CHAPTER 2. Objectives of Groundwater Modelling

Size: px
Start display at page:

Download "CHAPTER 2. Objectives of Groundwater Modelling"

Transcription

1 CHAPTER 2 Objectives of Groundwater Modelling In the last two decades mathematical modelling techniques have increasingly proved their value in furthering the understanding of groundwater systems and, hence, in improving the evaluation, development, and management of groundwater resources, and the control of groundwater problems. 2.1 The Modelling Approach The question "why model" is still sometimes asked. The answer must be that combining the available hydrogeological data with the appropriate physical laws (in the form of equations) in a self-consistent mathematical model is generally the best way to make use of these data, for whatever purpose. Most commonly used are mathematical models, which express the behavior of groundwater systems in terms of a set of physical equations. In simple cases these partial differential equations can be solved analytically, but they normally require computerized numerical solution because of their complexity. For the most part, we are concerned with numerical simulation models, but increasingly a stochastic or statistical approach to model parameters and input data is being adopted. The equations describing groundwater flow in porous media are mathematically analogous to those governing the flow of electric current in a resistor-capacitor network. Such networks were used as the first quantitative models of groundwater systems. All physical analogue models have been largely superceded by numerical simulation, following the development of digital computers with adequate speed and capacity because numerical models need less time for construction and operation. All models are initially and primarily used to integrate available hydrogeological data and test the adequacy of the existing conceptual model of the groundwater system. -8-

2 2.2 Scale and Focus of Models Groundwater models can be constructed at widely-differing spatial scales, from one- or two-dimensional simulation of flow within a 10 to 100 m radius of a pumping well, to two- or three-dimensional simulation of major regional aquifers occupying areas of up to 10 6 km 2. Normally, modelling work is conducted either at the local project design scale or the regional resource evaluation scale. Models are most frequently constructed to simulate the response of hydraulic heads of groundwater to changes in pumpage or recharge. These models can be readily expanded to consider velocity distributions and contaminant transport. The mathematical equations underlying the groundwater flow model have been adequately verified and the physical meaning of the parameters involved is clearly understood. However, in the case of contaminant transport there is continuing controversy about the mathematical characterisation and measurement of hydrodynamic dispersion, and about the best way to identify, to measure and to model the chemical interactions and reactions that can occur in an a- quifer. Since the state-of-practice in respect of contaminant transport models is not well established, they receive only limited treatment here and it is suggested that the results of applying such models should still be interpreted with great caution. 2.3 Model Classification by Objective Groundwater models may be subdivided according to their objective, as follows: (a) prediction models; (b) identification or evaluation models; (c) management models. All three types are closely linked, prediction models forming the basis for the other two types. Each type is discussed individually below Prediction Models The majority of models in common use are prediction models based on the numerical simulation technique. They predict the response of a groundwater system, in terms of variation of hydraulic heads, to natural and/or artificial hydraulic stresses, especially those associated with pumped groundwater abstractions. Amongst the problems that can be considered with such models are included the prediction of: (a) long-term maximum drawdown of a pumped well in an aquifer with seasonal recharge; (b) short-term drawdown interference between pumped wells, and thereby associated reduction in yield; (c) long-term drawdown trends, and thus the useful life of pumped wells, in overdeveloped aquifers; (d) reduced flow in surface water courses in hydraulic connection with aquifers, as a result of groundwater abstraction, through calculation and interpretation of the appropriate draw-downs; -9-

3 (e) (f) increased flow in streams and rivers in hydraulic connection with aquifers, as a result of return flows from irrigation areas and leakage from artificial canals; groundwater changes resulting from reduced aquifer recharge due to such factors as drought or urbanization; (g) groundwater changes resulting from increased aquifer recharge due to such factors as irrigation, leakage from an artificial canal, artificial recharge works, or effects of urbanization; (h) movement of the saline-fresh water interface as a result of groundwater abstraction from coastal aquifers; (i) (j) pumping rates required to achieve a necessary engineering design; design of ditch, tile and other drainage schemes. In the case of contaminant transport, the concentration distribution associated with a given contaminant loading is also predicted. In view of the current limitations of such models, applications are commonly restricted to prediction of the distribution resulting from a simple, continuous point-source of pollution, with grossly-simplified representation of the processes of contaminant dispersion, sorption and degradation. The modelling of this problem is usually limited to a local site scale. Prediction of contaminant transport at the regional scale, the migration of diffuse-source groundwater pollutants and the behavior of those pollutants involved in more complex chemistry cannot yet be predicted reliably. It is relevant at this point to consider in outline the development of a prediction model using numerical simulation (Figure 2.1). This development involves a number of stages: (1) Decisions must be made on whether to opt for a steady or non-steady state formulation, on the appropriate number of spatial dimensions, on the boundary conditions to be used in the model, and on their relation to those of the aquifer as a whole. These decisions will be guided by a synthesis of available information, including any existing conceptual model of the groundwater system. (2) Formulation of the relevant set of mathematical equations, their expression in numerical form (normally by the finite element or finite difference technique) and their coding in the appropriate computer language. (3) Verification that the computer program is capable of solving the selected set of differential equations with convergence to acceptable accuracy. This is usually achieved through the consideration of some special cases, which lend themselves to analytical solution. Since some model formulations are valid for only a restricted range of parameter values, it is important to consider the widest possible range of aquifer conditions likely to be involved in the problem to be addressed. (4) Fitting of the model, by adjusting or calibrating values of parameters and boundary conditions, so as to best reproduce the observed field response to a known hydraulic stress and/or contaminant load, and hopefully to obtain statistics regarding the uncertainty of the calibrated parameters. Steps (2) and (3) lead to a computer code which may be used for many different cases. Steps (1) and (4) are specific to each study. Step (4) is fulfilled using either an -10-

4 Conceptual aquifer model Mathematical equations Physical laws equilibrium state boundary conditions Numerical formulation T Computer program y Model verif ied~)-»-( No j Field data (variables) (Model validated')-»-!. No Aquifer parameters (constants) Hydraulic stresses (variables) Aquifer prediction model S Prediction runs Figure 2.1. Development sequence for a prediction model using numerical simulation. (Calibration runs)- -11-

