NUMERICAL SIMULATION AND CFD ANALYSIS FOR ENERGY LOSS COMPUTATION IN FULLY OPEN GEOMETRY OF PELTON TURBINE NOZZLE

Size: px
Start display at page:

Download "NUMERICAL SIMULATION AND CFD ANALYSIS FOR ENERGY LOSS COMPUTATION IN FULLY OPEN GEOMETRY OF PELTON TURBINE NOZZLE"

Transcription

1 International Journal of Latest Research in Science and Technology Volume2,Issue 1 :Page No ,January-February (2013) ISSN (Online): NUMERICAL SIMULATION AND CFD ANALYSIS FOR ENERGY LOSS COMPUTATION IN FULLY OPEN GEOMETRY OF PELTON TURBINE NOZZLE Abhishek Sharma 1, Anil Kothari 2, Alka Agrawal 3 1 Dept. of Mechanical Engineering,, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 2.Deptt of Trainig and Placement, Rajiv Gandhi Proudyogiki Vishwavidyala Bhopal 3 Dept. of Mechanical Engineering,, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Abstract -Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head. The amount of potential energy in water is proportional to the head. A large pipe penstock delivers water to the turbine this method produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand, excess generation capacity is used to pump water into the higher reservoir. When there is higher demand, water is released back into the lower reservoir through a turbine. Pumped-storage schemes currently provide the most commercially important means of large-scale grid energy storage and improve the daily capacity factor of the generation system This process needs the reduction of flow area of penstock. Secondly, a spear of conical shape is allowed to move in nozzle opening to regulate the discharge. The reduction in flow area and presence of spear causes change in streamline pattern and some energy loss mainly due to friction. This necessitates the efficient operation of nozzle to improve the overall performance of turbine. In this paper Computational Fluid Dynamics (CFD) approach has been used to predict the performance of different shape of nozzles at different mass flow rates and nozzle openings. To regulate the water flow through the nozzle and to obtain the perfect jet of water at all loads, a spear is so arranged that it can move forward and backward thereby decreasing or increasing the annular area of the nozzle flow passage. The speed of the turbine runner is required to be maintained constant so that the electric generator coupled directly to the turbine shaft runs at constant speed under varying load conditions. The task is accomplished by a governing mechanism that automatically regulates the quantity of water flowing through the runner by moving the spear to and fro in the nozzle in accordance with any variations in the load conditions. Key Words: Numerical Modeling, Pelton wheel nozzle, Spear design INRODUCTION Hydraulic turbines have a series of blades fitted to wheel mounted on a rotating shaft.. Flowing water is directed on to the blades of a turbine runner, creating a force on the blade since the runner is spinning in this way energy is transferred from the water flow to the turbine The velocity and pressure of the liquid reduce while flowing through the hydraulic turbines. This results in the development of torque and rotation of the turbine shaft. There are different forms of hydraulic turbines in use depending on the operational requirements. For every specific use, a particular type of hydraulic turbine provides the optimum output. PELTON TURBINE Pelton wheel is a water impule turbine. It was invented by Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to its weight like traditional overshot water wheel. Although many variations of impulse turbines existed prior to Pelton's design, they were less efficient than Pelton's design; the water leaving these wheels typically still had high speed, and carried away much of the energy. Pelton's paddle geometry was designed so that when the rim runs at ½ the speed of the water jet, the ISSN:

2 water leaves the wheel with very little speed, extracting almost all of its energy, and allowing for a very efficient turbine. PRINCIPLES OF FLUID FLOW There are three basic principles of fluid flow Principle of Conservation of Mass It states that Mass can neither be created nor destroyed. Continuity equation has been derived on this principle. Principle of Conservation of Energy It states that Energy can neither be created nor destroyed. On the basis of this principle the energy equation is derived. Principle of Conservation of Momentum It states that The impulse of the resultant force, or the product of the force and time increment during which it acts is equal to change in momentum of the body. Momentum equation is derived on this basis. Continuity Equation The rate of increase of the fluid mass contained within the region must be equal to the difference between the rate at which the fluid mass enters the region and the rate at which the fluid mass leaves the region. However, if the flow is steady, the rate of increase of fluid mass within the region is equal to zero, then the rate at which the fluid mass enters the region is equal to the rate at which the fluid mass leaves the region. Momentum EquationAccording to Newton s Second Law of motion, inertia force acting on a body in any direction is equal to resultants of all body and surface forces in that direction. Energy Equation Energy equation is obtained by multiplying the equation of momentum by velocity components in each coordinate direction and then adding and integrating over the volume. FLOW THROUGH NOZZLE A nozzle is a gradually converging short tube which is fitted at the outlet and of the penstock for the purpose of converting the total energy of the flowing water into kinetic energy. Nozzles are used where high velocities of flow are required to be ISSN:

3 developed. In impulse turbines, it is required to convert whole of hydraulic energy into kinetic energy. The discharge is given by, The nozzle is horizontal and the nozzle axis is assumed as datum for elevation and hence head at nozzle is given by, Head loss in nozzle is given by, Head loss coefficient is given by, Coefficient of discharge is given by, Øc= H l/h1..(588) Coefficient of pressure is given by, Coefficient of velocity is given by, COMPUTATIONAL FLUID DYNAMICS Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics that uses numerical methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used to perform the calculations required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions. With high-speed supercomputers better solutions can be achieved. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is performed using a wind tunnel with the final validation coming in full-scale testing, flight tests. GEOMETRIC MODELING The modeled assembly of nozzle for pelton turbine consists of nozzle (pipe of converging cross-sectional area), spear and a free surface flow domain. The modeled assembly consists of inlet, nozzle, spear and outlet. The modeled assembly of free surface flow domain consists of extended outlet. The modeling has been done in ANSYS Workbench 10 and ANSYS ICEM CFD 10. The 3D-view of nozzle spear is shown in fig. spear and free surface flow Isometric view of t nozzle ISSN:

