Swammerdam Institute Klaas J. Hellingwerf. On the use and optimization of Synechocystis PCC6803 as a bio-solar cell factory in a bio-based economy

Size: px
Start display at page:

Download "Swammerdam Institute Klaas J. Hellingwerf. On the use and optimization of Synechocystis PCC6803 as a bio-solar cell factory in a bio-based economy"

Transcription

1 Swammerdam Institute Klaas J. Hellingwerf On the use and optimization of Synechocystis PCC6803 as a bio-solar cell factory in a bio-based economy

2 Acknowledgements: S.A. Angermayr, P. Savakis, Dr. A. de Almeida, O. Borirak, R.M. Schuurmans, P. van Alphen, Dr. A. Van der Woude, & Dr. V. Puthan Veetil PHYCONET Cambridge 2

3 Contents: Solar biofuel production: From one generation to the next Cell factories for photo-fermentation The 4 th generation started wit ethanol Optimization of product formation with MCA The PEP bypass CO 2 as the ultimate substrate in biotechnology PHYCONET Cambridge 3

4 What is needed for sustainable production with solar energy? EET Antenna e - Reaction Center e - Catalytic Site 2 e - R (H +, CO2 ) P (H 2, MeOH) For any large-scale process, H 2 O is the only candidate electron donor Catalytic Site 1 (fuels, chemicals, ingredients) R (H 2 O, HA) P (O 2, A, H + ) Use the auto-regenerative capacity of living organisms A solution for solar fuel with as few conversions as possible ( = 0.01!) PHYCONET Cambridge 4

5 1 st Generation: Sugar cane and ethanol: drink the best and drive the rest 2 nd Generation: produce ethanol, butanol, etc., through fermentation of (ligno)cellulosic waste 3 rd Generation: Produce biodiesel from triglycerides, extracted from plants, or from algae grown in mass culture All three approaches, however: (i) do not comply with the minimal # of conversions requirement, and (ii) create significant problems with respect to (soil) mineral balance and have (iii) a high water requirement PHYCONET Cambridge 5

6 Fourth generation type of process: Cyanobacterial cell factories PHYCONET Cambridge 6

7 As the engineering progresses: Wild type: CO 2 biomass First mutant: CO 2 biomass product After several rounds: CO 2 Definition cell factory: CO 2 partitioning > 50 % biomass product CO 2 + H 2 O C 2 H 6 O + O 2 (catalyst) PHYCONET Cambridge 7

8 Cyanobacterial metabolism: gluc/glycogen fatty acids/phb new cells

9 Coupling to cyanobacterial metabolism: CO 2 Ethylene PHYCONET Cambridge 9

10 Making a cyanobacterial cell factory for ethanol from Synechocystis: 1] The proper molecular biology should be applied (transformability, polyploidic character, etc.). 2] Knowledge about promoters, RBSs, enzymes, cofactors, etc. should be available PHYCONET Cambridge 10

11 Ethanol productie in stram SAA012 CH 3 CH 2 OH CO 2 partitioning to ethanol: 60 en 70 % PHYCONET Cambridge 11

12 Analysis of ethanol production: Rate of CO 2 assimilation: sink-effect PHYCONET Cambridge 12

13 Production of Lactic acid: CO 2 Lactic acid PHYCONET Cambridge 13

14 Lactate Production PHYCONET Cambridge

15 Does product inhibition play a role? Solvent IC50 (mm) ( LogP o/w ) range (mm) Ethanol 868-0, Lactate 382-0, meso-bu-diol 376-0, Acetoine 95-0, butanol 48 0, acetaldehyde 37-0, PHYCONET Cambridge 15

16 Co-factor specificity: L-lactate production +/- Transhydrogenase starting OD 730 =0.1; BG mM NaCO ug/ml km; 30 C; 120rpm; ~25µE. Transhydrogenase only mutant PHYCONET Cambridge 16

17 Using a codon-optimized LDH from L. lactis PHYCONET Cambridge 17

18 Thermodynamics of product formation: Lactic acid: pyr + NADH lactic acid + NAD + ΔG 0 = -23,8 kj/mol (ΔG 0 values from the classical review of Thauer et al, 1977, Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41: ). Keq = 10 23,8/5,7 = 10 4,17 Keq = 1, The following relation holds: Keq = [lact]/[pyr].[nad + ]/NADH] (green = 1) If we assume [pyr] in = 50 µm [lact] < 750 mm; however, at 1 µm [pyr] in [lact]<15 mm! An NADPH-specific pyruvate reductase would help increase the maximally achievable [lactate]!! PHYCONET Cambridge 18

19 Schematic representation of a cyanobacterial cell factory for lactic acid thylakoids H 2 O NADPH (+ ATP) + O 2 Calvin CO 2 pyruvate lactate cycle V1 V2a V2b LDH cells Control of LDH over lactic acid production: δ ln (J lact )/ δ ln (C LDH ) PHYCONET Cambridge 19