5 inverse model, or by trial and error using the "prediction model" in an "identification or evaluation" mode as defined in the next section. The fitting of a model through this calibration process is not straightforward because various combinations of parameters and boundary conditions will often give equally close predictions when the data on observed aquifer behavior are limited. That is, there is not a unique solution to the calibration problem. If field data are only available for a condition of low hydraulic stress, spurious calibration results may be obtained. For example, gross overestimates of average unconfined storativity can easily occur with consolidated aquifers. Such a model will invariably indicate vast volumes of groundwater storage, at least on paper, and there is danger that this "paper water" may pass into resource plans without further consideration of the validity of its physical basis. Considerable hydrogeological judgement and caution is thus required at the model validation stage. Once a model is validated, the associated computer program assumes the status of a working model which can be used to predict aquifer behavior in response to other natural and artificial variations in hydraulic stress or contaminant load. However, in the first few years of its existence, a model will normally be subject to regular recalibration and refinement as field data corresponding to a wider range and a larger scale of applied stresses are collected. Thus the early predictions of a model which was validated with only limited field data may be subject to especially large errors and need to be interpreted with appropriate caution. It should not be assumed that field data are unreliable, simply because they cannot be readily simulated by the prediction model developed. Frequently the model selected proves to be inappropriate, and thus inadequate to represent actual groundwater flow mechanisms. When fundamental modifications are made, dramatic improvements are often obtained in the correlation between model output and field data. Aspects of groundwater flow and types of aquifer characteristics which have proved likely to lead to serious error if ignored include: drastic variations of transmissivity and abrupt changes of storativity (specific yield) with saturated aquifer thickness, major vertical flow and recharge components, and partial penetration of wells and rivers. In addition, all groundwater problems are in reality three-dimensional and time-variant. Such models make larger demands on the provision of data as well as computer time and storage. The approach usually adopted is to reduce the number of dimensions represented and/or to consider only the steady state. This is only acceptable if the model still adequately reflects the predominant groundwater flow mechanism Identification or Evaluation Models A numerical simulation model may be developed primarily to identify or evaluate the parameters and boundaries of a little known aquifer. This can be undertaken using the simulation model exclusively in calibration mode (Figure 2.1), adjusting the value of parameters and/or boundary conditions to reproduce the observed aquifer response to known stresses. This important issue will be discussed in more detail in Chapter Management Models Prediction models employing numerical simulation methods and heterogeneous aquifer parameters have often been utilized to explore groundwater management alternatives. For this purpose the model is executed repeatedly under various scenarios designed to achieve a particular objective, such as obtaining a sustainable water-supply, dewatering an excavation area for construction, preventing saline water encroachment or controlling a contaminant plume. Use of such an approach, however, avoids rigorous formulation of groundwater management goals and may fail to consider important operational restrictions. It is thus unlikely that optimal management solutions will be arrived at using numerical simulation models alone. -12-

6 More recently, true management models have been developed incorporating rigorous formulation of management objectives and/or policy constraints, through use of decision criteria or linear optimization programming, with numerical simulation of groundwater hydraulic or contaminant behavior. Such models must be based on decision criteria, such as maximum total water-supply, minimum total project cost or maximum project economic benefit, or on a given policy constraint, such as minimum required water-supply, conforming to some water quality standard or a ceiling for capital and/or running costs. By their nature, management models will only be developed for aquifers, or parts of aquifers, for which a soundly validated prediction model and broad-based reliable field data exist. Aquifer management modelling methods involving both water quantity and quality considerations were reviewed by Gorelick (1983). The idea behind such models is that one often wishes to know where to best locate wells and how much to pump or inject at each location. It is a straightforward matter to formulate aquifer management problems as optimization problems. There, the objective might be to minimize pumping costs or contaminant clean-up costs, for example. In addition, there will be a series of restrictions on hydraulic heads, drawdowns, velocities, and solute concentrations. Economic, logistic, and legal considerations may also be reflected in the constraint set. In such models the groundwater flow and/or contaminant transport equations are included as constraints. Therefore, optimal management solutions simulate the behavior of the system of interest. Prior to 1983 the models generally enabled one to handle linear systems (confined aquifers). Since that time, methodology has been developed to account for nonlinearities and for model uncertainties. Developments along these lines are described in Gorelick (1988) and Wagner and Gorelick (1987). 2.4 Concluding Remarks The development and application of a mathematical model should be an exercise in thinking about how a groundwater system works. Models must be regarded as a tool to aid decision-making, but decisions should not be reached exclusively from results generated by the model. If the basic principles of groundwater flow (and, where appropriate, contaminant transport) and the underlying assumptions of modelling are lost sight of, there is serious danger of gross misinterpretation of model output. This is more likely to occur when models are packaged and automated. In the application of all models, and most especially of groundwater quality models, a high degree of scientific judgement tempered with wide experience of field observation is desirable to produce sound interpretations. -13-

Groundwater Modeling Guidance

Groundwater Modeling Guidance Groundwater Modeling Guidance Richard J. Mandle Groundwater Modeling Program Michigan Department of Environmental Quality Draft 1.0 10/16/02 Executive Summary The use of groundwater models is prevalent

More information

Groundwater Models and Modeling Considerations

Groundwater Models and Modeling Considerations Groundwater Models and Modeling Considerations MPCA Industrial Landfill Guidance Workgroup April 30, 2009 Terry Johnson, P.G. Waste Management Inc., The Three Legs of the Stool 1. Engineering design and

More information

4.4 MODEL CODE DESCRIPTION 4.5 WATER SOURCES AND SINKS 4.6 MODEL DOMAIN AND BOUNDARIES. SLR South Africa

4.4 MODEL CODE DESCRIPTION 4.5 WATER SOURCES AND SINKS 4.6 MODEL DOMAIN AND BOUNDARIES. SLR South Africa Page 4-18 The developed model should therefore be seen as an initial site model which should be refined and recalibrated once more groundwater monitoring and other data become available. 4.4 MODEL CODE