4 Part name No. of Elements MESH GENERATION Element Type Inlet 8602 Triangle Outlet 802 Triangle Spear Triangle Nozzle Triangle Flow Area Tetrahedral Solid Tetrahedral The geometry made is divided into small sub parts for CFD analysis called mesh and the process is called meshing. The shape of the mesh elements can be triangular, quadrilateral, tetrahedral, hexahedral or prism depending upon the size and shape of the geometry. The shape and size of the mesh elements can be varied and are kept according to the dimension of the geometry, accuracy required, computational power of the system and memory. The complete nozzle flow space is divided into two domains and the mesh is generated. The meshing of nozzle and spear domain has been done at different spear shapes and the meshing of nozzle spear domain for fillet spear shape has been shown in fig. The summary of meshing data for each surface has been described in table. Table - Mesh Data for Nozzle Spear Domain Fig1.1 : Meshing of Free Surface Flow Domain for 100% Spear Opening and table Part name No. of Elements Element Type Free Flow Triangle Surface Inlet 697 Triangle Outlet 8665 Triangle Solid 247 Trianle Flow Area Tetrahedral Free surface domain 100 percent opening DOMAIN AND INTERFACE PROPERTIES The mesh is converted into the required format and is imported to ANSYS CFX-10 software. In ANSYS CFX-Pre the properties of the domains and fluid are defined along with their interface properties. The summary of the domain 1 properties are given in table. Table - Domain 1 Properties Location Fluid Domain Type Fluid Domain Fluid List Water Coordinate Frame Coord 0 Reference e 1 [atm] Buoyancy Option Not Buoyant Domain Motion Option Stationary Mesh Deformation Option None ISSN:

5 Heat Transfer Option Fluid Temperature Turbulence Model Turbulence Wall Function Density of Water Kinematic Viscosity of water Isothermal 25 0 [C] k-epsilon Scalable 997 kg/ X Domain 2 Properties Location Fluid 2 Domain Type Fluid Domain Fluid List Water Coordinate Frame Coord 0 Reference e 1 [atm] Buoyancy Option Not Buoyant Domain Motion Option Stationary Mesh Deformation Option None Heat Transfer Option Isothermal Fluid Temperature 25 0 [C] Turbulence Model k-epsilon Turbulence Wall Function Scalable BOUNDARY CONDITIONS The boundary conditions are applied at the inlet and outlet surfaces of the domains. Inlet Boundary Condition: The mass flow rate and its direction with normal direction to the inlet surface i.e., at inlet of nozzle domain is applied. Turbulence is set to medium intensity (upto 5%). Outlet Boundary Condition: The reference pressure at the outlet of the external domain was set equal to 1 atmospheric. Wall Conditions: The walls of all the domains are assumed to be smooth and no slip condition is assigned. Turbulence Model: k- ª model used SOLVER Specific Blend Factor with 0.9 value has been used for up to 200 iterations. The timescale control is set to Auto Timescale. The RMS residual target has been set to 1x10E-7 for termination of the calculations. POST PROCESSING 3D-Streamlines of velocity and pressure contours starting from inlet of the nozzle can be seen in all the domains. Using the function calculator in tools average values of various parameters like the velocity, pressure, area, mass flow rate at the boundaries and the required domain can be found out for computation of loss, pressure and velocity coefficients. RESULTS AND CONCLUSIONS Three shapes of nozzles have been analysed and their performance has been evaluated at different spear openings (outlet openings) and mass flow rates. The three spear openings have been taken as 50%, 75% and 100%. The mass flow rates , , kg/sec has been taken for each spear opening. Each nozzle has been taken a domain of fluid type and fluid is taken as water with reference pressure as 1 atmospheric. Free surface flow domain has been taken as another domain of fluid type and fluid taken as water. Heat transfer option has been set to isothermal, fluid temperature 25 C X. The outlet of nozzle domain is the inlet for the free surface flow domain and interface properties are set to interface model option general connection, frame change option stage, Axis Definition Option - Coordinate Option, Axis Definition Rotational Axis - Global-X, Mesh Connection Method Option GGI. The mass flow rate is defined and its direction is taken normal to the inlet surface of the nozzle. At outlet, reference pressure is set equal to 1 atmospheric. Walls are taken to be smooth and no slip condition is taken. With the Specific Blend Factor of 0.75, 200 iterations were given. The timescale control was set to Auto Timescale. The RMS residual target was set to 1x10E-5 for termination of the calculations. After completion of the iterations results are obtained. The variation of the pressure and velocity using ISSN:

6 pressure contours and velocity streamlines respectively on the surface of the nozzle could be observed. 6.2 COMPUTED PARAMETERS The average values of velocity, pressure, total pressure at inlet and outlet were obtained using the function calculator in CFX Post. Then values of coefficient of discharge, coefficient of velocity and coefficient of pressure were calculated. The computed results in the tabular form have been shown in Tables for the different geometries, spear openings and mass flow rates Results for Nozzle Table - 6.1: Results Obtained for nozzle, 100% Spear Opening Mass Flow Rate = kg/s Total Vel (m/s) Area (m 2 ) Head (m) H L (m) Loss Coeffici ent C v C P C d Inlet Outlet Mass Flow Rate = kg/s Total Vel (m/s) Area (m 2 ) Head (m) H L (m) Loss Coeffici ent C v C P C d Inlet Outlet Mass Flow Rate = kg/s Total Vel (m/s) Area (m 2 ) Head (m) H L (m) Loss Coeffic ient C v C P C d Inlet Outlet The outlet velocity and the head loss increases with the increase in mass flow rates for the same spear openings as seen in Tables 6.1. The head loss coefficient decreases gradually as mass flow rate increasing for same spear opening.coefficient of velocity and coefficient of discharge have least value at mass flow rate of kg/s and increase with either increase or decrease in mass flow rate at as shown in Tables 6.1. Coefficient of pressure decreases with increase in flow rate at same opening. 6.3 GRAPHICAL PLOTS e contours and velocity stream lines were obtained using insert contour and insert streamline commands of menu bar in ANSYS CFX-Post. e contours and velocity stream lines for each geometry at different spear openings with varying mass flow rates have been shown under. ISSN:

7 Fig 6.4: e contour at nozzle domain Fig 6.5: Streamlines showing the velocity 100% spear opening and mass distribution in geometry, 100% spear flow rate kg/s opening and mass flow rate kg/s Fig 6.6: e contour at nozzle domain, Fig 6.7: Streamlines showing the velocity 100% spear opening and mass flow rate kg/s distribution in geometry, with 100% spear opening and mass flow rate kg/s Fig 6.8: e contour at nozzle domain, Fig 6.9: Streamlines showing the velocity distribution in 100% spear opening and mass flow rate geometry, 100% spear opening and mass flow rate kg kg/s 6.4 CONCLUSION The pressure at the inlet of the nozzle increases with the increase in mass flow rate for the same spear opening.. The pressure is maximum at inlet for the kg/s mass flow rate and minimum for outlet at kg/s mass flow rate. The pressure is much lower at the outlet than at the inlet of the nozzles as the jet is issued freely in air. The outlet velocity of the jet is higher than the inlet velocity of the fluid which ISSN:

8 shows that the pressure energy is being converted into kinetic energy as seen in Figures The velocity increases with the increase in mass flow rates for the same spear openings.. The outlet velocity is maximum for the 50./ opening and kg/s mass flow rate but the head loss coefficient is max at kg/s mass flow rate. The streamlines converge slowly for nozzle as mass flow rate increases it has sharp curvature as seen in Figures. Due to sharp curvature, the pressure at outlet of nozzle is decreasing in each opening.. the highest head loss among the three mass flow rate even stream lines are not evenly distributed as shown in fig. From the streamlines, it is seen that the jet coming out of higher mass flow rate remains compact as seen in Figures. Vena-contracta can be seen in velocity streamlines when the jet of water just leaves the nozzle as seen in fig. The computation and comparison of different flow coefficients of various geometric configurations using CFD will help to optimize the nozzle and spear shape. In this dissertation Computational Fluid Dynamics (CFD) approach has been used to predict the performance of different shape of nozzles at different mass flow rates and nozzle openings. In present case it may be concluded that nozzle with kg/s mass flow rate is better than the other two case. REFERENCES 1. W.A.Doble (1899), The Tangential Water Wheel, Transaction of the American Institute of Mining Engineers, Vol. 29, pp W Malalasekera and H K Versteeg (1995), An Introduction to Computational Fluid Dynamics, the Finite Volume Method, Longman 3. W.N. Dawes (1998), Computational Fluid Dynamics for Turbomachinery Design, Whittle Laboratory, Department of Engineering, University of Cambridge, UK 4. Kearon Bennet, Jacek Swiderski, Jinxing Huang (2000), Application of CFD Turbine Design for Small Hydro Elliott Falls, A Case Study, Transaction of SECFD, Ottawa engineering limited, Ottama, Ontario 5. Eisinger R, Ruprecht A. (2001), Automatic Shape Optimization of Hydro Turbine Components Based on CFD, Transaction of Emeraldinsight, Vol.6, No.1, pp Maryse Francois, Pie Yves Lowys, Gerard Vuillerod (2002), Development and Recent Projects for Hooped Pelton Turbine, Transaction of HYDRO-2002, Turkey, Alstorm 7. Yodchai Tiaple, Udomkiat Nontakaew (2004), The Development of Bulb Turbine for Low Head Storage Using CFD Simulation, Transaction of ENERGY-BASED.NRTC.GO, publication#1, pp B. Zoppe, C. Pellone, T. Maitre, P. Leroy (2006), Flow Analysis Inside a Pelton Turbine Bucket, Transaction of ASME, Vol. 128, pp Michael Marek, Thorsten Stoesser, Philip J.W. Roberts, Volker Weitbrecht, Gerhard H. Jirka (2006), CFD Modelling of Turbulent Jet Mixing in a Water Storage Tank, Transaction of UNI-KARLSRUHE, pp Zn Zhang, M Casey (2008), Experimental Studies of the jet of a Pelton Turbine, Power and Energy, Mech E Vol. 221 Part A, pp ISSN:

Numerical Simulation of Pelton Turbine Nozzle for Different Shapes of Spear

Numerical Simulation of Pelton Turbine Nozzle for Different Shapes of Spear Material Science Research India Vol. 8(1), 53-63 (2011) Numerical Simulation of Pelton Turbine Nozzle for Different Shapes of Spear ABHISHEK SHARMA¹, VISHNU PRASHAD² and ANIL KUMAR³ ¹Department of Energy,

More information

International Journal of Scientific and Research Publications, Volume 8, Issue 8, August ISSN

International Journal of Scientific and Research Publications, Volume 8, Issue 8, August ISSN International Journal of Scientific and Research Publications, Volume 8, Issue 8, August 2018 314 Flow Analysis of Turgo Impulse Turbine for Low Head Power Plant Hnin Hnin Ei *, Myat Myat Soe ** * Department

More information

CFD Analysis of Pelton Runner

CFD Analysis of Pelton Runner International Journal of Scientific and Research Publications, Volume 4, Issue 8, August 2014 1 CFD Analysis of Pelton Runner Amod Panthee *, Hari Prasad Neopane **, Bhola Thapa ** * Turbine Testing Lab,

More information

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11 Proceedings of the International Symposium on Current Research in Hydraulic Turbines CRHT VII April 04, 2016, Turbine Testing Lab, Kathmandu University, Dhulikhel, Nepal Paper no. CRHT17-11 Design and

More information

ISSN: [Nema* et al., 6(2): February, 2017] Impact Factor: 4.116

ISSN: [Nema* et al., 6(2): February, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND EVALUATION OF PERFORMANCE OF CONICAL TYPE DRAFT TUBE WITH VARIATION IN LENGTH TO DIAMETER RATIO Umashankar Nema*, Dr.

More information

International Symposium on Current Research in HydraulicTurbines DESIGN AND CFD ANALYSIS OF PICO HYDRO TURGO TURBINE

International Symposium on Current Research in HydraulicTurbines DESIGN AND CFD ANALYSIS OF PICO HYDRO TURGO TURBINE Kathmandu University International Symposium on Current Research in HydraulicTurbines (CRHT-VII) DESIGN AND CFD ANALYSIS OF PICO HYDRO TURGO TURBINE Sudish Gyanwali 1*, Kush Kuikel 1 and Abinath Thapa

More information

Introduction. Objective

Introduction. Objective Introduction Pelton Wheel Turbine is an impulse or a constant pressure water turbine. In this case water head is very high. Pelton wheel consists of a wheel called rotor. The rotor of the turbine consists

More information

Numerical analysis of eccentric orifice plate using ANSYS Fluent software

Numerical analysis of eccentric orifice plate using ANSYS Fluent software IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical analysis of eccentric orifice plate using ANSYS Fluent software To cite this article: D Zahariea 2016 IOP Conf. Ser.:

More information

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD Ruchi Khare, Vishnu Prasad and Sushil Kumar Ruchi Khare Vishnu Prasad Sushil Kumar Abstract: The testing of physical

More information

Evaluating Performance of Steam Turbine using CFD

Evaluating Performance of Steam Turbine using CFD Evaluating Performance of Steam Turbine using CFD Sivakumar Pennaturu Department of Mechanical Engineering KL University, Vaddeswaram, Guntur,AP, India Dr P Issac prasad Department of Mechanical Engineering

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 232 Numerical Simulation for Unsteady Flow Analysis of Kaplan Turbine Vaibhav Chandrakar 1, Dr. Ruchi Khare 2

More information

Chapter (2) Prepared by Dr. Assim Al-Daraje

Chapter (2) Prepared by Dr. Assim Al-Daraje Chapter (2) Prepared by Dr. Assim Al-Daraje 1 INTRODUCTION The Pelton turbine is ideal for high-head and low-discharge situations. The number of jets in a turbine is usually one. However, where additional

More information

Chapter 5 1. Hydraulic Turbines (Gorla & Khan, pp )

Chapter 5 1. Hydraulic Turbines (Gorla & Khan, pp ) Electronic Notes Chapter 5 1. Hydraulic Turbines (Gorla & Khan, pp.91 141) 1. Terminologies Related to A Hydropower Plant Hoover Dam generates more than 4 billion kilowatt-hours of electricity each year,

More information

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE Dr. Ruchi Khare, Dr. Vishnu Prasad, Mitrasen Verma Department of Civil Engineering M.A. National Institute of Technology Bhopal,India ruchif4@rediffmail.com

More information

= Guide angle = angle between direction of jet and direction of motion of vane/bucket.

= Guide angle = angle between direction of jet and direction of motion of vane/bucket. GEC223: FLUID MECHANICS MODULE 4: HYDROPOWER SYSTEMS TOPIC: IMPULSE TURBINES-PELTON WHEEL DEPARTMENT OF CIVIL ENGINEERING, LANDMARK UNIVERSITY, KWARA STATE, NIGERIA CONSTRUCTION AND WORKING OF A PELTON

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R050210201 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 FLUID MECHANICS & HYDRAULIC MACHINERY (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any

More information

Effect of Orifice Plate Shape on Performance Characteristics

Effect of Orifice Plate Shape on Performance Characteristics IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 4 Ver. VII (Jul. - Aug. 2016), PP 50-55 www.iosrjournals.org Effect of Orifice Plate Shape

More information

Numerical investigation on effect of blade shape for stream water wheel performance.