20 Sensitivity analysis of the solar-cell factory Angermayr & Hellingwerf (2013) J Phys Chem B. Mar 29. [Epub ahead of print] PHYCONET Cambridge 20

21 Update on control over L-lactate production: Concl: partition coëfficiënt > 50 %; sink-effect observable PHYCONET Cambridge 21

22 Other products formed from CO 2 with cyanobacteria: hydrogen, ethanol, ethylene, propanol, acetone, acetoine, meso-butanediol, S,S-butanediol, iso-butyraldehyde, n- butanol, iso-butanol, L-lactic acid, D- lactic acid, glucose, sucrose, isoprene, long-chain alkanes, long-chain alkenes, long-chain fatty acids, long-chain fatty alcohols, etc.,... CO 2 can replace the sugar one would use in E. coli! PHYCONET Cambridge 22

23 select a desired product. General approach: search the nearest metabolite in the metabolic network of Synechocystis. add phosphatase, reductase, hydrolase(s), etc., to connect the two. try to achieve an equal distribution of control in: (a) from CO 2 to metabolite and (b) metabolite to product. assure that product can properly leave the cells. Example: Jacobsen JH & Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO 2 in a cyanobacterium. Metab Eng. 21: PHYCONET Cambridge 23

24 Scale-up: will 2D or 3D win? Natural photosynthesis in a bio-based economy: A field of photovoltaic cells driving LEDs in a 3D reactor? PHYCONET Cambridge 24

25 Conclusions: Cyanobacteria can be engineered with base-pair precision We and many others can now make a wide range of products Synechocystis is plugbug for CO 2 For selected products > 70 % carbon partitioning is achievable This approach does not compete with food supply; does not create a minerals problem, and has a limited water requirement For maximal efficiency in this approach it will be necessary to make designer organisms PHYCONET Cambridge 25

SUPPLEMENTAL MATERIAL. Chirality matters: Synthesis and consumption of the D-enantiomer of lactic acid by Synechocystis sp.

SUPPLEMENTAL MATERIAL. Chirality matters: Synthesis and consumption of the D-enantiomer of lactic acid by Synechocystis sp. SUPPLEMENTAL MATERIAL Chirality matters: Synthesis and consumption of the D-enantiomer of lactic acid by Synechocystis sp. PCC 6803 S. Andreas Angermayr* a, Aniek D. van der Woude* b,#, Danilo Correddu

More information

Industrial microbiology

Industrial microbiology Industrial microbiology pp. 166-173, 1032-1038, 1039-1045,1046-1050 Ed van Niel Ed.van_Niel@tmb.lth.se We are here Industrial microbiology biotechnology Why the increased interest Microbiological versus

More information

Synthetic Biology for the Calvin-Cycle- Channeled (Photobiological) Synthesis of Butanol & Pentanol Utilizing Carbon Dioxide as the Sole Feedstock

Synthetic Biology for the Calvin-Cycle- Channeled (Photobiological) Synthesis of Butanol & Pentanol Utilizing Carbon Dioxide as the Sole Feedstock Synthetic Biology for the Calvin-Cycle- Channeled (Photobiological) Synthesis of Butanol & Pentanol Utilizing Carbon Dioxide as the Sole Feedstock 2012 Pacific Rim Summit on Industrial Biotechnology and

More information

Non-photosynthetic Biological CO 2 Fixation

Non-photosynthetic Biological CO 2 Fixation Non-photosynthetic Biological CO 2 Fixation Developing a Research Agenda for Utilization of Gaseous Carbon Waste Streams National Academies Tuesday, March 6 th, 2018 Dr. Benjamin M. Woolston Postdoctoral

More information

Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803

Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803 Angermayr et al. Biotechnology for Biofuels 2014, 7:99 RESEARCH Open Access Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803

More information

Photosynthetic Biofuels Issues and Prospects

Photosynthetic Biofuels Issues and Prospects Photosynthetic Biofuels Issues and Prospects Tasios Melis University of California - Berkeley Monday, 30-Mar-2009 Solar Biofuels from Microorganisms Lorentz Center, Leiden 1 Photosynthetic Biofuels -----------------------------------

More information

Bioenergetics: Lecture of May 21, The thermodynamics of biological energy production

Bioenergetics: Lecture of May 21, The thermodynamics of biological energy production Bioenergetics: Lecture of May 21, 2009 Introduction to bioenergetics. The thermodynamics of biological energy production Kinetic aspects of bioenergetic processes The molecular and cellular organization

More information

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Thomas D. Foust, Ph.D., P.E. Director, National Advanced Fuels Consortium NREL Bioenergy Center December 9, 2013 NREL is a national laboratory of the

