La Riereta Catchment Sant Boi de Llobregat

Size: px
Start display at page:

Download "La Riereta Catchment Sant Boi de Llobregat"

Transcription

1 La Riereta Catchment Sant Boi de Llobregat Final Report Team 2 Enrique Amaya (COL) Lilian Yamamoto (BRA) Martín Pez (ARG) Sergio Esquivel (MEX) Instructor: José Macor

2 Summary Contents 1. Introduction Group presentation The project Objective Study Area Methodology Initial data Model implementation Calibration and validation of the model Determination of the storm design Diagnóstico hidráulico escenario TR = 15 años Solutions for Rehabilitation Conclusion

3 1. Introduction Hydro Latin America is a course borned of the EuroAquae consortium and organized by the Universidad Politècnica de Catalunya. The course proposes the promotion of the global vision for a sustainable management of urban water through the international experience of teamwork with the participants students, according the key concepts and using the modeling tools, and encouraging the critical analysis. This year, the 2016 edition of Hydrolatinamerica takes place in Universidad Nacional de Ingeniería, in Lima, Peru. Figure 1. Universidad Nacional de Ingeniería, Perú In this context, it is developed the hydrologic and hydraulic study of La Riereta urban catchment, using the Stormwater Management Model (SWMM). 2

4 2. Group presentation. Name Country Professional Information University Age Mail Lilian Yamamoto Brazil Civil Engineering Student Universidade Federal do Rio de Janeiro 23 Martín Pez Argentina Hidryc Resources Engineering Universidad Nacional del Litoral (UNL) 26 W. Enrique Amaya T. Colombia Sanitary Engineer Universidad de Santo Tomás - Tunja 26 ninajho6@aquacloud.net Sergio Esquivel Puente México Civil Engineering Universidad Autónoma de Nuevo Léon 29 esquser6@aquacloud.net Figure 2. Hydrolatinamerica Team 2 3

5 3. The project 3.1. Objective The course project consist on a sewer rehabilitation process of a urban catchment called La Riereta. To carry out this process a hydrological and hydraulic model will be built up using the EPA Storm Water Management Model (SWMM 5.0) Study Area The urban catchment is located in Sant Boi de Llobregat, which is a town near to Barcelona. Figure 3. Location of the study area (Google, 2016). This catchment has a surface area of 15ha approximately. Moreover, it presents high indexes of impermeability due to is mainly inserted in the old historic center of the city. 4

6 Figure 4. Surface of study area in 3D, using software Surfer 9.0. Figure 5. Old Historic Center of Sant Boi de Llobregat (Google, 2016). 5

7 In adittion, the catchment slope varies from high to medium values and the drainage of the roofs discharges directly to the street through downspouts. Additionally a group of inlets distributed in the streets ensure the collection of the generated runoff after the rainfall occurs. Figure 6. Google street view of Sant Boi. 4. Methodology The model used in this study is the Stormwater Management Model (SWMM) developed by the U.S. Environmental Protection Agency (EPA). The SWMM model, is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. 6

8 Figure 7. Urban wet weather flows. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps. Running under Windows, SWMM 5 provides an integrated environment for editing study area input data, running hydrologic, hydraulic and water quality simulations, and viewing the results in a variety of formats. These include color-coded drainage area and conveyance system maps, time series graphs and tables, profile plots, and statistical frequency analyses. SWMM accounts for various hydrologic processes that produce runoff from urban areas. These include: 7

9 time-varying rainfall. Evaporation of standing surface water. Rainfall interception from depression storage. Interflow between groundwater and the drainage system. Infiltration of rainfall into insaturated soil layers. SWMM accounts for various hydrologic processes that produce runoff from urban areas. These include: Design and sizing of drainage system components for flood control. Sizing of detention facilities and their appurtenances for flood control and water quality protection. Flood plain mapping of natural channel systems. Designing control strategies for minimizing combined sewer overflows. Evaluating the impact of inflow and infiltration on sanitary sewer overflows. In this way, to meet project objectives, some tasks are carried out as follows: 4.1. Initial data On site of HydroLatinAmerica was available a data about La Riereta for the study area recognition and evaluation. Among them, there is an AutoCAD file that presents the division of urban properties, the description of the drainage network with the localization of manholes and their elevations, conduits dimensions, flow directions and an outlet point previously defined, as showed in figure 4. 8

10 Figure 8. Autocad date of La Riereta Basin discretization In order to build up a simple model but representing with accuracy either in SWMM, it was made a discretization of catchments and subcatchments based on the definition of their limits. These delimit the contribution areas for each outlet node for the drainage system and it was made from the topographic characteristics and flow directions in pipes. Then, it was possible to obtain 33 subcatchments, which can be observed at next figure. 9

11 Figure 9. Limits of the catchments and the subcatchments. The runoff with were obtained considering the subcatchment as asymmetric planes of contribution to the outlet. The expression used were: Where: W : Runoff with : Length of flow A : areas of asymmetric planes A : Sub-basin total area L A 1, 2 W S k 2 S k A2 A1 A 10