Numerical investigation on effect of blade shape for stream water wheel performance. IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical investigation on effect of blade shape for stream water wheel performance. To cite this article: N F Yah et al 2018

More information

Simulation of the Effect of Bucket Tip Angle on Bucket Splitter of a Pelton Turbine

Simulation of the Effect of Bucket Tip Angle on Bucket Splitter of a Pelton Turbine Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-11, pp-85-92 www.ajer.org Open Access Simulation of the Effect of Bucket Tip Angle

More information

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc.

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. Edward Bennett, Mechanical Solutions, Inc. CFD Analysis of a Low Head

More information

OPTIMIZATION OF A MODEL FRANCIS TURBINE S PARAMETERS FOR THE MOST EFFICIENT PERFORMANCE CASE

OPTIMIZATION OF A MODEL FRANCIS TURBINE S PARAMETERS FOR THE MOST EFFICIENT PERFORMANCE CASE 16 th International Conference on Clean Energy (ICCE-2018) 9-11 May 2018, Famagusta, N. Cyprus OPTIMIZATION OF A MODEL FRANCIS TURBINE S PARAMETERS FOR THE MOST EFFICIENT PERFORMANCE CASE Deniz Sarper

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING CE6451-FLUID MECHANICS AND MACHINERY UNIT- I: FLUID PROPERTIES AND FLOW CHARACTERISTICS PART-A 1. Find the surface tension in a soap

More information

Numerical and Experimental Modeling of Producer Gas Carburettor

Numerical and Experimental Modeling of Producer Gas Carburettor Numerical and Experimental Modeling of Producer Gas Carburettor S.S.Vinay l, S.D.Ravi 2, G PremaKumar 3 and N.K.S.Rajan 4 l M.E Student, Bangalore University, Bangalore. 2 Project Assistant, CGPL, Dept

More information

Computational Fluid Dynamic Analysis of Cross Flow Turbine

Computational Fluid Dynamic Analysis of Cross Flow Turbine Computational Fluid Dynamic Analysis of Cross Flow Turbine Mrudang Patel, Nirav Oza, Karna Patel U.G. Student, Department of Mechanical Engineering, NIRMA University, Ahmedabad, Gujarat, India ABSTRACT:

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM VI(ME-61,62,63 & 64)] QUIZ TEST-1 Q-1). A jet strikes a smooth curved vane moving in the same direction as the jet and the jet get reversed in the direction. Show that the maximum efficiency

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257. Fluid Dynamics. Answer FOUR out of SIX questions

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257. Fluid Dynamics. Answer FOUR out of SIX questions s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257 Fluid Dynamics Time allowed: TWO hours Answer: Answer FOUR out of SIX questions Items permitted: Any approved

More information

Heat transfer enhancement in fire tube boiler using hellically ribbed tubes

Heat transfer enhancement in fire tube boiler using hellically ribbed tubes Heat transfer enhancement in fire tube boiler using hellically ribbed tubes Miss Simantini Balasaheb Kute --------------------------------------------------------***-------------------------------------------------------------

More information

UNIT 5 HYDRAULIC MACHINES. Lecture-01

UNIT 5 HYDRAULIC MACHINES. Lecture-01 1 UNIT 5 HYDRAULIC MACHINES Lecture-01 Turbines Hydraulic machines which convert hydraulic energy into mechanical energy. This mechanical energy is used to run electric generator which is directly coupled

More information

Efficiency Analysis of Different Types of Turbine

Efficiency Analysis of Different Types of Turbine Efficiency Analysis of Different Types of Ankush Kumar Jain 1, Monika saini 2, Rahul Gahlot 3 Assistant Professor, Department of Civil Engineering, Poornima University, Jaipur, India 1 U.G. Student, Department

More information

Renewable and Alternative Energies

Renewable and Alternative Energies Department of Electrical and Energy Engineering This work is published under a license: Creative Commons BY-NC-SA 4.0 Contents Topic 1. Wind energy. Topic 2. Solar energy. Topic 3. Ocean energy.. Topic

More information

CFD ANALYSIS OF SOLAR HEATER WATER PIPE WITH DIFFERENT INCLINATION

CFD ANALYSIS OF SOLAR HEATER WATER PIPE WITH DIFFERENT INCLINATION International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 4, Issue 2, Apr 2014, 55-62 TJPRC Pvt. Ltd. CFD ANALYSIS OF

More information

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION Principles of Turbomachinery Seppo A. Korpela The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Foreword xiii Acknowledgments xv 1 Introduction 1 1.1 Energy and fluid machines

More information

CFD analysis of high speed Francis hydraulic turbines

CFD analysis of high speed Francis hydraulic turbines TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 131, 2016, 111 120 Maciej Kaniecki a, Zbigniew Krzemianowski b CFD analysis of high speed Francis hydraulic turbines a Research and Development

More information

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 245 250 International Conference on Advances in Computational Modeling and Simulation Analysis on the influence of rotational speed

More information

EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD

EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD Satish kumar Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, (India) ABSTRACT Centrifugal pumps are extensively

More information

Turbo Machines Pumps and Turbines ME 268

Turbo Machines Pumps and Turbines ME 268 Turbo Machines Pumps and Turbines ME 268 Turbo Machines Turbo machines are dynamic fluid machines that either extract energy from a fluid (turbine) or add energy to a fluid (pump) as a result of dynamic