More information

Metabolic Engineering of New Routes to Biofuels

Metabolic Engineering of New Routes to Biofuels Metabolic Engineering of New Routes to Biofuels Steve Wilkinson Manchester Interdisciplinary Biocentre, Manchester University UK. Overview Metabolism, enzymes, genes Bioethanol production in yeast Metabolic

More information

Photosynthetic production of biofuels from CO 2 by cyanobacteria using Algenol s Direct to Ethanol process Strain development aspects

Photosynthetic production of biofuels from CO 2 by cyanobacteria using Algenol s Direct to Ethanol process Strain development aspects Photosynthetic production of biofuels from CO 2 by cyanobacteria using Algenol s Direct to Ethanol process Strain development aspects Paul Roessler - Oct 1, 2014 Algal Biomass Summit Algenol Overview Advanced

More information

BIOLOGY 311C - Brand Spring 2008

BIOLOGY 311C - Brand Spring 2008 BIOLOGY 311C - Brand Spring 2008 NAME (printed very legibly) Key UT-EID EXAMINATION 3 Before beginning, check to be sure that this exam contains 7 pages (including front and back) numbered consecutively,

More information

Additional file. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp.

Additional file. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. Additional file Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803 S. Andreas Angermayr 1, Aniek D. van der Woude 2, Danilo

More information

Microbiology Exam 2, 2/27/07 Name

Microbiology Exam 2, 2/27/07 Name Microbiology Exam 2, 2/27/07 Name 1. (2 pts) Catabolism refers to D, whereas anabolism refers to A. (be sure to fill in the blanks!) a. synthesis of cell structures b. transfer of electrons c. uptake of

More information

CM4125 Bioprocess Engineering Lab: Week 4: Introduction to Metabolic Engineering and Metabolic Flux Analysis

CM4125 Bioprocess Engineering Lab: Week 4: Introduction to Metabolic Engineering and Metabolic Flux Analysis CM4125 Bioprocess Engineering Lab: Week 4: Introduction to Metabolic Engineering and Metabolic Flux Analysis Instructors: : David R. Shonnard 1, Susan T. Bagley 2 Laboratory Teaching Assistant: : Abraham

More information

CEE 370 Environmental Engineering Principles. Environmental Microbiology

CEE 370 Environmental Engineering Principles. Environmental Microbiology Updated: 1 October 015 Print version CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1 Environmental

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 12 October 2015 Print version CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1 Environmental

More information

Engineering E. coli for xylitol production during growth on xylose

Engineering E. coli for xylitol production during growth on xylose Engineering E. coli for xylitol production during growth on xylose Olubolaji Akinterinwa & Patrick C. Cirino IBE 2008 Annual Meeting, March 7th 008-17 Advances in Engineering Microbial Metabolism Xylitol

More information

HAWAII. Renewable Bio-solar Hydrogen Production from Robust Oxygenic Phototrophs AFOSR MURI Progress Update: January 2007.

HAWAII. Renewable Bio-solar Hydrogen Production from Robust Oxygenic Phototrophs AFOSR MURI Progress Update: January 2007. PRINCETON PENNSTATE HAWAII Renewable Bio-solar Hydrogen Production from Robust Oxygenic Phototrophs AFOSR MURI Progress Update: January 2007 -BioSolarH 2 Team Charles Dismukes PU photosyn. metabolism/chemistry

More information

Photosynthesis (in chloroplasts) Solar energy 6CO2 + 6H2O

Photosynthesis (in chloroplasts) Solar energy 6CO2 + 6H2O B-3.1 Summarize the overall process by which photosynthesis converts solar energy into chemical energy and interpret the chemical equation for the process. Photosynthesis (in chloroplasts) Solar energy

More information

Chapter 12 Respiration

Chapter 12 Respiration 2.2 Cell Metabolism Learning Objectives Chapter 12 Respiration 2.2.5 Respiration 1. Define, give the role and balanced equation for "aerobic respiration". 2. Explain the stages and molecules involved in

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Helioculture. Photobiocatalysis for Fuels and Chemicals Joule. Rights Reserved.

Helioculture. Photobiocatalysis for Fuels and Chemicals Joule. Rights Reserved. Helioculture Photobiocatalysis for Fuels and Chemicals 2015 Joule. Rights Reserved. About Joule Founded In 2007: Flagship Venture Labs Main office in Bedford, MA, USA Demonstration facility in Hobbs, NM,

More information

Biology Multiple Choice. 50 questions, 2 pt each. The following choices are for questions 1 5.

Biology Multiple Choice. 50 questions, 2 pt each. The following choices are for questions 1 5. Biology 3340 Spring 2007 Name Second Examination Version B Directions: Write your name in the correct space on the mark-sense sheet and the exam booklet. Both the exam booklet and the mark-sense sheet

More information

Biology Multiple Choice. 50 questions, 2 pt each. The following choices are for questions 1 5.