More information

CHAPTER 7 GROUNDWATER FLOW MODELING

CHAPTER 7 GROUNDWATER FLOW MODELING 148 CHAPTER 7 GROUNDWATER FLOW MODELING 7.1 GENERAL In reality, it is not possible to see into the sub-surface and observe the geological structure and the groundwater flow processes. It is for this reason

More information

GROUNDWATER Dr. DEEPAK KHARE GENERAL HYDROLOGY CYCLE FORMATIONS

GROUNDWATER Dr. DEEPAK KHARE GENERAL HYDROLOGY CYCLE FORMATIONS GROUNDWATER By Dr. DEEPAK KHARE Associate Professor Department of Water Resources Development & Management Indian Institute of Technology Roorkee, ROORKEE (Uttaranchal) 247 667, India E-mail: kharefwt@iitr.ernet.in

More information

Executive Summary performance assessment

Executive Summary performance assessment Executive Summary In the United States, low-level radioactive waste is defined as any radioactive waste arising from operations of the nuclear fuel cycle that is not classified as high-level waste (including

More information

SATEM 2002: Software for Aquifer Test Evaluation

SATEM 2002: Software for Aquifer Test Evaluation SATEM 2002: Software for Aquifer Test Evaluation ILRI publication 57 SATEM 2002: Software for Aquifer Test Evaluation J. Boonstra R.A.L. Kselik International Institute for Land Reclamation and Improvement/ILRI

More information

Seawater intrusion into coastal aquifers a case study

Seawater intrusion into coastal aquifers a case study The Sustainable City V 213 Seawater intrusion into coastal aquifers a case study J. Letha & D. B. Krishnan Civil Engineering Department, College of Engineering, Trivandrum, India Abstract Seawater intrusion

More information

Groundwater modelling study for sustainable water management in Town of High River. Han Sang-Yoon WaterTech, April 12, 2013

Groundwater modelling study for sustainable water management in Town of High River. Han Sang-Yoon WaterTech, April 12, 2013 Groundwater modelling study for sustainable water management in Town of High River Han Sang-Yoon WaterTech, April 12, 2013 Acknowledgements Town of High River: Reiley McKerracher Jasen Craigie Project

More information

Potential effects evaluation of dewatering an underground mine on surface water and groundwater located in a rural area

Potential effects evaluation of dewatering an underground mine on surface water and groundwater located in a rural area Potential effects evaluation of dewatering an underground mine on surface water and groundwater located in a rural area ITRODUCTIO Michel Mailloux* Eng. M.Sc, Vincent Boisvert, M.Sc, Denis Millette, Eng.,

More information

DYNFLOW accepts various types of boundary conditions on the groundwater flow system including:

DYNFLOW accepts various types of boundary conditions on the groundwater flow system including: Section 6 Groundwater Flow Model A groundwater flow model was developed to evaluate groundwater flow patterns in the site area and to provide a basis for contaminant transport modeling. 6.1 Model Code

More information

Standard Guide for Conducting a Sensitivity Analysis for a Ground-Water Flow Model Application 1

Standard Guide for Conducting a Sensitivity Analysis for a Ground-Water Flow Model Application 1 Designation: D 5611 94 (Reapproved 2002) Standard Guide for Conducting a Sensitivity Analysis for a Ground-Water Flow Model Application 1 This standard is issued under the fixed designation D 5611; the

More information

Combined Simulation-Optimization of an Excavation Site for Dewatering Purpose

Combined Simulation-Optimization of an Excavation Site for Dewatering Purpose 8 th International Congress on Advances in Civil Engineering, 15-17 September 2008 Eastern Mediterranean University, Famagusta, North Cyprus Combined Simulation-Optimization of an Excavation Site for Dewatering

More information

University of Arizona Department of Hydrology and Water Resources Dr. Marek Zreda

University of Arizona Department of Hydrology and Water Resources Dr. Marek Zreda University of Arizona Department of Hydrology and Water Resources Dr. Marek Zreda HWR431/531 - Hydrogeology Final exam - 12 May 1997 Open books and notes The test contains 8 problems on 7 pages. Read the

More information

Hydrogeology of the Merti Aquifer. Impact of abstractions on drawdown of water level and salinity. Arjen Oord Jan de Leeuw (presenter)

Hydrogeology of the Merti Aquifer. Impact of abstractions on drawdown of water level and salinity. Arjen Oord Jan de Leeuw (presenter) Hydrogeology of the Merti Aquifer Impact of abstractions on drawdown of water level and salinity Arjen Oord Jan de Leeuw (presenter) Impacts of abstractions? Abstractions have two major geo-hydrological

More information

MODELLING THE GROUNDWATER FLOW FOR ESTIMATING THE PUMPING COST OF IRRIGATION IN THE AQUIFER OF N. MOUDANIA, GREECE

MODELLING THE GROUNDWATER FLOW FOR ESTIMATING THE PUMPING COST OF IRRIGATION IN THE AQUIFER OF N. MOUDANIA, GREECE Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 MODELLING THE GROUNDWATER FLOW FOR ESTIMATING THE PUMPING COST OF IRRIGATION

More information

Genetic Algorithm based Simulation Optimization Approach to Seawater Intrusion

Genetic Algorithm based Simulation Optimization Approach to Seawater Intrusion International Symposium on Genetic Algorithm based Simulation Optimization Approach to Seawater Intrusion 1313 Integrated Water Resources Management (IWRM 2014) February 19 21, 2014, CWRDM, Kozhikode,

More information

Performance and Analysis of Aquifer Slug Tests and Pumping Tests Policy

Performance and Analysis of Aquifer Slug Tests and Pumping Tests Policy Performance and Analysis of Aquifer Slug Tests and Pumping Tests Policy May 31, 2007 Table of Contents page Introduction... 2 (1) Purpose of policy...2 (2) Basis for technical approach...2 (3) The purpose

More information

REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION. Alyssa Dausman 1 and Christian Langevin 1

REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION. Alyssa Dausman 1 and Christian Langevin 1 REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION Alyssa Dausman 1 and Christian Langevin 1 ABSTRACT: Variable-density groundwater flow models are often

More information

Simulation of Pumping Induced Groundwater Flow in Unconfined Aquifer Using Arbitrary Lagrangian-Eulerian Method

Simulation of Pumping Induced Groundwater Flow in Unconfined Aquifer Using Arbitrary Lagrangian-Eulerian Method Simulation of Pumping Induced Groundwater Flow in Unconfined Aquifer Using Arbitrary Lagrangian-Eulerian Method Y. Jin *1, E. Holzbecher 1, and S. Ebneth 2 1 Applied Geology, Geoscience Centre, Georg-August-University

More information

Synopsis. Geoffrey R. Tick Dorina Murgulet Hydrogeology Group The University of Alabama UA Project Number Grant # 09-EI UAT-2

Synopsis. Geoffrey R. Tick Dorina Murgulet Hydrogeology Group The University of Alabama UA Project Number Grant # 09-EI UAT-2 Assessment of Groundwater Flow Paths and Discharge to the Coastal Region of Baldwin County, Alabama to Understand Contaminant Transport using a Cross- Sectional Groundwater Flow and Transport Synopsis

More information

Hydrologic Modeling Overview

Hydrologic Modeling Overview Hydrologic Modeling Overview Chuck Downer, PhD, PE Hydrologic Systems Branch Coastal and Hydraulics Laboratory Engineer Research and Development Center Vicksburg, Mississippi Hydrologic processes Hydrologic

More information

CHAPTER 4: Risk Assessment Risk in Groundwater Contamination

CHAPTER 4: Risk Assessment Risk in Groundwater Contamination CHAPTER 4: Risk Assessment Risk in Groundwater Contamination Instructor: Dr. Yunes Mogheir -١ Introduction: Water pollution is nowadays one of the most crucial environmental problems world-wide. Pollution

More information

MODELING WATER FLOW AND CONTAMINANT TRANSPORT IN SOILS AND GROUNDWATER USING THE HYDRUS COMPUTER SOFTWARE PACKAGES

MODELING WATER FLOW AND CONTAMINANT TRANSPORT IN SOILS AND GROUNDWATER USING THE HYDRUS COMPUTER SOFTWARE PACKAGES MODELING WATER FLOW AND CONTAMINANT TRANSPORT IN SOILS AND GROUNDWATER USING THE HYDRUS COMPUTER SOFTWARE PACKAGES Instructor Dr. Jirka Simunek Department of Environmental Sciences University of California

More information

Groundwater Risk Assessment

Groundwater Risk Assessment Groundwater Risk Assessment ELQF - 6 November 2012 Katy Baker Technical Director ARCADIS (UK) Limited Imagine the result Problem definition The importance of the CSM 2 The definition of the problem: 3

More information

Transient and Succession-of-Steady-States Pipeline Flow Models

Transient and Succession-of-Steady-States Pipeline Flow Models Transient and Succession-of-Steady-States Pipeline Flow Models Jerry L. Modisette, PhD, Consultant Jason P. Modisette, PhD, Energy Solutions International This paper is copyrighted to the Pipeline Simulation

More information

Abstract. Aquifer Vulnerability Assessment: A Framework for Teaching Soil Physics and More!

Abstract. Aquifer Vulnerability Assessment: A Framework for Teaching Soil Physics and More! Abstract Understanding and minimizing the impact of agriculture chemicals upon groundwater quality is a current concern. An examination of this issue requires an understanding of most areas of soil physics.

More information

22 Tubewell Drainage Systems

22 Tubewell Drainage Systems 22 Tubewell Drainage Systems WK Boehmer' and J Boonstra2 221 Introduction ' Tubewell drainage is a technique of controlling the watertable and salinity in agricultural areas It consists of pumping, from

More information

Is it time for us to go to fully integrated models for stream-aquifer management?

Is it time for us to go to fully integrated models for stream-aquifer management? Is it time for us to go to fully integrated models for stream-aquifer management? Tissa H. Illangasekare, PhD, PE, P.Hyd, BCEE,DWRE AMAX Distinguished Chair and Professor of Civil and Environmental Engineering

More information

FIELD TESTING AQUIFERS TO. (Field Follies) James Robinson, Goodwyn, Mills and Cawood, Inc.

FIELD TESTING AQUIFERS TO. (Field Follies) James Robinson, Goodwyn, Mills and Cawood, Inc. FIELD TESTING AQUIFERS TO ESTIMATE HYDRAULIC PROPERTIES (Field Follies) James Robinson, Goodwyn, Mills and Cawood, Inc. Objectives Estimate t hydraulic coefficients; i Test conceptual models of aquifer;

More information

COURSE OUTLINE. (Name of Course Developer: Prof. Madan Kumar Jha, AgFE Department, IIT Kharagpur, Kharagpur )

COURSE OUTLINE. (Name of Course Developer: Prof. Madan Kumar Jha, AgFE Department, IIT Kharagpur, Kharagpur ) Subject Name: GROUNDWATER, WELLS AND PUMPS (2+1) COURSE OUTLINE (Name of Course Developer: Prof. Madan Kumar Jha, AgFE Department, IIT Kharagpur, Kharagpur 721 302) Module 1: Fundamentals of Groundwater

More information

K.Sangeetha, B.Narasimhan Department of Civil Engineering, Indian Institute of Technology, Madras

K.Sangeetha, B.Narasimhan Department of Civil Engineering, Indian Institute of Technology, Madras Analytic Element Method (AEM) and its Relevance with Subbasin/HRU concept of SWAT for potential integration of AEM based simple ground water model K.Sangeetha, B.Narasimhan Department of Civil Engineering,

More information

Well Hydraulics. The time required to reach steady state depends on S(torativity) T(ransmissivity) BC(boundary conditions) and Q(pumping rate).