12 Table 1. Subcatchment summary Name Area Width %Slope Rain Gage Outlet SUB N81 SUB N-4 SUB N-8 SUB N-55 SUB N-127 SUB N-8 SUB N4 SUB N-45 SUB N-42 SUB8A N-57 SUB N-52 SUB N-47 SUB N-27 SUB N-16 SUB14A N-18 SUB N-11 SUB N-4 SUB N-11 SUB N-6 SUB N-75 SUB N-15 SUB N-15 SUB N-30 SUB N-13 SUB26A N-31 SUB27A N-66 SUB28A N-82 SUB28B N-84 SUB27B N-70 SUB8B N-56A SUB26B N-30 SUB N-33 SUB14B N Collect of data Furthermore, it was defined, from the AutoCAD file, the main drainage system based on the most relevant conduits dimensions and their tracing. A collect of information about the slopes, the areas, the lengths and the flow's width of which 11

13 subcatchment was made. There were absence of some information, like manhole's elevation and the cross section's dimensions of some conduits that were arbitrated based on an interpolation between the others information given. 5. Model implementation It was developed the topology of the model in SWMM, creating the subcatchments group. Then, it was possible to represent the integration of the subcatchments with their respective output nodes with drainage system. By a visual analysis, suported by an orthophoto, it was determined the impermeability percentage of the subcatchments. The majority of the system conduits has a circular and rectangular cross sections and made of concrete, because of that the roughness coefficients is The next table presents the characteristics from the conduits. Table 2. Conduit properties Name Node Inicial Node Final Cross Section Length %Slope Roughness Hyd. Depth C1 N81 N-9 CIRCULAR C2 N-9 N-16 CIRCULAR C3 N-16 N-25 CIRCULAR C4 N-25 N-26 CIRCULAR C5 N-26 N-27 CIRCULAR C6 N-11 N-17 CIRCULAR C7 N-17 N-18 CIRCULAR C8 N-18 N-27 CIRCULAR C9 N-27 N-30 CIRCULAR C10 N-4 N-11 CIRCULAR C11 N-6 N-13 CIRCULAR C12 N-13 N-19 CIRCULAR C13 N-19 N-20 CIRCULAR C14 N-20 N-30 CIRCULAR C15 N-15 N-22 RECT_OPEN C16 N-22 N-33 RECT_OPEN C17 N-70 N-33 CIRCULAR C18 N-33 N-31 CIRCULAR C19 N-31 N-30 CIRCULAR C20 N-30 N-49 CIRCULAR

14 Name Node Inicial Node Final Cross Section Length %Slope Roughness Hyd. Depth C21 N-49 N-51 CIRCULAR C22 N-51 N-52 CIRCULAR C23 N-42 N-47 CIRCULAR C24 N-47 N-52 CIRCULAR C25 N-52 N-53 CIRCULAR C26 N-53 N-127 CIRCULAR C27 N-127 N-54 CIRCULAR C28 N-54 N-50 CIRCULAR C29 N-50 N-8 CIRCULAR C30 N-45 N-5 RECT_OPEN C31 N4 N-5 CIRCULAR C32 N-5 N6 CIRCULAR C33 N6 N7 CIRCULAR C34 N7 N-8 CIRCULAR C35 N-8 N9 CIRCULAR C36 N9 OUT1 CIRCULAR C37 N-75 N-15 RECT_OPEN C38 N-84 N-83 CIRCULAR C39 N-83 N-82 CIRCULAR C40 N-82 N-70 CIRCULAR C41 N-56 N-56A CIRCULAR C42 N-56A N-52 CIRCULAR C43 N-67 N-68 CIRCULAR C44 N-68 N-69 CIRCULAR C45 N-69 N-70 CIRCULAR C46 N-55 N-54 RECT_OPEN C48 N-57 N-56 CIRCULAR C49 N-66 N-67 CIRCULAR As described in item 4.3, the data collected is inserted in SWMM to establish the node s elevation based on possibly the lowest elevation, and the depth máximum by the difference between the terrain elevation and the invert elevation. The next table presents the characteristics from the nodes. Table 3. Node properties Name Invert Elevation Máx Depth N N N N

15 Name Invert Elevation Máx Depth N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N-56A N N N N N N

16 Name Invert Elevation Máx Depth OUT Calibration and validation of the model. For calibration and validation of the model, there are three rain events which contains flow measurements at the outlet point of the catchment: Susana, Jordi and Efren. Figures X and X below show these events and the measured flow. Figure 10. Susana rain event. 15

17 Figure 11. Jordi rain event. 16

18 Figure 12. Efren rain event. Due to the catchment high impermeability seems valid to consider constant the value of run off loss. In this way, the effective precipitation of the three events mentioned above was determined leaving an intensity of 3mm/h for each hydrograph. The next figures shows the hydrograph of total precipitation and effective precipitation. 17

