESENTED BY JENNY RIESZ SLIDE 1 AGENDA 1. Introduction to the NEM 2. Future Power System Security Program 3. Identifying

More information

TRANSFORMING AUSTRALIA S ELECTRICITY SYSTEM

TRANSFORMING AUSTRALIA S ELECTRICITY SYSTEM TRANSFORMING AUSTRALIA S ELECTRICITY SYSTEM October 2017 PRESENTED BY JENNY RIESZ SLIDE 1 SLIDE 2 THE NEM National Electricity Market (NEM) ~85% of electrical load in Australia SLIDE 3 AEMO S WORK PROGRAM

More information

Bulk Power System Integration of Variable Generation - Program 173

Bulk Power System Integration of Variable Generation - Program 173 Bulk Power System Integration of Variable Generation - Program 173 Program Description Program Overview A number of ongoing environmentally driven regulatory issues including greenhouse gas reductions

More information

MODIFICATION PROPOSAL FORM

MODIFICATION PROPOSAL FORM MODIFICATION PROPOSAL FORM MPID 269 POWER PARK MODULES FORM GC1, PROPOSAL OF MODIFICATION TO GRID CODE. 160 SHELBOURNE ROAD BALLSBRIDGE DUBLIN 4 PH: +353-1-677 1700 FAX: +353-1-6615375 EMAIL:GRIDCODE@EIRGRID.

More information

Grid codes as enablers of the energy transition

Grid codes as enablers of the energy transition Grid codes as enablers of the energy transition Scaling up Variable Renewable Power World Future Energy Summit 2017 17 January 2017 Abu Dhabi, UAE Expected growth in power technologies Variable renewable

More information

Low SCR Wind Identification and Mitigation. Will Lovelace MIPSYCON 2015 November 11 th, 2015

Low SCR Wind Identification and Mitigation. Will Lovelace MIPSYCON 2015 November 11 th, 2015 Low SCR Wind Identification and Mitigation Will Lovelace MIPSYCON 2015 November 11 th, 2015 System Background - Diagram System Background - Diagram System Background - Description 199.5 MW wind farm on

More information

DISTRIBUTED GENERATION AND POWER QUALITY

DISTRIBUTED GENERATION AND POWER QUALITY DISTRIBUTED GENERATION AND POWER QUALITY Arindam Ghosh Department of Electrical Engineering IIT Kanpur DISTRIBUTED GENERATION Distributed Generation (DG) employs smaller-size size generators. The electricity

More information

METIS. Snapshot from user interface screen

METIS. Snapshot from user interface screen METIS METIS is a research project 1 of DG ENER for the development of an energy simulator software with the aim to further support ENER s evidence based policy making. It is developed by a consortium (Artelys,

More information

Explanatory Note on the ELIA LFC Block Operational Agreement Disclaimer

Explanatory Note on the ELIA LFC Block Operational Agreement Disclaimer Explanatory Note on the ELIA LFC Block Operational Agreement Disclaimer This document, provided by ELIA, is the explanatory note for the draft for stakeholder consultation of the ELIA proposal for the

More information

RELIABILITY AND SECURITY ISSUES OF MODERN ELECTRIC POWER SYSTEMS WITH HIGH PENETRATION OF RENEWABLE ENERGY SOURCES

RELIABILITY AND SECURITY ISSUES OF MODERN ELECTRIC POWER SYSTEMS WITH HIGH PENETRATION OF RENEWABLE ENERGY SOURCES RELIABILITY AND SECURITY ISSUES OF MODERN ELECTRIC POWER SYSTEMS WITH HIGH PENETRATION OF RENEWABLE ENERGY SOURCES Evangelos Dialynas Professor in the National Technical University of Athens Greece dialynas@power.ece.ntua.gr

More information

Improving the Reactive Power Balance between a German MV and HV Grid through Coordinated Reactive Power Provision by Wind Power Plants

Improving the Reactive Power Balance between a German MV and HV Grid through Coordinated Reactive Power Provision by Wind Power Plants 6th Int'l Wind Integration Workshop Berlin, Germany -7 October, 7 Improving the Reactive Power Balance between a German MV and HV Grid through Coordinated Reactive Power Provision by Wind Power Plants

More information

TSOs, taking into account the following: Whereas

TSOs, taking into account the following: Whereas All TSOs proposal for a common grid model methodology in accordance with Articles 67(1) and 70(1) of Commission Regulation (EU) 2017/1485 of 02 August 2017 establishing a guideline on electricity transmission

More information

Integrating Renewables and the Smart Grid

Integrating Renewables and the Smart Grid Integrating Renewables and the Smart Grid for 2010 Advanced Energy Conference Robert A. (Bob) Hawsey Associate Laboratory Director Renewable Electricity & End Use Systems 9 November 2010 NREL is a national

More information

EMS of the Future. EMS Users Conference Chicago, Illinois. John McDaniel September 20, Proprietary 1 Experience you can trust.

EMS of the Future. EMS Users Conference Chicago, Illinois. John McDaniel September 20, Proprietary 1 Experience you can trust. EMS of the Future EMS Users Conference Chicago, Illinois John McDaniel September 20, 2010 Proprietary 1 Experience you can trust. Overview Key Issues Shaping EMS Implementations Operational Issues Being

More information