Biology Multiple Choice. 50 questions, 2 pt each. The following choices are for questions 1 5. Biology 3340 Spring 2007 Name Second Examination Version C Directions: Write your name in the correct space on the mark-sense sheet and the exam booklet. Both the exam booklet and the mark-sense sheet

More information

Respiration. 2.2 Cell Metabolism Objectives At the end of this sub section students should be able. to:

Respiration. 2.2 Cell Metabolism Objectives At the end of this sub section students should be able. to: Name: 2.2 Cell Metabolism Objectives At the end of this sub section students should be able 2.2.5 1. Definition of the term: aerobic respiration. 2. Explain the role of aerobic respiration what does it

More information

Cocultivation of Algae and Bacteria for Improved Productivity and Metabolic Versatility

Cocultivation of Algae and Bacteria for Improved Productivity and Metabolic Versatility Cocultivation of Algae and Bacteria for Improved Productivity and Metabolic Versatility Pacific Rim Summit on Industrial Biotechnology and Bioenergy October 10-12, 2012 Vancouver, Canada Axenic Cultures

More information

ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION

ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION ENGINEERING ESCERICIA COLI FOR BIOFUEL PRODUCTION Case Study Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Perry Chou and Marc Aucoin The depletion of fossil fuels and environmental concerns

More information

The Carboxylate Platform

The Carboxylate Platform The Carboxylate Platform Nigel Horan Lecture Outline The industry why it should innovate What is the carboxylate platform? Potential benefits Retrofitting and new build Conclusions AD Industry Now over

More information

International symposium on microalgal biofuels and bioproducts

International symposium on microalgal biofuels and bioproducts International symposium on microalgal biofuels and bioproducts (This program is tentative and subject to change) 21st November 2013 Surugadai Memorial Hall Chuo University 3-11-5 Kandasurugadai, Chiyoda-ku,

More information

Name period date AP BIO- 2 nd QTR 6 Week Test Review

Name period date AP BIO- 2 nd QTR 6 Week Test Review Name period date AP BIO- 2 nd QTR 6 Week Test Review Cellular Respiration 1. In the following reaction, C6H12O6 + 6 O2 6 CO2 + 6 H2O + Energy, identify which is reduced and which is oxidized: a. Glucose

More information

Begin with the supplemental experiment handout and get all experiments set up first before beginning slide and model observations in Exercise 4.

Begin with the supplemental experiment handout and get all experiments set up first before beginning slide and model observations in Exercise 4. The Cell: Division (Mitosis & Cytokinesis) and Cellular Respiration Exercise 4 (begins page 30 in 8 th edition, page 39 in 9 th 10 th 11 th and 12 th editions) and Supplemental Experiment Handout Anaerobic

More information

Trends in Technology and Applications

Trends in Technology and Applications Trends in Technology and Applications Dr. Manfred Kircher Chairman CLIB 2021 January 13th, 2010 ECD Workshop on the utlook on Industrial Biotechnology Vienna State of the Art Emerging Trends Priorities

More information

Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories

Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories DOI 10.1186/s13068-015-0367-z RESEARCH Open Access Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories Guodong Luan 1,2, Yunjing Qi 4,

More information

US Energy Mandates and the Promises of Biofuels

US Energy Mandates and the Promises of Biofuels US Energy Mandates and the Promises of Biofuels Dr. Elena del Campillo BSCI442 October 30, 2008 THE 21ST CENTURY AMERICA S CHALLENGES: 1- SECURE ENERGY FUTURE 2- DECREASED DEPENDENCE ON FOREIGN OIL 3-

More information

Fermentation. OpenStax College. 1 Lactic Acid Fermentation

Fermentation. OpenStax College. 1 Lactic Acid Fermentation OpenStax-CNX module: m45440 1 Fermentation OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be

More information

Rethinking Carbon Fixation. Avi Flamholz, Milo Lab Department of Plant Sciences Weizmann Institute of Science

Rethinking Carbon Fixation. Avi Flamholz, Milo Lab Department of Plant Sciences Weizmann Institute of Science Rethinking Carbon Fixation Avi Flamholz, Milo Lab Department of Plant Sciences Weizmann Institute of Science Where does the carbon go? (in the biological world) Carbon Fixation: A New Frontier For Systems

More information

2014 BIO World Congress on Industrial Biotechnology and Bioprocessing Philadelphia, Pennsylvania May 13 th, 2014

2014 BIO World Congress on Industrial Biotechnology and Bioprocessing Philadelphia, Pennsylvania May 13 th, 2014 2014 BIO World Congress on Industrial Biotechnology and Bioprocessing Philadelphia, Pennsylvania May 13 th, 2014 Phytonix s biosynthesis technology does not convert biomass into fuels and chemicals The