19 Figure 13. Average loss percentage. Figure 14. Average loss percentage. 18

20 Figure 15. Average loss percentage. The calibration consisted in an iterative process which the hydrologics parameters are varied to succeed the minimization of the difference of the maximum flow, the peak time and the volume between the simulated hydrograph and the observed one of the registered events. For calibration, it was considered the Susana and Jordi events. The final parameters - Para todas las subcuencas: %Imperv=100, N-Inperv=0.015, N-perv: - ; Dstore-Inperv=0; Dstore-Perv=0; %Zero-Imperv=90. - Para todos los conductos: n=

21 Q [m 3 /s] 2016 LIMA, PERU The results of the calibration shown in the next figure t [min] Measured Flow Simulated Figure 16. Hydrograph results of the calibration. Susana event. The next table shows a summary of the errors for each event. Table 4. Summary of errors for Susana event. 20

22 Q [m 3 /s] 2016 LIMA, PERU t [min] Measured Flow Simulated Figure 17. Hydrograph results of the calibration. Jordi event. Table 5. Summary of errors for Jordi event. 21

23 Q [m 3 /s] 2016 LIMA, PERU Measured flow Simulated t [min] Figure 18. Hydrograph results of the calibration. Efrén event. Table 6. Summary of errors for Efrén event. Percent error variables previous are within ranges of acceptable error. Once calibrated and simulated the example, proceed a calculating hietograma for a return time (TR) of 15 years in order to under simulate the critical conditions. 22

24 6. Determination of the storm design To determinate the project rain, it were used IDF Barcelona - Fabra curves (Serie ). The family of IDF curves is represented by the following expressions: Where: I: intensity [mm/h] : Recurrence [years] : Duration of rain [min] : Dependent coefficients of rain duration. The duration of the rain (tr) was adopted in order to result greater than the concentration time (tc) of the basin which was estimated by the following equations: (SCS, 1973) Where: L: length of the basin [m] CN: Curve number (SCS) 23

25 S: average slope of the basin [m/m] (California Culvert Practice, 1942) Where: L: length of the longest water course [m] H: stretch between the head and the outlet of the basin [m] Where: C: runoff coefficient of the rational method L: length of surface flow [m] S: surface slope [m/m] (Federal Aviation Administration, 1970) In the next Table, obtained concentration times (tc) and adopted rain duration (tr). 24

26 Table 7. Obtained concentration times (tc) and adopted rain duration (tr). Figure 19. Design rain obtained for a recurrence period of 10 years and a rain duration of 1 hour. 25

27 7. Diagnóstico hidráulico escenario TR = 15 años The hydraulic simulation of the sewerage system in the study area was carried out using the SWMM 5.0 software. The simulation was performed using a hietograma with a return period of 15 years. The modeling results are reported at the time of peak hydrograph simulation: Table 8. Node flooding of hydraulic diagnostic Node Hours Maximum Rate Hours of maximum Total Flood Volume Flooded CMS Flooding 10^6 ltr N : N : N : N :29 0 N : N :22 0 N : N : N :

28 Figure 20. Node Flooding. 27

29 Figure 21. Capacity full flow. At the performance of the simulation, it was possible identify some critical conduits which has a pressure flow in it and presents overflow at the manholes, as it was shown in previous tables. It can be observed below the profiles with the information about the system saturation at the critical conduits. 28

30 Figure 22. Profile N81 N30. Figure 23. Profile N75 N30. 29

31 Figure 24. Profile N30 OUT1. Figure 25. Profile N45 OUT1. 30

32 Figure 26. Profile N42 N Solutions for Rehabilitation Rehabilitation sewer system is assigned activities increased diameter and slope changes in the collectors not operating free flow, maintaining the constructive type of piping material. Then the pipe sections that have been modified are presented, increasing its hydraulic capacity and slope. 31

33 Table 9. Pipes with increasing diameter and slope Name Node Inicial Node Final Shape Length Roughness %Slope Existing %Slope Rehabilitation Hyd. Depth Existing Hyd. Depth Rehabilitation C4 N-25 N-26 CIRCULAR C5 N-26 N-27 CIRCULAR C9 N-27 N-30 CIRCULAR C15 N-15 N-22 RECT_OPEN C16 N-22 N-33 RECT_OPEN C18 N-33 N-31 CIRCULAR C19 N-31 N-30 CIRCULAR C20 N-30 N-49 CIRCULAR C22 N-51 N-52 CIRCULAR C24 N-47 N-52 CIRCULAR C25 N-52 N-53 CIRCULAR C26 N-53 N-127 CIRCULAR C27 N-127 N-54 CIRCULAR C28 N-54 N-50 CIRCULAR C29 N-50 N-8 CIRCULAR C35 N-8 N9 CIRCULAR C37 N-75 N-15 RECT_OPEN In all, the hydraulic capacity of 15 pipes (diameter) was increased and the slope of 2 sections. The material of the pipes in concrete circular section remains. In order to improve the slope reverse to the flow direction of conduit C -19, it was decided to increase the depth of the manhole or node N -30. The results of the optimized hydraulic modeling is as follows: 32