More information

UNIT I: UNIFORM FLOW PART B

UNIT I: UNIFORM FLOW PART B UNIT I: UNIFORM FLOW PART-A 1 Define open channel flow with example BT-1-1 2 Distinguish between open channel flow and pipe flow. BT-4-1 3 Compute the hydraulic mean depth of a small channel 1m wide, 0.5m

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE`

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE` EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE` Jayendra B Patel 1, R.N.Mevada 2, Dheeraj Sardana 3, Vinod P. Rajput 4 1, 2, 3,4 Department of Mechanical Engineering,

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study

Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study J. Huang, Ph.D., Hydraulic Energy Group, Sustainable Buildings and Communities, CANMET Energy

More information

Alpha College of Engineering

Alpha College of Engineering Alpha College of Engineering Department of Mechanical Engineering TURBO MACHINE (10ME56) QUESTION BANK PART-A UNIT-1 1. Define a turbomahcine. Write a schematic diagram showing principal parts of a turbo

More information

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern)

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) *4063218* [4063] 218 T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) Time : 3 Hours Marks : 100 Instructions : 1) Answer any three questions from each Section.

More information

ISSN No MIT Publications

ISSN No MIT Publications MIT International Journal of Mechanical Engineering Vol. 1 No. 2 Aug 2011, pp 93-100 93 CFD Analysis of 3-D Flow for Francis Turbine Manoj Kumar Shukla Lecturer, KNPC, Jabalpur (MP), India (Email: mksmact@gmail.com)

More information

00046 Term-End Examination June, 2015

00046 Term-End Examination June, 2015 No. of Printed Pages : 5 BIME-013 B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 00046 Term-End Examination June, 2015 BIME-013 : TURBO MACHINES Time : 3 hours Maximum Marks : 70 Note : Answer any five

More information

Comparative Analysis of Different Orifice Geometries for Pressure Drop

Comparative Analysis of Different Orifice Geometries for Pressure Drop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Comparative Analysis of Different Orifice Geometries for Pressure Drop C. R. Sanghani

More information

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Nilesh N Patil Student Department Mechanical of Engineering D.K.T.E S Textile and Engineering Institute,

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 692 697 6th BSME International Conference on Thermal Engineering (ICTE 2014) Adjacent wake effect of a vertical

More information

Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition

Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition Liying Wang, Bingyao Li, Weiguo Zhao and Qingjiao Cao Abstract When the turbine operates in a runaway condition,

More information

Hydroelectric power plants

Hydroelectric power plants Hydroelectric power plants Hydroelectric power plants can drive from a water stream or accumulation reservoir. Run-of-river hydroelectric plants (those without accumulation reservoirs) built along a river

More information

An Experience with Simulation Modelling for Radial Flow Pump

An Experience with Simulation Modelling for Radial Flow Pump International Journal of Emerging Engineering Research and Technology Volume 3, Issue 11, November 2015, PP 23-28 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) An Experience with Simulation Modelling

More information

By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY. May ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury Street Holden, MA 01520

By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY. May ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury Street Holden, MA 01520 COMPUTATIONAL FLOW MODEL OF WESTFALL'S 36 3050 THREE STAGE MIXER TO BE INSTALLED IN THE PERCHLORATE BLENDING STATION FOR THE CITY OF REDLANDS, CALIFORNIA GFS-411507-1R2 By Kimbal A. Hall, PE Submitted

More information

UNIT I FLUID PROPERTIES AND FLUID STATICS

UNIT I FLUID PROPERTIES AND FLUID STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM & HM (16CE112) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

More information

NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD

NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD Rudy Soenoko, Putu Hadi Setyarini and Femiana Gapsari Mechanical Engineering Department, Engineering

More information

Investigating two configurations of a heat exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System (IHICSSWHS)

Investigating two configurations of a heat exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System (IHICSSWHS) European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela

More information

Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System

Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System Journal of Energy and Power Engineering 7 (2013) 66-73 D DAVID PUBLISHING Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System

More information

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16]

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16] Code No: R05310302 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks:

More information

Turkish Journal of Engineering, Science and Technology. Assessment On The Performance Of Pelton Turbine Test Rig Using Response Surface Methodology

Turkish Journal of Engineering, Science and Technology. Assessment On The Performance Of Pelton Turbine Test Rig Using Response Surface Methodology Turkish Journal of Engineering, Science and Technology 01 (013) p11-18 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Assessment On The Performance Of Pelton Turbine

More information

CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration

CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration CFD Analysis of a Mixture Flow in a Producer Gas Carburetor for optimizing the design configuration T.R.Ani1 l, S.D.Ravi 2, M.Shashikanth 2, P.G.Tewari 3 and N.K.S.Rajan 4 l Research student, and Assistant

More information

Pelton Wheels. By: Chris Holmes, Amanda Higley, and Nick Hiseler

Pelton Wheels. By: Chris Holmes, Amanda Higley, and Nick Hiseler Pelton Wheels By: Chris Holmes, Amanda Higley, and Nick Hiseler History Lester Allan Pelton invented the Pelton wheel, an impulse type water turbine in the late 1870 s. Pelton's invention started from

More information

Hydraulic Machines, K. Subramanya

Hydraulic Machines, K. Subramanya Hydraulic Machines power point presentation Slides has been adapted from Hydraulic Machines, K. Subramanya 2016-2017 Prepared by Dr. Assim Al-Daraje 1 Chapter (1 Part 1) Prepared by Dr. Assim Al-Daraje