Well Hydraulics. The time required to reach steady state depends on S(torativity) T(ransmissivity) BC(boundary conditions) and Q(pumping rate). Well Hydraulics The time required to reach steady state depends on S(torativity) T(ransmissivity) BC(boundary conditions) and Q(pumping rate). cone of depression static water level (SWL) drawdown residual

More information

METHODS. Groundwater Modeling

METHODS. Groundwater Modeling METHODS Groundwater Modeling Numerical modeling of subsurface wastewater plumes was completed for all 254 injection wells permitted by the Florida Department of Environmental Protection using a commercially

More information

Technical Bulletin Water Budget and Water Quantity Risk Assessment Tier 2 Subwatershed Stress Assessment Groundwater Drought Scenarios

Technical Bulletin Water Budget and Water Quantity Risk Assessment Tier 2 Subwatershed Stress Assessment Groundwater Drought Scenarios Date: July 2009 Ontario Ministry of Natural Resources Ontario Ministry of the Environment The Clean Water Act requires Source Protection Committees (SPCs) to prepare an assessment report for each source

More information

SEES 503 SUSTAINABLE WATER RESOURCES GROUNDWATER. Instructor. Assist. Prof. Dr. Bertuğ Akıntuğ

SEES 503 SUSTAINABLE WATER RESOURCES GROUNDWATER. Instructor. Assist. Prof. Dr. Bertuğ Akıntuğ SEES 503 SUSTAINABLE WATER RESOURCES GROUNDWATER Instructor Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus SEES 503 Sustainable Water

More information

T E C H N I C A L M E M O R A N D U M

T E C H N I C A L M E M O R A N D U M INTERA Incorporated 9600 Great Hills Trail, Suite 300W Austin, Texas, USA 78759 512.425.2000 T E C H N I C A L M E M O R A N D U M To: From: Barton Springs/Edwards Aquifer Conservation District Wade Oliver,

More information

4 DETERMINATION OF WELLHEAD PROTECTION AREAS

4 DETERMINATION OF WELLHEAD PROTECTION AREAS 4 DETERMINATION OF WELLHEAD PROTECTION AREAS A wellhead protection area is defined as the surface and subsurface area surrounding a well, wellfield or spring that supplies a public water supply through

More information

The Different Characteristics of Aquifer Parameters and Their Implications on Pumping-Test Analysis

The Different Characteristics of Aquifer Parameters and Their Implications on Pumping-Test Analysis The Different Characteristics of Aquifer Parameters and Their Implications on Pumping-Test Analysis by J. J. Jiao and C. Zhenga Abstract The concepts of two-way coordinates and one-way coordinates are

More information

EXTRACT. MONITOR. CONTROL.

EXTRACT. MONITOR. CONTROL. GUIDANCE OF ABSTRACTION AND DISCHARGE PERMITS FOR OPERATIONS When considering any potential dewatering requirement, it is necessary to consider the following questions: Are we allowed to abstract groundwater,

More information

Steady Flow in Confined Aquifer

Steady Flow in Confined Aquifer Steady Flow in Confined Aquifer If there is steady movement of groundwater in confined aquifer, there will be a linear gradient /slope to the potentiometric surface, whose two directional projection is

More information

4. Groundwater Resources

4. Groundwater Resources 4. Groundwater Resources 4-1 Majority (97 %) of unfrozen fresh water on earth exists as groundwater. In comparison to surface water, - groundwater is available all year around - groundwater is mostly invisible

More information

Automatic calibration of groundwater flow parameters for an unconfined aquifer northeast of Vienna

Automatic calibration of groundwater flow parameters for an unconfined aquifer northeast of Vienna Calibration and Reliability in Groundwater Modelling (Proceedings of the ModelCARE 96 Conference held at Golden, Colorado, September 1996). IAHS Publ. no. 237, 1996. 53 Automatic calibration of groundwater

More information

Aquifer Science Staff, January 2007

Aquifer Science Staff, January 2007 Guidelines for Hydrogeologic Reports and Aquifer Tests Conducted Within the Jurisdictional Boundaries of the Barton Springs / Edwards Aquifer Conservation District I. Introduction Aquifer Science Staff,

More information

Modeling the Contamination of an Aquifer from a Highway Salt Storage Facility

Modeling the Contamination of an Aquifer from a Highway Salt Storage Facility First International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Essaouira, Morocco, April 23 25, 01 Modeling the Contamination of an Aquifer from a Highway

More information

Predicting Groundwater Sustainability: What Tools, Models and Data are Available?

Predicting Groundwater Sustainability: What Tools, Models and Data are Available? Predicting Groundwater Sustainability: What Tools, Models and Data are Available? Ray Wuolo Barr Engineering Company Assessing Sustainability is All About: Predicting (or describing) how potentiometric

More information

Abstract. Introduction

Abstract. Introduction Invited Paper The modelling of saline intrusion during the construction of submerged tunnels T. Roberts', J. White, Z. Mohammed' "WJ Engineering Resources Ltd. Civil Engineering, Queen Mary and Westfield

More information

4.0 Groundwater Modeling

4.0 Groundwater Modeling 4.0 Groundwater Modeling P. D. Thorne Predicting future groundwater conditions and the movement of contaminants in groundwater is important in planning waste management and cleanup activities for the Hanford

More information

Hydraulic Head in 1999 Saline plume migration in 1999

Hydraulic Head in 1999 Saline plume migration in 1999 Numerical Modeling of possible Saltwater Intrusion Mechanisms in the Multiple Layer Coastal Aquifer System of the Gulf of Thailand by Mr.Phatcharasak Arlai Contents of Presentation 1. Introduction 2. Literature

More information

Modelling contamination of a drinking water supply well in the Sabarmati river bed aquifer, Ahmedabad, India

Modelling contamination of a drinking water supply well in the Sabarmati river bed aquifer, Ahmedabad, India Impacts of Urban Growth on Surface Water and Groundwater Quality (Proceedings of IUGG 99 Symposium HS5, Birmingham, July 1999). IAHS Publ. no. 259, 1999. 73 Modelling contamination of a drinking water

More information

A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media

A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media US Army Corps of Engineers Hydrologic Engineering Center A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media April 1970 Approved for Public Release. Distribution Unlimited.