34 Figure 27. Node flooding of rehabilitation. 33

35 Figure 28. Link capacity full flow of rehabilitation. According to the above graphs, it can be seen that with optimization performed, any well presents rebozamiento and total piping works free flow, with a maximum depth between 80 and 100 %. Table 10. Pipes with increasing diameter and slope Existing System Rehabilitation Efficiency of Rehabilitation (%) Node Flooding Link (Capacity Full Flow) Optimized profiles sections are presented. 34

36 Figure 29. Profile N81-N30. Figure 30. Profile N75-N30. 35

37 Figure 31. Profile N30-OUT1 Figure 32. Profile N45-OUT1 36

38 Figure 33. Profile N42-N52. Increased hydraulic capacity of the pipeline will not generate problems of considerable decrease in depth to crest tube. 37

39 9. Conclusion Through the Hydrolatinamerica event, it was possible to develop the hydraulic and hydrologic model of the La Riereta s drainage system. It was possible to represent satisfactorily the hydrologic answer of the basin, however with excessive volumes due to have included an area bigger than the real contribution area. The error percentage of the calculated hydrograph in relation to the observed one, in general is about 26.36%. We can affirm that is an acceptable value for the calibration of a hydrodynamic model. To achieve a bigger reliability at the model calibration, it requires include the topology of the urban drainage system in its totality, in order to simulate input and resorted times of the flow which drains the sewage system. The construction of a hydrodynamic model with more approximation with the reality requires more productive time, considering that it has to have a discretization more detailed of the urban basin. In general, it has augmented the hydraulic capacity of 15 conduits (diameters), as well as the slope of 2 conduits. The conduit s material has been preserved in concrete and the circular and rectangular cross section. 38

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation

MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1. Precipitation Watershed MODULE 1 RUNOFF HYDROGRAPHS WORKSHEET 1 A watershed is an area of land thaaptures rainfall and other precipitation and funnels it to a lake or stream or wetland. The area within the watershed

More information

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management Husam Al-Najar Storm water management : Collection System Design principles The Objectives

More information

Drainage Analysis. Appendix E

Drainage Analysis. Appendix E Drainage Analysis Appendix E The existing and proposed storm drainage systems have been modeled with Bentley CivilStorm V8 computer modeling software. The peak stormwater discharge was determined for

More information

CIE4491 Lecture. Quantifying stormwater flow Rational method

CIE4491 Lecture. Quantifying stormwater flow Rational method CIE4491 Lecture. Quantifying stormwater flow Rational method 27-5-2014 Marie-claire ten Veldhuis, Watermanagement Department Delft University of Technology Challenge the future Robust method stationary

More information

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges Detention Pond Design Considering Varying Design Storms Land Development Results in Increased Peak Flow Rates and Runoff Volumes Developed area Robert Pitt Department of Civil, Construction and Environmental

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to describe:

Learning objectives. Upon successful completion of this lecture, the participants will be able to describe: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to describe: The different approaches for estimating peak runoff for urban drainage network

More information

Summary of Detention Pond Calculation Canyon Estates American Canyon, California

Summary of Detention Pond Calculation Canyon Estates American Canyon, California July 15, 2015 Bellecci & Associates, Inc Summary of Detention Pond Calculation Canyon Estates American Canyon, California 1. Methodology: Method: Unit Hydrograph Software: Bentley Pond Pack Version 8i

More information

WASTEWATER & STORM WATER COLLECTION AND REMOVAL

WASTEWATER & STORM WATER COLLECTION AND REMOVAL CVE 471 WATER RESOURCES ENGINEERING WASTEWATER & STORM WATER COLLECTION AND REMOVAL Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or any

More information

SEWAGE TREATMENT AND DISPOSAL

SEWAGE TREATMENT AND DISPOSAL SEWAGE TREATMENT AND DISPOSAL QUANTITY OF SANITARY SEWAGE AND STORM WATER Zerihun Alemayehu Unpolluted cooling water Intercept or sewer Sources of Sewage Residential and commercial sewage Industrial wastewater

More information

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection DRAFT Technical Memorandum Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility Hydraulic Modeling Software Selection Prepared for: City of Newport Public Works Department 70 Halsey Street Newport,

More information

RETENTION BASIN EXAMPLE

RETENTION BASIN EXAMPLE -7 Given: Total Tributary Area = 7.5 ac o Tributary Area within Existing R/W = 5.8 ac o Tributary Area, Impervious, Outside of R/W = 0.0 ac o Tributary Area, Pervious, Outside of R/W = 1.7 ac o Tributary

More information

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT

THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT THE GOVERNMENT OF MALAYSIA PRIME MINISTER S DEPARTMENT ECONOMIC PLANNING UNIT THE STUDY ON INTEGRATED URBAN DRAINAGE IMPROVEMENT FOR MELAKA AND SUNGAI PETANI IN MALAYSIA FINAL REPORT VOL. 5: TECHNICAL

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment

More information

APPENDIX E APPENDIX E ESTIMATING RUNOFF FOR SMALL WATERSHEDS

APPENDIX E APPENDIX E ESTIMATING RUNOFF FOR SMALL WATERSHEDS APPENDIX E ESTIMATING RUNOFF FOR SMALL WATERSHEDS March 18, 2003 This page left blank intentionally. March 18, 2003 TABLES Table E.1 Table E.2 Return Frequencies for Roadway Drainage Design Rational Method

More information

FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 1.0 Overview

FORT COLLINS STORMWATER CRITERIA MANUAL Hydrology Standards (Ch. 5) 1.0 Overview Chapter 5: Hydrology Standards Contents 1.0 Overview... 1 1.1 Storm Runoff Determination... 1 1.2 Design Storm Frequencies... 1 1.3 Water Quality Storm Provisions... 2 1.4 Design Storm Return Periods...