More information

Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines

Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines Utah State University DigitalCommons@USU International Symposium on Hydraulic Structures Jun 9th, 1:30 PM - 3:30 PM Determining Optimal Discharge and Optimal Penstock Diameter in Water Turbines Arturo

More information

Ten glorious years of service to industry & customers ENGINEERING SERVICE OVER VIEW & IMPORTANT PROJECT- CASE STUDY

Ten glorious years of service to industry & customers ENGINEERING SERVICE OVER VIEW & IMPORTANT PROJECT- CASE STUDY ENGINEERING SERVICE OVER VIEW & IMPORTANT PROJECT- CASE STUDY STRESS ANALYSIS Structural Strength of Turbine Casing Client : Hydro Power sector Scope of work: To analyse the given structure to bear the

More information

A CFD ANALYSIS OF CENTRIFUGAL PUMP TO IMPROVE DISCHARGE BY VARYING BLADE GEOMETRY

A CFD ANALYSIS OF CENTRIFUGAL PUMP TO IMPROVE DISCHARGE BY VARYING BLADE GEOMETRY A CFD ANALYSIS OF CENTRIFUGAL PUMP TO IMPROVE DISCHARGE BY VARYING BLADE GEOMETRY 1 ANJANI KUMAR SINHA, 2 A. JOHN RAJAN, 3 ERIKI ANANDA KUMAR 1,3 Senior Lecturer, Dept. of Mech. Eng., Nilai University,

More information

QUALITY OF VORTEX FORMED USING VORTEX FLOW CHANNEL

QUALITY OF VORTEX FORMED USING VORTEX FLOW CHANNEL International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 515 524, Article ID: IJMET_08_05_056 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx

CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx CH 6 MISCELLANEOUS MACHINES THEORY (1) With neat sketch explain construction and working of hydraulic torque Convertor [643] (2) Write short

More information

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK Mr. Mainak Bhaumik M.E. (Thermal

More information

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows

Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows Performance of a Vertical Axis Wind Turbine under Accelerating and Decelerating Flows Atif Shahzad, Taimoor Asim*, Rakesh Mishra, Achilleos Paris School of Computing & Engineering, University of Huddersfield,

More information

Investigation on Core Downward Flow by a Passive Residual Heat Removal System of Research Reactor

Investigation on Core Downward Flow by a Passive Residual Heat Removal System of Research Reactor Investigation on Core Downward Flow by a Passive Residual Heat Removal System of Research Reactor W.K. Lee 1, S.J. Kim 1, D.Y. Lee 1, W.K. Hwang 1, K.Y. Lee 1 1) Department of Mechanical and Control Engineering,

More information

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young Pumps, Turbines, and Pipe Networks, part 2 Ch 11 Young Pump and Turbine Dimensional Analysis (11.5 Young) Say we want to replace turbines on the Hoover Dam Want to have a good design Essentially impossible

More information

Lateral Outflow from Supercritical Channels

Lateral Outflow from Supercritical Channels Lateral Outflow from Supercritical Channels J. Coonrod 1, J. Ho 2 and N. Bernardo 3 1 Associate Professor, Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131; PH (505) 277-3233;

More information

Research Article Research on Pump Volute Design Method Using CFD

Research Article Research on Pump Volute Design Method Using CFD Rotating Machinery Volume 211, Article ID 136, 7 pages doi:1.1155/211/136 Research Article Research on Pump Volute Design Method Using CFD Sunsheng Yang, Fanyu Kong, and Bin Chen Research Center of Fluid

More information

INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE

INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE INVESTIGATIONS ON PERFORMANCE OF A SAVONIUS HYDROKINETIC TURBINE Ph.D. THESIS by ANUJ KUMAR ALTERNATE HYDRO ENERGY CENTRE INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247667 (INDIA) AUGUST, 2017 INVESTIGATIONS

More information

Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting

Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting Wei Zuo a, Shun Kang b Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry

More information

To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation

To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation To: Aimee McClure, John Krueger From: Karl Vachuska, Shiven Advani, Pilar Gonzalez, Valerie Nehls Subject: Hydroelectric Generator Recommendation Date: 12/5/2016 Our group worked with Pierce Manufacturing

More information

Hybrid Hydroelectric Power Plant : The Ultimate Technology For Electricity Generation

Hybrid Hydroelectric Power Plant : The Ultimate Technology For Electricity Generation Hybrid Hydroelectric Power Plant : The Ultimate Technology For Electricity Generation Prof. Nilesh P. Patil. 1*, Prof. Dr. V. S. Patil. 2 1 - Asst. Professor (Chemical Engineering), University Institute

More information

FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE

FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE Harishkumar Kamat Chandrakant R Kini Engineering,Manipal Institute of Technology, Engineering,Manipal Institute of Technology, N Yagnesh

More information

Improving Efficiency of Submersible Pump Impeller of Mixed Flow Type by Design Modification through CFD Analysis

Improving Efficiency of Submersible Pump Impeller of Mixed Flow Type by Design Modification through CFD Analysis Improving Efficiency of Submersible Pump Impeller of Mixed Flow Type by Design Modification through CFD Analysis Naveen Nagalinga Lohar 1, Prof. S A Janawade 2. 1Department of Mechanical Engineering (M.Tech

More information

Experimental Investigation on Effect of Head and Bucket Splitter Angle on the Power Output of A Pelton Turbine

Experimental Investigation on Effect of Head and Bucket Splitter Angle on the Power Output of A Pelton Turbine Experimental Investigation on Effect of Head and Bucket Splitter Angle on the Power Output of A Pelton Turbine Chukwuneke J. L. Achebe C. H. Okolie P. C. Okwudibe H. A. Mechanical Engineering Department,

More information

Unit 1. FLUID AND FLUID PROPERTIES.