More information

Manfred KOCH 1 and Phatsaratsak ARLAI 1, Department of Geotechnology and Engineering Hydrology, University of Kassel, Germany

Manfred KOCH 1 and Phatsaratsak ARLAI 1, Department of Geotechnology and Engineering Hydrology, University of Kassel, Germany Deterministic and stochastic modeling of groundwater flow and solute transport in the heavily-stressed Bangkok coastal aquifer, Thailand, and investigation of optimal management strategies for possible

More information

Hydrogeologic Characterization. Thomas Doe Winter 2009

Hydrogeologic Characterization. Thomas Doe Winter 2009 Hydrogeologic Characterization Thomas Doe Winter 2009 What You Need to Know from Previous Lecture Hydrologic Cycle Vadose Zone Specific Yield Capillary pressure Groundwater Flow Systems Confined versus

More information

Predicting seasonal variation and mounding of groundwater in shallow groundwater systems

Predicting seasonal variation and mounding of groundwater in shallow groundwater systems Predicting seasonal variation and mounding of groundwater in shallow groundwater systems Mr Kelly Norris Senior Engineer, Essential Environmental, Perth, Australia E-mail: kelly@essentialenvironmental.com.au

More information

Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination

Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-10 (406), 2008 Site Verified Contaminant Transport Model as a Mathematical Vehicle for Prevention of the Natural Aquifer Contamination Andrzej ANISZEWSKI Szczecin

More information

Supplemental Guide II-Delineations

Supplemental Guide II-Delineations Supplemental Guide II-Delineations Contents Source Water Protection Area Delineation... 1 Delineation Criteria for Systems Using Groundwater Sources... 2 Time of Travel... 4 Flow Boundaries... 4 Delineation

More information

(,,,) = ( )exp ( + C(x,y,z,t) = the concentration of the contaminant at location x, y, z from the source at time t.

(,,,) = ( )exp ( + C(x,y,z,t) = the concentration of the contaminant at location x, y, z from the source at time t. INTRODUCTION Quick Domenico.xls (QD) is a Microsoft Excel spreadsheet application of An Analytical Model For Multidimensional Transport of a Decaying Contaminant Species, by P.A. Domenico, Journal of Hydrology,

More information

Design of a passive hydraulic containment system using FEFLOW modelling

Design of a passive hydraulic containment system using FEFLOW modelling Design of a passive hydraulic containment system using FEFLOW modelling Rémi Vigouroux remi.vigouroux@arteliagroup.com Florence Lenhardt florence.lenhardt@arteliagroup.com Noëlle Doucet noelle.doucet@arteliagroup.com

More information

Effect of Conjunctive Use of Water for Paddy Field Irrigation on Groundwater Budget in an Alluvial Fan ABSTRACT

Effect of Conjunctive Use of Water for Paddy Field Irrigation on Groundwater Budget in an Alluvial Fan ABSTRACT 1 Effect of Conjunctive Use of Water for Paddy Field Irrigation on Groundwater Budget in an Alluvial Fan Ali M. Elhassan (1), A. Goto (2), M. Mizutani (2) (1) New Mexico Interstate Stream Commission, P.

More information

ASSESSMENT OF UTILIZABLE GROUNDWATER RESOURCES IN A COASTAL SHALLOW AQUIFER

ASSESSMENT OF UTILIZABLE GROUNDWATER RESOURCES IN A COASTAL SHALLOW AQUIFER ASSESSMENT OF UTILIZABLE GROUNDWATER RESOURCES IN A COASTAL SHALLOW AQUIFER V. S. SINGH AND V. K. SAXENA National Geophysical Research Institute, Uppal Rd, Hyderabad, 500 007, India In the recent years

More information

by Phatcharasak Arlai 1*, Manfred Koch 1, Sucharit Koontanakulvong 2

by Phatcharasak Arlai 1*, Manfred Koch 1, Sucharit Koontanakulvong 2 Embedding an Optimization Module within a 3D Density Dependent Groundwater and Solute Transport Model to determine an effective Groundwater Management Scheme in the Bangkok Aquifers System by Phatcharasak

More information

Evaluation of groundwater modelling

Evaluation of groundwater modelling Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 1, No. 6, p. 174-178, 2011 http://www.innspub.net SHORT COMMUNICATION OPEN ACCESS Evaluation of

More information

GROUNDWATER AND SURFACE WATER MODELING FOR WATER PLANNING

GROUNDWATER AND SURFACE WATER MODELING FOR WATER PLANNING Groundwater and Surface Water Modeling for Water Planning NEW MEXICO WATER PLANNING 2003 NOVEMBER NEW MEXICO WATER RESOURCES RESEARCH INSTITUTE 2003 J. Phillip King is an associate professor and associate

More information

8 Time-drawdown analyses

8 Time-drawdown analyses 8 Time-drawdown analyses this, the geology of the test site must be properly known. Well logs may indicate which type of aquifer you are dealing with, i.e. whether it can be regarded as confined, leaky,

More information

Module 2 Measurement and Processing of Hydrologic Data

Module 2 Measurement and Processing of Hydrologic Data Module 2 Measurement and Processing of Hydrologic Data 2.1 Introduction 2.1.1 Methods of Collection of Hydrologic Data 2.2 Classification of Hydrologic Data 2.2.1 Time-Oriented Data 2.2.2 Space-Oriented

More information

Distribution Restriction Statement Approved for public release; distribution is unlimited.

Distribution Restriction Statement Approved for public release; distribution is unlimited. CECW-EH-Y Regulation No. 1110-2-1464 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 Engineering and Design HYDROLOGIC ANALYSIS OF WATERSHED RUNOFF Distribution Restriction

More information

Numerical Groundwater Flow Model Report. Caloosa Materials, LLC 3323 Gulf City Road Ruskin, Florida 33570

Numerical Groundwater Flow Model Report. Caloosa Materials, LLC 3323 Gulf City Road Ruskin, Florida 33570 Numerical Groundwater Flow Model Report Caloosa Materials, LLC 3323 Gulf City Road Ruskin, Florida 33570 GHD 2675 Winkler Ave Suite 180 Fort Myers, FL 33901 11138224 Report July 27, 2017 Table of Contents

More information

WaterTech Brent Morin, B.Sc., P.Geol. Waterline Resources Inc.