More information

APPENDIX E ESTIMATING RUNOFF FROM SMALL WATERSHEDS

APPENDIX E ESTIMATING RUNOFF FROM SMALL WATERSHEDS ESTIMATING RUNOFF FROM SMALL WATERSHEDS June 2011 THIS PAGE LEFT BLANK INTENTIONALLY. June 2011 TABLES Table E.1 Table E.2 Return Frequencies for Roadway Drainage Design Rational Method Values June 2011

More information

Runoff Calculations. Time of Concentration (T c or t c ) from one location to another within a watershed. Travel

Runoff Calculations. Time of Concentration (T c or t c ) from one location to another within a watershed. Travel Runoff Calculations Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg Time of Concentration and Travel Time (based on Chapter 3 of TR-55) Time of Concentration (T c ): time required

More information

Storm Sewer Design. Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg

Storm Sewer Design. Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg Storm Sewer Design Bob Pitt University of Alabama and Shirley Clark Penn State Harrisburg Major floods are dramatic and water flow routes must be recognized when minor drainage systems fail. These types

More information

Report. Inflow Design Flood Control System Plan St. Clair Power Plant St. Clair, Michigan. DTE Energy Company One Energy Plaza, Detroit, MI

Report. Inflow Design Flood Control System Plan St. Clair Power Plant St. Clair, Michigan. DTE Energy Company One Energy Plaza, Detroit, MI Report Inflow Design Flood Control System Plan St. Clair Power Plant St. Clair, Michigan DTE Energy Company One Energy Plaza, Detroit, MI October 14, 2016 NTH Project No. 62-160047-04 NTH Consultants,

More information

BMP Design Aids. w w w. t r a n s p o r t a t i o n. o h i o. g o v. Equations / Programs

BMP Design Aids. w w w. t r a n s p o r t a t i o n. o h i o. g o v. Equations / Programs BMP Design Aids 1 Equations / Programs Outlet Discharge Equations Hydrograph and Pond Routing Programs USGS StreamStats 2 Ohio Department of Transportation 1 Training Intent Introduction and overview of

More information

Appendix F. Flow Duration Basin Design Guidance

Appendix F. Flow Duration Basin Design Guidance Appendix F Flow Duration Basin Design Guidance Appendix F FINAL REPORT F:\SC46\SC46.31\HMP Mar 05\Appendices\Appendix F FLY_HMP.doc MARCH 2005 Appendix F Flow Duration Basin Design Guidance Prepared by

More information

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY Section 257.82 of EPA s regulations requires the owner or operator of an existing or new CCR surface impoundment or

More information

Shawn Herring Civil Applications ProSoft, Inc

Shawn Herring Civil Applications ProSoft, Inc SSA for Highway Design Using Autodesk Storm and Sanitary Analysis for Simple or Complex Roads Shawn Herring Civil Applications Engineer @ ProSoft, Inc Win a Civil 3D Book!!! A Practical Guide to AutoCAD

More information

Comparison of 1D-1D and 1D-2D urban flood models

Comparison of 1D-1D and 1D-2D urban flood models 15 th International Conference on Environmental Science and Technology Rhodes, Greece, 31 August to 2 September 217 Comparison of and urban flood models Kourtis I. M. 1, *, Bellos V. 1, Tsihrintzis V.

More information

Welcome to PCSWMM.NET, the all-new version of CHI's

Welcome to PCSWMM.NET, the all-new version of CHI's Welcome to PCSWMM.NET, the all-new version of CHI's comprehensive, GIS-based, graphical decision support system for US EPA SWMM5 urban drainage modeling (sanitary, storm and/or combined systems). Built

More information

Report. Inflow Design Flood Control System Plan Belle River Power Plant East China, Michigan. DTE Energy Company One Energy Plaza, Detroit, MI

Report. Inflow Design Flood Control System Plan Belle River Power Plant East China, Michigan. DTE Energy Company One Energy Plaza, Detroit, MI Report Inflow Design Flood Control System Plan Belle River Power Plant East China, Michigan DTE Energy Company One Energy Plaza, Detroit, MI October 14, 2016 NTH Project No. 62-160047-04 NTH Consultants,

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part 257.82 PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R. Part

More information

TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SPECIFICATIONS AND SCOPE 105.1

TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SPECIFICATIONS AND SCOPE 105.1 TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SECTION TITLE PAGE 105.1. SPECIFICATIONS AND SCOPE 105.1 105.2. METHODS OF ANALYSIS 105.1 105.2.1. Rational Method

More information

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR 1 INTRODUCTION 1.1 Project Description and Location Isabella Ocean Residences is a residential development to be constructed

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

STORM DRAINS AND IRRIGATION

STORM DRAINS AND IRRIGATION TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 STORM DRAINS AND IRRIGATION 105.1. STORM DRAINS... 105.1 105.2. METHODS OF ANALYSIS... 105.1 105.2.1. Rational Method... 105.1 105.2.2.