More information

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh

Optimization of Fermentation processes Both at the Process and Cellular Levels. K. V. Venkatesh Optimization of Fermentation processes Both at the Process and Cellular Levels 'Simultaneous saccharification and fermentation of starch to lactic acid' K. V. Venkatesh Department of Chemical Engineering

More information

Metabolism BIOL 3702: Chapter 10

Metabolism BIOL 3702: Chapter 10 Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

14 th Lecture Biogas and Biohydrogen

14 th Lecture Biogas and Biohydrogen Biotechnology and Energy Conservation Prof. Dr.oec.troph. Ir. Krishna Purnawan Candra, M.S. Program Magister Ilmu Lingkungan Universitas Mulawarman 14 th Lecture Biogas and Biohydrogen The Aim: Students

More information

ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION

ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION Benchmarking with Butanol in Microbes Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Perry Chou and Marc Aucoin The Clostridium acetobutylicum

More information

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Singfoong Cheah Daniel Carpenter Calvin Feik Shealyn Malone National Renewable Energy Laboratory Golden,

More information

Using Photosynthetic Microorganisms to Generate Renewable Energy Feedstock. Bruce E. Rittmann

Using Photosynthetic Microorganisms to Generate Renewable Energy Feedstock. Bruce E. Rittmann Using Photosynthetic Microorganisms to Generate Renewable Energy Feedstock Bruce E. Rittmann Director, Swette Center for Environmental Biotechnology Biodesign Institute at Arizona State University Regents

More information

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals W.J.J. Huijgen, R. Van der Linden, J.H. Reith & H. den Uil Presented at the Netherlands Process Technology

More information

Active Role of Oxygen and NADH Oxidase in Growth and Energy Metabolism of Leuconostoc

Active Role of Oxygen and NADH Oxidase in Growth and Energy Metabolism of Leuconostoc Journal of General Microbiology (1 986), 132, 1789-1 796. Printed in Great Britain 1789 Active Role of Oxygen and NADH Oxidase in Growth and Energy Metabolism of Leuconostoc By CON A. LUCEY A SEAMUS COON*

More information

Efficient Cell-Free Hydrogen Production from Glucose: Extension Exploratory Project Final Report 8/1/10 to 5/31/11

Efficient Cell-Free Hydrogen Production from Glucose: Extension Exploratory Project Final Report 8/1/10 to 5/31/11 Efficient Cell-Free Hydrogen Production from Glucose: Extension Exploratory Project Final Report 8/1/10 to 5/31/11 Investigators James R. Swartz, Professor, Chemical Engineering and Bioengineering; Phil

More information

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS FP7 EC KBBE-CALL 7- Project No. 613802 VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS Valorisation of biorefinery by-products leading to closed loop systems

More information

Towards biological hydrogen production. Ed van Niel

Towards biological hydrogen production. Ed van Niel Towards biological hydrogen production Ed van Niel The biofuels of today & tomorrow 24 August 2011 Hydrogen is the fuel of the future.. and it always will be! Production Transport 20% 33% 4% Natural gas

More information

Biomass Part I: Resources and uses. William H. Green Sustainable Energy MIT November 16, 2010

Biomass Part I: Resources and uses. William H. Green Sustainable Energy MIT November 16, 2010 Biomass Part I: Resources and uses William H. Green Sustainable Energy MIT November 16, 2010 Sustainable Energy: Big Picture People want electricity, transport, heat Now use: coal oil gas Major Challenges:

More information

Replacing Petroleum with Renewable Fuels and Chemicals. Buckeye Technologies & Florida Crystals

Replacing Petroleum with Renewable Fuels and Chemicals. Buckeye Technologies & Florida Crystals Replacing Petroleum with Renewable Fuels and Chemicals Buckeye Technologies & Florida Crystals We have created an environmental problem. While US pundits turn climate change into a joke, China turns this

More information

Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals

Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals Chemical and Biological Engineering Publications Chemical and Biological Engineering 10-2012 Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals Laura R. Jarboe

More information

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Lanny D. Schmidt Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis

More information

Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers

Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers Valorisation of agroindustrial waste for the production of energy, biofuels and biopolymers Prof. Gerasimos Lyberatos National Technocal University of Athens Industrial Waste & Wastewater Treatment & Valorisation

More information

Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011

Chapter 7 Outline. Microbial Physiology Introduction 5/22/2011 Chapter 7 Outline Microbial Physiology Introduction Microbial Nutritional Requirements Categorizing Microorganisms According to Their Energy and Carbon Sources Metabolic Enzymes Biologic Catalysts Factors

More information

Butanol: : A Second Generation Biofuel. Hans P. Blaschek University of Illinois March 6, 2007

Butanol: : A Second Generation Biofuel. Hans P. Blaschek University of Illinois March 6, 2007 Butanol: : A Second Generation Biofuel Hans P. Blaschek University of Illinois March 6, 2007 Outline Introduction History Rationale Microbe Development and Characterization Genetic and Post-genomic Characterization