WaterTech Brent Morin, B.Sc., P.Geol. Waterline Resources Inc. WaterTech 2017 Brent Morin, B.Sc., P.Geol. Waterline Resources Inc. Conceptual Hydrogeological Model (CHM) Well Completion Aquifer Testing Data Collection and Preparation Aquifer Test Analysis and Interpretation

More information

Documentation of Groundwater Agent-based Model

Documentation of Groundwater Agent-based Model Documentation of Groundwater Agent-based Model Comments or suggestions to 1. Introduction In environmental resources management there is the recognition of need for combined socio-environmental

More information

Numerical Groundwater Model for the Kaweah Delta Water Conservation District

Numerical Groundwater Model for the Kaweah Delta Water Conservation District Numerical Groundwater Model for the Kaweah Delta Water Conservation District Nels Ruud and Peter Leffler Fugro West, Inc. Larry Dotson Kaweah Delta Water Conservation District Presentation Outline Background

More information

Objective. Technical Approach

Objective. Technical Approach Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media (ER-1610) Objective Dense non-aqueous phase liquid

More information

A SIMPLE TOOL FOR DESIGNING AND ASSESSING THERMAL GROUNDWATER UTILIZATION

A SIMPLE TOOL FOR DESIGNING AND ASSESSING THERMAL GROUNDWATER UTILIZATION PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 A SIMPLE TOOL FOR DESIGNING AND ASSESSING THERMAL

More information

February 7 th, Background

February 7 th, Background February 7 th, 2014 Dr. Reagan Waskom, Director Colorado Water Institute E-102 Engineering Building Colorado State University Fort Collins, CO 80523-2033 This memo serves as a final assessment by the Independent

More information

Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer

Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer Dana Mawlood 1*, Jwan Mustafa 2 1 Civil Engineering Department, College of Engineering,

More information

Capture Zone Analyses For Pump and Treat Systems. Internet Seminar Version: September 4, 2008

Capture Zone Analyses For Pump and Treat Systems. Internet Seminar Version: September 4, 2008 Capture Zone Analyses For Pump and Treat Systems Internet Seminar Version: September 4, 2008 1 1 Background Hydraulic containment of impacted ground water (i.e., plume capture ) is one of the remedy objectives

More information

Name: Problem 1. (30 points; 5 each)

Name: Problem 1. (30 points; 5 each) 2700 2500 1900 2100 1500 2300 1800 1700 Hydrogeology - HWR/GEOS 431/531 Final exam Dr. Marek Zreda 16 December 1998 11:00-1:00 Open books and notes There are 5 problems on 7 pages. Read entire test before

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August ISSN

International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August ISSN International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August-2014 18 GROUND WATER FLOW MODELING USING FUZZY LOGIC 1 G. R. UMAMAHESWARI, 2 Dr.D. KALAMANI 1 Department of Mathematics,

More information

An Introduction into Applied Soil Hydrology

An Introduction into Applied Soil Hydrology Klaus Bohne An Introduction into Applied Soil Hydrology Preface Contents 1 Introduction: The soil as a reactor between the earth's atmosphere and the subsurface 1 2 Mechanical composition of mineral soils

More information

POROSITY, SPECIFIC YIELD & SPECIFIC RETENTION. Physical properties of

POROSITY, SPECIFIC YIELD & SPECIFIC RETENTION. Physical properties of POROSITY, SPECIFIC YIELD & SPECIFIC RETENTION Porosity is the the ratio of the voids to the total volume of an unconsolidated or consolidated material. Physical properties of n = porosity as a decimal

More information

Temperature Plume Migration in Aquifers: The necessary first step to geochemical evaluation of thermally-mobilized constituents

Temperature Plume Migration in Aquifers: The necessary first step to geochemical evaluation of thermally-mobilized constituents Temperature Plume Migration in Aquifers: The necessary first step to geochemical evaluation of thermally-mobilized constituents Nelson Molina Giraldo, PhD. Gordon MacMillan, P.Geol. Matrix Solutions Inc.

More information

USING DIFFERENTIAL RECHARGE IN ORDER TO AVOID SALT WATER INTRUSION By Maddalena Vitali

USING DIFFERENTIAL RECHARGE IN ORDER TO AVOID SALT WATER INTRUSION By Maddalena Vitali USING DIFFERENTIAL RECHARGE IN ORDER TO AVOID SALT WATER INTRUSION By Maddalena Vitali vitali.maddalena@gmail.com Index ABSTRACT... 1 OPTIMAL RECHARGE THEORY... 1.1 Factors which affect the extension of

More information

API SOIL & GROUNDWATER RESEARCH BULLETIN

API SOIL & GROUNDWATER RESEARCH BULLETIN American API SOIL & GROUNDWATER RESEARCH BULLETIN A summary of research results from API s Soil and Groundwater Technical Task Force. No. 2 March 1997 Estimation of Infiltration and Recharge for Environmental

More information

Introduction to Groundwater Modelling

Introduction to Groundwater Modelling Introduction to Groundwater Modelling COURSE DESCRIPTION ENGG*6740 Fall 2008 Instructor: Douglas M. Joy The goal of this course is to introduce students to the basics of groundwater modelling as it is

More information

Ground-Water Flow to Wells Introduction. Drawdown Caused by a Pumping Well

Ground-Water Flow to Wells Introduction. Drawdown Caused by a Pumping Well 1 Ground-Water Flow to Wells Introduction Wells used to control salt water intrusion, remove contaminated water, lower the water table for construction, relieve pressure under dams, and drain farmland

More information

Groundwater Models as Inputs into Ecosystem Services Models Evaluating Uncertainty

Groundwater Models as Inputs into Ecosystem Services Models Evaluating Uncertainty Groundwater Models as Inputs into Ecosystem Services Models Evaluating Uncertainty Ray Wuolo Barr Engineering Co. modeling surface-water groundwater interaction feels like WATER LEVELS Kx swimming in a