More information

SMART-DEPUR fognature smart per l ottimizzazione dei sistemi di drenaggio e depurazione dei reflui urbani

SMART-DEPUR fognature smart per l ottimizzazione dei sistemi di drenaggio e depurazione dei reflui urbani Livorno, 28 giugno 2018 SMART-DEPUR fognature smart per l ottimizzazione dei sistemi di drenaggio e depurazione dei reflui urbani Renato Iannelli Università di Pisa DESTEC (Dipartimento di Ingegneria dell

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to:

Learning objectives. Upon successful completion of this lecture, the participants will be able to: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to: Describe and perform the required step for designing sewer system networks Outline Design

More information

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257 INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals

More information

Index. Page numbers followed by f indicate figures.

Index. Page numbers followed by f indicate figures. Index Aerodynamic method, 103, 110 111 Algae, 131, 173, 175 Alternate depth, 88 Alternating block method, 132, 140 141 Attenuation, 106, 107f, 118, 120 Page numbers followed by f indicate figures. Baseflow

More information

2. DEFINITIONS. American Association of State Highway and Transportation Officials.

2. DEFINITIONS. American Association of State Highway and Transportation Officials. 2. DEFINITIONS 2.010 Definitions [See Amendment 2] In addition to words and terms that may be defined elsewhere in this manual, the following words and terms shall have the meanings defined below: AASHTO:

More information

Gwinnett County Stormwater System Assessment Program

Gwinnett County Stormwater System Assessment Program Gwinnett County Stormwater System Assessment Program Jonathan Semerjian, PE Dept. of Water Resources Stormwater Management Sam Fleming, PE Dewberry Presentation Overview Project Background Drivers Enhanced

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

COMPUTER APPLICATIONS HYDRAULIC ENGINEERING

COMPUTER APPLICATIONS HYDRAULIC ENGINEERING - 7535 COMPUTER APPLICATIONS IN HYDRAULIC ENGINEERING Connecting Theory to Practice Fifth Edition HAESTAD PRESS Table of Contents Revision History Foreword CHAPTER 1 BASIC HYDRAULIC PRINCIPLES 1 1.1 General

More information

Development of a Computer Model of a Drainage System with Uncertainties in External Inflow and Channel Cross-section

Development of a Computer Model of a Drainage System with Uncertainties in External Inflow and Channel Cross-section Development of a Computer Model of a Drainage System with Uncertainties in External Inflow and Channel Cross-section T.T. Vu 1*, T.S.W. Wong 2 and S.K. Tan 2 1 DHI-NTU Centre, Nanyang Environment and Water

More information

HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY

HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY Fernando Gonzalez, Adel Hagekhalil, Bryan Trussell, City of Los Angeles Bureau of Sanitation

More information

The role of domestic rainwater harvesting systems in storm water runoff mitigation

The role of domestic rainwater harvesting systems in storm water runoff mitigation European Water 58: 497-53, 217. 217 E.W. Publications The role of domestic rainwater harvesting systems in storm water runoff mitigation I. Gnecco *, A. Palla and P. La Barbera Department of Civil, Chemical

More information

4.1 General Methodology and Data Base Development

4.1 General Methodology and Data Base Development Chapter 4 METHODOLOGY 4.1 General and Data Base Development This report project utilized several computer software models and analysis techniques to create the numeric data on which decisions for this

More information

Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox and WMS

Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox and WMS v. 11.0 WMS 11.0 Tutorial Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox and WMS Objectives Learn how to use several Hydraulic Toolbox calculators

More information

HY-12 User Manual. Aquaveo. Contents

HY-12 User Manual. Aquaveo. Contents Y-12 User Manual Aquaveo Contents Overview...2 Watershed Parameters...3 Channel Parameters...3 Storm Drain Parameters...3 Design of new systems...4 Analysis of existing systems...4 Steady flow...4 ydrographic

More information

A Stormwater Management Plan and Sediment Control Plan are required for all proposed developments within the City of Richmond.