More information

THERMODYNAMICS OF THE MICROBIAL CYTOSOL

THERMODYNAMICS OF THE MICROBIAL CYTOSOL Joint European Thermodynamics Conference - Chemnitz, 2010 THERMODYNAMICS OF THE MICROBIAL CYTOSOL U. v. Stockar, I.W. Marison, Th. Maskow, V. Vojinovic 1. General remarks on biothermodynamics 2. Thermodynamics

More information

Delivering the renewable fuels aspiration: The role of biobutanol

Delivering the renewable fuels aspiration: The role of biobutanol Delivering the renewable fuels aspiration: The role of biobutanol Paul Beckwith VP, Commercialisation Strategy and Marketing February 16 th 2011 Agenda 2 Increasing renewables fuels in transport Introduction

More information

CHAPTER 4 SUGARCANE ITS BYPRODUCTS AND CO-PRODUCTS, OPPORTUNITIES FOR DIVERSIFICATION: AN OVERVIEW

CHAPTER 4 SUGARCANE ITS BYPRODUCTS AND CO-PRODUCTS, OPPORTUNITIES FOR DIVERSIFICATION: AN OVERVIEW CHAPTER 4 SUGARCANE ITS BYPRODUCTS AND CO-PRODUCTS, OPPORTUNITIES FOR DIVERSIFICATION: AN OVERVIEW 4.1 Introduction Sugarcane harvesting and processing has the benefits of obtaining multiple products and

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10

Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10 Efficient Cell-Free Hydrogen Production from Glucose A Feasibility Study Annual Report 5/1/09 to 4/30/10 Investigators James R. Swartz, Professor, Chemical Engineering and Bioengineering; Phil Smith, Jon

More information

TBT4170 v2014. Kapittel 4 White Biotechnology: Cells as Synthetic Factories. Part 1

TBT4170 v2014. Kapittel 4 White Biotechnology: Cells as Synthetic Factories. Part 1 TBT4170 v2014 Kapittel 4 White Biotechnology: Cells as Synthetic Factories Part 1 1 The single definition, OECD Biotechnology The application of science and technology to living organisms, as well as parts,

More information

Xylitol production from lignocellulosic hydrolysates

Xylitol production from lignocellulosic hydrolysates Xylitol production from lignocellulosic hydrolysates Young-Jae Jeon a, Hyoun-Sung Shin b and Peter L. Rogers a a : School of Biotechnology and Biomolecular Sciences The University of New South Wales b

More information

THE INTERNATIONAL OVERVIEW OF BIO-BASED CHEMICAL BUILDING BLOCKS Ten years evolution decrypted

THE INTERNATIONAL OVERVIEW OF BIO-BASED CHEMICAL BUILDING BLOCKS Ten years evolution decrypted THE INTERNATIONAL OVERVIEW OF BIO-BASED CHEMICAL BUILDING BLOCKS Ten years evolution decrypted 2 Many economic and public stakeholders are questioning about the economic reality of bio-based products.

More information

MixAlco Process. Cesar Granda, Ph.D. Department of Chemical Engineering Texas A&M University College Station, TX

MixAlco Process. Cesar Granda, Ph.D. Department of Chemical Engineering Texas A&M University College Station, TX MixAlco Process Cesar Granda, Ph.D. Department of Chemical Engineering Texas A&M University College Station, TX Oil Refinery Crude Oil $431/ton $66/bbl $1.57/gal Oil Refinery Chemicals Fuels Polymers $566/ton

More information

Biology 119/Microbiology Final Exam Summer 2011

Biology 119/Microbiology Final Exam Summer 2011 Biology 119/Microbiology Final Exam Summer 2011 Name: KEY Each of the 11 questions is valued at 10 points. We will drop the question with the lowest score. Maximum possible on the exam is therefore 100

More information

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels A Workshop to Develop the Roadmap for Making Lignocellulosic Biofuels a Practical Reality ACS Headquarters Washington, D.C. June

More information

Usos de la fermentación en la producción masiva de compuestos químicos a partir de biomasa

Usos de la fermentación en la producción masiva de compuestos químicos a partir de biomasa Usos de la fermentación en la producción masiva de compuestos químicos a partir de biomasa Bioeconomía Argentina 2013: Biomasa, innovación y valor agregado, Buenos Aires, March 21-22, 2013 Ruud A. Weusthuis

More information

What is Biomass? Biomass plants animal waste photosynthesis sunlight energy chemical energy Animals store

What is Biomass? Biomass plants animal waste photosynthesis sunlight energy chemical energy Animals store Biomass Energy What is Biomass? Biomass energy is derived from plants and animal waste which are, or were recently, living material Through photosynthesis plants convert sunlight energy into chemical energy

More information

Networks of Signal Transduction and Regulation in Cellular Systems

Networks of Signal Transduction and Regulation in Cellular Systems Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Networks of Signal Transduction and Regulation in Cellular Systems E.D. Gilles 1 Magdeburg Capital of Saxony-Anhalt 2 3 MAX PLANCK

More information

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont.