More information

Simplicity in Modeling Use of Analytical Models with PEST

Simplicity in Modeling Use of Analytical Models with PEST Simplicity in Modeling Use of Analytical Models with PEST Steven P. Larson S. S. Papadopulos & Associates, Inc., Bethesda, MD, slarson@sspa.com ABSTRACT Analytical models can be powerful tools in the analysis

More information

Fortescue Metals Group Ltd. Peer review and model appraisal. Hydrogeological Assessment for the. Cloudbreak Water Management Scheme

Fortescue Metals Group Ltd. Peer review and model appraisal. Hydrogeological Assessment for the. Cloudbreak Water Management Scheme Fortescue Metals Group Ltd Peer review and model appraisal Hydrogeological Assessment for the Cloudbreak Water Management Scheme 14 th October 2010 HydroConcept Pty Ltd ABN: 42 143 302 201 PO Box 4231,

More information

Hands-on Modeling of Water Flow and Contaminant Transport in Soils and Groundwater Using the HYDRUS Software Packages

Hands-on Modeling of Water Flow and Contaminant Transport in Soils and Groundwater Using the HYDRUS Software Packages Hands-on Modeling of Water Flow and Contaminant Transport in Soils and Groundwater Using the HYDRUS Software Packages University of Hawaii at Manoa November 12-13, 2007 Invited Instructors Martinus Th.

More information

Journal of American Science 2014;10(9)

Journal of American Science 2014;10(9) Adaptation to the Impact of Sea Level Rise in the Nile Delta Coastal zone, Egypt Eman R. Nofal 1, Akram M. Fekry 2 And Sherif M. El-Didy 3 1 Research Institute for Groundwater, National Water Research

More information

Mechanism of controlling seawater intrusion at coastal aquifers using subsurface barrier

Mechanism of controlling seawater intrusion at coastal aquifers using subsurface barrier European Water 57: 47-412, 217. 217 E.W. Publications Mechanism of controlling seawater intrusion at coastal aquifers using subsurface barrier R. Shafiee, S.S. Mehdizadeh * and A.S. Gooya Civil Engineering

More information

Simulation of a Novel Groundwater Lowering Technique using. Arbitrary Lagrangian-Eulerian (ale) Method

Simulation of a Novel Groundwater Lowering Technique using. Arbitrary Lagrangian-Eulerian (ale) Method Simulation of a Novel Groundwater Lowering Technique using Arbitrary Lagrangian-Eulerian (ale) Method Yulan Jin Applied Geology, Geoscience Centre, Göttingen University Goldschmidtstr. 3 D-37077, Göttingen,

More information

MEMORANDUM. RAI Responses Related to East Lake Road Wellfield Drawdown Analysis, WUP No SDI Project No. PCF-180.

MEMORANDUM. RAI Responses Related to East Lake Road Wellfield Drawdown Analysis, WUP No SDI Project No. PCF-180. SDI Environmental Services, Inc. 13911 N. Dale Mabry Hwy. Suite 201, Tampa, FL 33618; (813) 961-1935 MEMORANDUM TO: FROM: SUBJECT: Dave Slonena, P.G., Pinellas County Cathleen Beaudoin Jonas RAI Responses

More information

REPORT ON APPROACHES AND METHODS FOR EVALUATION VERTICAL TRANSPORT IN GROUNDWATER HYDROGEOLOGICAL ASSESSMENT TOOLS PROJECT.

REPORT ON APPROACHES AND METHODS FOR EVALUATION VERTICAL TRANSPORT IN GROUNDWATER HYDROGEOLOGICAL ASSESSMENT TOOLS PROJECT. Ltd. 500 4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone (604) 296-4200 Fax (604) 298-5253 REPORT ON APPROACHES AND METHODS FOR EVALUATION VERTICAL TRANSPORT IN GROUNDWATER HYDROGEOLOGICAL

More information

FAX

FAX 21335 Signal Hill Plaza Suite 100 Sterling, Virginia 20164 www.geotransinc.com 703-444-7000 FAX 703-444-1685 Mr. William Kutash Florida Department of Environmental Protection Waste Management Division

More information

Open File Report D

Open File Report D A S V Open File Report 2002-25D Exploring Relationships Between Water Table Elevations, Reported Water Use, and Aquifer Lifetime as Parameters for Consideration in Aquifer Subunit Delineations By B. B.

More information

ENVIRONET Conceptual Site Model

ENVIRONET Conceptual Site Model ENVIRONET Conceptual Site Model Peter Booth Senior Technical Director 17/04/2012 Definition The conceptual site model (CSM) can be seen as; A representation which sets out the critical pollutant linkages

More information

Simulation of horizontal well performance using Visual MODFLOW

Simulation of horizontal well performance using Visual MODFLOW Environ Earth Sci (2013) 68:1119 1126 DOI 10.1007/s12665-012-1813-x ORIGINAL ARTICLE Simulation of horizontal well performance using Visual MODFLOW Wan Mohd Zamri W. Ismail Ismail Yusoff Bahaa-eldin E.

More information

Methodology for Establishing Cleanup Levels for Contaminated Sites

Methodology for Establishing Cleanup Levels for Contaminated Sites Methodology for Establishing Cleanup Levels for Introduction: In Oklahoma, appropriate cleanup levels for a specific site are provided by the Department of Environmental Quality (DEQ). Achieving these

More information

Purpose. Utilize groundwater modeling software to forecast the pumping drawdown in a regional aquifer for public drinking water supply

Purpose. Utilize groundwater modeling software to forecast the pumping drawdown in a regional aquifer for public drinking water supply MODFLOW Lab 19: Application of a Groundwater Flow Model to a Water Supply Problem An Introduction to MODFLOW and SURFER The problem posed in this lab was reported in Chapter 19 of "A Manual of Instructional

More information

I11inois American

I11inois American I11inois American Water@ Dr. Derek Winstanley Otam~n County District Illinois State Water Survey, Chief 2204 Griffith Dr Champaign, IL 61820 Your ref Our ref Phone Fax Response to ISWS'S Review of WHPA

More information