A Stormwater Management Plan and Sediment Control Plan are required for all proposed developments within the City of Richmond. Engineering Page 3-1 3.0 STORM DRAINAGE 3.1 GENERAL Good drainage is vital to flat urban areas such as Lulu Island. It is essential that every storm sewer must be designed accurately minimizing conflicts

More information

Hydrology for Drainage Design. Design Considerations Use appropriate design tools for the job at hand:

Hydrology for Drainage Design. Design Considerations Use appropriate design tools for the job at hand: Hydrology for Drainage Design Robert Pitt Department of Civil and Environmental Engineering University of Alabama Tuscaloosa, AL Objectives for Urban Drainage Systems are Varied Ensure personal safety

More information

Study on Drainage Capacity by using Modified Rational Method and Storm Water Management Model

Study on Drainage Capacity by using Modified Rational Method and Storm Water Management Model Study on Drainage Capacity by using Modified Rational Method and Storm Water Management Model 1 Mi Pale Kyi, 2 Dr. Win Win Zin, 3 U Tin Maung 1 Ph.D Candidate, 2 Professor, 3 Visiting Professor 1, 2, 3

More information

Analysis and Simulation of Drainage Capacity of Urban Pipe Network

Analysis and Simulation of Drainage Capacity of Urban Pipe Network Research Journal of Applied Sciences, Engineering and Technology 6(3): 387-392, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: July 17, 2012 Accepted: August 28,

More information

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257 INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 HUFFAKER ROAD (PLANT HAMMOND) PRIVATE INDUSTRIAL LANDFILL (HUFFAKER ROAD LANDFILL) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion

More information

DIVISION 5 STORM DRAINAGE CRITERIA

DIVISION 5 STORM DRAINAGE CRITERIA DIVISION 5 STORM DRAINAGE CRITERIA Section 5.01 GENERAL The following storm drainage design criteria shall apply to all storm drainage designs in the City. Additional design criteria are specified in the

More information

Hydrologic Study Report for Single Lot Detention Basin Analysis

Hydrologic Study Report for Single Lot Detention Basin Analysis Hydrologic Study Report for Single Lot Detention Basin Analysis Prepared for: City of Vista, California August 18, 2006 Tory R. Walker, R.C.E. 45005 President W.O. 116-01 01/23/2007 Table of Contents Page

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

Assessing SWMM 5 Hydrologic Parameter Benefits for Model Calibration

Assessing SWMM 5 Hydrologic Parameter Benefits for Model Calibration Assessing SWMM 5 Hydrologic Parameter Benefits for Model Calibration Justin Siegrist, 1 Daniel Anderson, 2 Joseph Koran, 2 Mark Pribak, 3 Uzair M. (Sam) Shamsi 4 and Dave White 1 1 Wade Trim, Inc., Cincinnati,

More information

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall 6.0 Introduction This chapter summarizes methodology for determining rainfall and runoff information for the design of stormwater management facilities in the City. The methodology is based on the procedures

More information

Modelling a Combined Sewage and Stormwater Flood Detention Basin

Modelling a Combined Sewage and Stormwater Flood Detention Basin Modelling a Combined Sewage and Stormwater Flood Detention Basin A. Pugh B.E. (Hons), Member A.W.A. Sales and Support Manager, Wallingford Software Pty Ltd, Australia S. Ratcliffe B.Sc(Hons), Grad Dip

More information

Project Drainage Report

Project Drainage Report Design Manual Chapter 2 - Stormwater 2A - General Information 2A-4 Project Drainage Report A. Purpose The purpose of the project drainage report is to identify and propose specific solutions to stormwater

More information

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Maine Stormwater Conference (Portland, ME, 2015) Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Park Jongpyo, Lee Kyoungdo: HECOREA. INC Shin Hyunsuk: Busan National University

More information

North Omaha Ash Landfill Run-on and Run-off Control System Plan

North Omaha Ash Landfill Run-on and Run-off Control System Plan North Omaha Ash Landfill Run-on and Run-off Control System Plan Omaha Public Power District North Omaha Station Omaha, Nebraska October 17, 216 OPPD North Omaha Ash Landfill Run-On and Run-Off Control

More information

12d Solutions Pty Ltd CIVIL AND SURVEYING SOFTWARE

12d Solutions Pty Ltd CIVIL AND SURVEYING SOFTWARE Civil and Surveying Software Version 9 Course Notes CIVIL AND SURVEYING SOFTWARE THE 12D PERSPECTIVE 12d Solutions Pty Limited ACN 056 019 713 Phone: +61 (2) 9970 7117 Fax: +61 (2) 9970 7118Email training@12d.com

More information

Storm Sewer Design - Introduction

Storm Sewer Design - Introduction Class 4 [1] Storm Sewer Design - Introduction As urban drainage can not be expected to accommodate all rainfall events, the first step in the design procedure is to select an appropriate design storm.

More information

HERPIC County Storm Drainage Manual

HERPIC County Storm Drainage Manual HERPIC County Storm Drainage Manual C h r is t o p h e r B. B u r k e Research Assistant Highway Extension and Research Project for Indiana Counties Purdue University The HERPIC (Highway Extension and

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream What is runoff? Runoff Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream 1 COMPONENTS OF Runoff or STREAM FLOW 2 Cont. The types of runoff

More information

Module 8 (L31 L34): Storm Water & Flood Management : Storm water management, design of drainage system, flood

Module 8 (L31 L34): Storm Water & Flood Management : Storm water management, design of drainage system, flood Module 8 (L31 L34): Storm Water & Flood Management : Storm water management, design of drainage system, flood routing through channels and reservoir, flood control and reservoir operation, case studies.