Unit 1. FLUID AND FLUID PROPERTIES. 3 rd MECHANICAL ASSIGNMENT FOR FLUID MECHANICS AND HYDRAULIC MACHINES SUBJECT CODE: 3331903 Unit 1. FLUID AND FLUID PROPERTIES. (1) What is fluid? State and explain types of fluid. (2) Define the following

More information

DEPARTMENT OF CIVIL ENGINEERING CE6403/ APPLIED HYDRAULIC ENGINEERING QUESTION BANK TWO MARKS UNIT I UNIFORM FLOW 1. Differentiate open channel flow from pipe flow. 2. What is specific energy and is the

More information

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications,

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, George F. Round Professor Emeritus McMaster University Hamilton, Ontario Canada ELSEVIER BUTTERWORTH HEINEMANN Amsterdam Boston Heidelberg

More information

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Vishnu R Nair 1, Shinas K V 2, Souganth Sugathan Manjhiparambil 3 Student, Department of Mechanical Engineering, IES College of Engineering,

More information

Design and Performance of Vertical Axis Helical Cross-Flow Turbine Blade for Micropower Generation

Design and Performance of Vertical Axis Helical Cross-Flow Turbine Blade for Micropower Generation International Journal of New Technology and Research (IJNTR) ISSN: -6, Volume-, Issue-6, June Pages - Design and Performance of Vertical Axis Helical Cross-Flow Turbine Blade for Micropower Generation

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 72-78 Open Access Journal Cfd Analysis Of

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

NUMERICAL SIMULATION OF AIR NATURAL CIRCULATION AND THERMAL RADIATION IN PASSIVE CONTAINMENT COOLING SYSTEM

NUMERICAL SIMULATION OF AIR NATURAL CIRCULATION AND THERMAL RADIATION IN PASSIVE CONTAINMENT COOLING SYSTEM NUMERICAL SIMULATION OF AIR NATURAL CIRCULATION AND THERMAL RADIATION IN PASSIVE CONTAINMENT COOLING SYSTEM Weizhong Zhang and Qian Lin Advanced Nuclear Power Technology R&D Center, Shanghai Nuclear Engineering

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE

BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE Cuiping Hou 1, 2, Chengwei Ma 1,2,* 1 College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing,

More information

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki)

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki) Chapter 5 1. Hydraulic Pumps (pp. 47 90, Gorla & Khan; Wiki) 1. Two Basic Categories of Pumps Positive Displacement (PD) Pumps A positive displacement pump causes a fluid to move by trapping a fixed amount

More information

Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation

Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation Kanteyya A 1, Kiran Kumar Rokhade 2 Assistant Professor, Department of Mechanical Engineering, HKESSLN College

More information

Fluid Mechanics. The Energy Equation [7] Dr. Mohammad N. Almasri

Fluid Mechanics. The Energy Equation [7] Dr. Mohammad N. Almasri 1 Fluid Mechanics The Energy Equation [7] Dr. Mohammad N. Almasri http://sites.google.com/site/mohammadnablus/home 2 Introduction There are various types of devices and components that are utilized in

More information

η P/ρ/ρg Then substituting for P and rearranging gives For a pump

η P/ρ/ρg Then substituting for P and rearranging gives For a pump Benha University College of Engineering at Benha Department of Mechanical Eng. Subject : Turbo machine Date20/5/2013 Model Answer of the Final Exam Elaborated by: Dr. Mohamed Elsharnoby المادة : أالت تربينية

More information

Advanced Electric Submersible Pump Design Tool for Geothermal Applications

Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Resources Council s 36 th Annual Meeting Reno, Nevada, USA September 30 October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist,

More information

Download From:

Download From: Fluid Mechanics 1. A single acting reciprocating pump, running at 60 r.p.m, delivers 0.01 m2/sec of water. The area of the piston is0.05m2 and stroke length is 40 cm. Then theoretical discharge of the

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Ç engel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Objectives Develop the conservation

More information

Performance estimation on micro gas turbine plant recuperator

Performance estimation on micro gas turbine plant recuperator Performance estimation on micro gas turbine plant recuperator Laura Alina STIKA 1, Jeni Alina POPESCU,1, Sorin Gabriel TOMESCU 1, Valeriu-Alexandru VILAG 1 Corresponding author 1 National Research and

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies,

More information

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 2014 Paper No. 171 Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

More information

A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines

A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines A dimensional analysis for determining optimal discharge and penstock diameter in impulse and reaction water turbines Arturo S. Leon (Corresponding author). School of Civil and Construction Engineering,

More information

Pelton Turbine A Review

Pelton Turbine A Review Pelton Turbine A Review N. Pavan Kumar 1, Dr. A. Gopichand 2, K. Jitendra 3, J.V.L.D. Prasad 4 1 P.G. Student, Department of Mechanical Engineering, Godavari Institute of Engineering & Technology, Rajahmundry

More information