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont. Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Microbiology Helmut Pospiech

Microbiology Helmut Pospiech Microbiology 27.3.2018 Helmut Pospiech Microbial Metabolism Different ways to make a living Energy metabolism of Microorganisms Fermentation ADP +Pi Motility ATP Active transport (nutrient uptake) Any

More information

Biofuels: What, When and How

Biofuels: What, When and How Biofuels: What, When and How Arvind M Lali & Annamma A. Odaneth Institute of Chemical Technology Mumbai, India Biofuels : Need or Interest Energy security High energy dependence on politically unstable

More information

Simulation of a Hydrogen Production Process from Algae

Simulation of a Hydrogen Production Process from Algae A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 27, 2012 Guest Editors: Enrico Bardone, Alberto Brucato, Tajalli Keshavarz Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-18-1; ISSN 1974-9791

More information

Integrating Biotechnology and Nanotechnology into Sustainable Industrial Complexes

Integrating Biotechnology and Nanotechnology into Sustainable Industrial Complexes Integrating Biotechnology and Nanotechnology into Sustainable Industrial Complexes Organization of Material Introduction to Sustainable Development Introduction to Biotechnology Feedstock Processes Products

More information

DBT-ICT Technology Platforms For Advanced Biofuels

DBT-ICT Technology Platforms For Advanced Biofuels DBT-ICT Technology Platforms For Advanced Biofuels EU-India Conference on Advanced Biofuels March 6-8 2018 Arvind Lali DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Mumbai, India

More information

Please sign below if you wish to have your grades posted by the last five digits of your SSN

Please sign below if you wish to have your grades posted by the last five digits of your SSN BIO 226R EXAM II (Sample) PRINT YOUR NAME SSN Please sign below if you wish to have your grades posted by the last five digits of your SSN Signature BIO 226R Exam II has 6 pages, and 27 questions. There

More information

2G Biofuels: from biomass going commercial. Simone Ferrero, Copenhagen 20/05/2014

2G Biofuels: from biomass going commercial. Simone Ferrero, Copenhagen 20/05/2014 2G Biofuels: from biomass going commercial Simone Ferrero, Copenhagen 20/05/2014 SUMMARY The biorefinery concept Proesa Technology Biofuel and Biochemicals 2 BIOBASED CHEMICALS FROM BIOMASS: IS IT POSSIBLE?

More information

Biological Reductive Dechlorination of Chlorinated Compounds. Barry Molnaa WSW Remediation Practice Manager ARCADIS

Biological Reductive Dechlorination of Chlorinated Compounds. Barry Molnaa WSW Remediation Practice Manager ARCADIS Biological Reductive Dechlorination of Chlorinated Compounds Barry Molnaa WSW Remediation Practice Manager ARCADIS 1 Presentation Outline What are we trying to do? How is it supposed to work? What are

More information

*A table of standard reduction potentials may be found on the last page of the exam.

*A table of standard reduction potentials may be found on the last page of the exam. Name: Page 1 Ecology 1.018J/7.30 Quiz 1 October 2, 2008 Please put your name on every page! Space is provided for your answers; if you need more room, use the back of the *same* page. This exam is worth

More information

4/6/2015. Bacterial Growth and Nutrition. Nutrients + Oxygen. Temperature. Temperature

4/6/2015. Bacterial Growth and Nutrition. Nutrients + Oxygen. Temperature. Temperature Bacterial Growth and Nutrition ph Nutrients + Oxygen Temperature Temperature 1 Environmental Oxygen Requirements -- can support or hinder growth 1. Aerobic need high oxygen concentration to grow 2. Anaerobic

More information

Cells and Cell Cultures

Cells and Cell Cultures Cells and Cell Cultures Beyond pure enzymes, whole cells are used and grown in biotechnological applications for a variety of reasons: cells may perform a desired transformation of a substrate, the cells

More information

Feasibility of small scale production of bulk chemicals

Feasibility of small scale production of bulk chemicals Feasibility of small scale production of bulk chemicals Rules for the biobased production of bulk chemicals on a small scale CLIB, Monheim, 3 April 2014 Johan Sanders, DLO/Biobased Products The new challenges

More information

Biotechnology and Renewable Chemicals: The Future is Now

Biotechnology and Renewable Chemicals: The Future is Now Biotechnology and Renewable Chemicals: The Future is Now Pramod Chaudhari Executive Chairman October 12, 2012 Vancouver, Canada www.praj.net Critical Observations Over 98 % of all Compounds in nature are

More information

Ho Nam Chang. Bioenergy II

Ho Nam Chang. Bioenergy II Bioenergy II (RIO DE JANEIRO 8-13 March, 2009) Biofuels Production from Volatile Fatty Acid Platform Ho Nam Chang Biofuel Professor of Biochemical Engineering Department of Chemical & Biomolecular Engineering,

More information

Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates

Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates Efficient Hydrogen Fermentation for 2 - Stage Anaerobic Digestion Processes: Conversion of Sucrose Containing Substrates Silvia Noebauer*, Wolfgang Schnitzhofer Profactor GmbH, Innovative Energy Systems,

More information

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions

Paper No.: 01. Paper Title: FOOD CHEMISTRY. Module 22: Enzymes: General nature and Kinetics of. enzyme reactions Paper No.: 01 Paper Title: FOOD CHEMISTRY Module 22: Enzymes: General nature and Kinetics of enzyme reactions Enzymes: General nature and kinetics of enzyme reactions INTRODUCTION Enzymes are defined as

More information

Biology (Microbiology): Exam #2

Biology (Microbiology): Exam #2 NAME: ANSWER KEY PLEDGE: Biology 50-384 (Microbiology): Exam #2 1. You have isolated mutants in the following genes in the motile bacterium E. coli. These mutations result in the formation of a nonfunctional

More information

SPRIN Ketoreductase Kit

SPRIN Ketoreductase Kit SPRIN Ketoreductase Kit SPRIN Ketoreductase Kit Normal (12 preparations) Product code: SKKN Covalently immobilised preparations of different Ketoreductases on Acrylic Resin Kit Description: The kit contains

More information

*A table of standard reduction potentials may be found on the last page of the exam.

*A table of standard reduction potentials may be found on the last page of the exam. Name: Page 1 Ecology 1.018J/7.30 Quiz 1 October 2, 2008 Please put your name on every page! Space is provided for your answers; if you need more room, use the back of the *same* page. This exam is worth

More information

Metabolic Engineering for Fuels and Chemicals

Metabolic Engineering for Fuels and Chemicals Metabolic Engineering for Fuels and Chemicals K.T. Shanmugam and Lonnie O. Ingram Dept. of Microbiology and Cell Science University of Florida Gainesville, Florida Florida Center for Renewable Chemicals

More information

Production of Biofuels AO Olaniran

Production of Biofuels AO Olaniran Production of Biofuels AO Olaniran Department Microbiology University of KwaZulu- Natal (Westville Campus) Microorganisms may be used to convert waste products, plants, or microbial biomass into liquid

More information

Comments on the manuscript of Christopher P Long et al. to be considered for publication in Nature Communications

Comments on the manuscript of Christopher P Long et al. to be considered for publication in Nature Communications Reviewers' comments: Reviewer #1 (Remarks to the Author): Comments on the manuscript of Christopher P Long et al. to be considered for publication in Nature Communications A) Summary: The authors have

More information

IB HL Biology Test: Topics 1 and 3

IB HL Biology Test: Topics 1 and 3 October 26, 2011 IB HL Biology Test: Topics 1 and 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What conditions must be met for the t-test to be applied?

More information

Microalgae Biofuels and Carbon Cycling

Microalgae Biofuels and Carbon Cycling Microalgae Biofuels and Carbon Cycling Prepared for the 2009 Annual Conference GA A&WMA Umakanta Jena & Nisha Vaidyanathan Biorefining and Carbon Cycling Program Department of Biological & Agricultural

More information

Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria 2

Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria 2 Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances Domenico Foglia 1*, Walter Wukovits 1, Anton Friedl 1, Truus de Vrije, Pieternel

More information

BELLRINGER. Name three enzymes in the human body.

BELLRINGER. Name three enzymes in the human body. BELLRINGER Some reactions have enzymes. What is an advantage to having an enzyme for a particular reaction? What is a disadvantage to having an enzyme for a particular reaction? Name three enzymes in the

More information

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 22.033 Biofuels Presentation Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 1 Overview Our Goal House of Quality Comparison of Biomass Sources Possible Uses & Processes Comparison of Inputs Comparison

More information

Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids

Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2009 Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids Stephen Reaume University

More information

FUNDAMENTALS OF ENZYMOLOGY

FUNDAMENTALS OF ENZYMOLOGY FUNDAMENTALS OF ENZYMOLOGY Meenakshi Meena Deepak Chauhan Aavishkar Publishers, Distributors Jaipur 302 003 (Raj.) India Contents Preface v 1. INTRODUCTION 1 Historical Aspects 1 Enzymes and Life Processes

More information

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) Author: NPCS Board of Consultants & Engineers Format: Hardcover ISBN: 9788178331584 Code: NI289 Pages: 417 Price:

More information