More information

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan

Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan Overview of NRCS (SCS) TR-20 By Dr. R.M. Ragan TR-20 is a computer program for the simulation of runoff occurring from a single storm event. The program develops flood hydrographs from runoff and routes

More information

PART V - STORM DRAIN DESIGN CRITERIA

PART V - STORM DRAIN DESIGN CRITERIA PART V - STORM DRAIN DESIGN CRITERIA A. Hydrology Studies and Hydraulic Analyses 1. Drainage area master plans and calculations are to be submitted with all subdivision improvement plans, permit improvement

More information

PART V - STORM DRAIN DESIGN CRITERIA

PART V - STORM DRAIN DESIGN CRITERIA PART V - STORM DRAIN DESIGN CRITERIA A. Hydrology Studies and Hydraulic Analyses 1. Drainage area master plans and calculations are to be submitted with all subdivision improvement plans, permit improvement

More information

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies Keanan Bell NorthStar June 12, 2015 Project began in 2010 as a Hydrology Assessment and Conceptual Restoration

More information

Introduction. Keywords: Oil Palm, hydrology, HEC-HMS, HEC-RAS. a * b*

Introduction. Keywords: Oil Palm, hydrology, HEC-HMS, HEC-RAS. a * b* The Effect of Land Changes Towards in Sg. Pandan Perwira Bin Khusairi Rahman 1,a* and Kamarul Azlan bin Mohd Nasir 1,b 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia a * wirakhusairirahman@gmail.com,

More information

Use of IDF Curves Design of a roof drainage system

Use of IDF Curves Design of a roof drainage system Use of IDF Curves Design of a roof drainage system Your engineering firm is currently planning the construction of a residential apartment building in Davos, Switzerland. Your task is to design the roof

More information

Wastewater Collection System

Wastewater Collection System WASTEWATER COLLECTION SYSTEM CE 370 1 Wastewater Collection System The function of the collection system is to collect the wastewater from residential, commercial, and industrial areas within the service

More information

DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO

DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO DERIVATION AND CALIBRATION OF VOLUME-BASED RUNOFF COEFFICIENTS FOR DENVER AREA, COLORADO Prepared by Dr. James C.Y. Guo, P.E., Professor and Director, Civil Engineering, U of Colorado Denver James.Guo@UCDenver.edu

More information

INTENSE STORM-RUNOFF ROUTING OF HATIRJHEEL-BEGUNBARI LAKE OF DHAKA CITY

INTENSE STORM-RUNOFF ROUTING OF HATIRJHEEL-BEGUNBARI LAKE OF DHAKA CITY Proceedings of the 3 rd International Conference on Civil Engineering for Sustainable Development (ICCESD 2016), 12~14 February 2016, KUET, Khulna, Bangladesh (ISBN: 978-984-34-0265-3) INTENSE STORM-RUNOFF

More information

Regional Hydraulic Model Plan

Regional Hydraulic Model Plan APPENDIX 3 Regional Hydraulic Model Plan November 17, 2008 Contents Section 1 Introduction Section 2 Model Objectives and Capabilities 2.1 Model Software Capabilities... 2-1 Section 3 Model Development

More information

Amina Reservoir Project Report

Amina Reservoir Project Report Amina Reservoir Project Report Prepared for Instituto Nacional de Recursos Hidráulicos, Dominican Republic Rob Sowby, Sam García, and Erik McCarthy Civil and Environmental Engineering Brigham Young University

More information

Introduction to Storm Sewer Design

Introduction to Storm Sewer Design A SunCam online continuing education course Introduction to Storm Sewer Design by David F. Carter Introduction Storm sewer systems are vital in collection and conveyance of stormwater from the upstream

More information

Chapter 25. Techniques Used in an Urban Watershed Planning Study Introduction. K. R. Avery andy. 0. LaBombard

Chapter 25. Techniques Used in an Urban Watershed Planning Study Introduction. K. R. Avery andy. 0. LaBombard Chapter 25 Techniques Used in an Urban Watershed Planning Study K. R. Avery andy. 0. LaBombard For planning level studies of urban flooding, it is important to obtain reasonable estimates of hydraulic

More information

LAKE COUNTY HYDROLOGY DESIGN STANDARDS

LAKE COUNTY HYDROLOGY DESIGN STANDARDS LAKE COUNTY HYDROLOGY DESIGN STANDARDS Lake County Department of Public Works Water Resources Division 255 N. Forbes Street Lakeport, CA 95453 (707)263-2341 Adopted June 22, 1999 These Standards provide

More information

DRAINAGE & DESIGN OF DRAINAGE SYSTEM

DRAINAGE & DESIGN OF DRAINAGE SYSTEM Drainage on Highways DRAINAGE & DESIGN OF DRAINAGE SYSTEM P. R.D. Fernando Chartered Engineer B.Sc.(Hons), M.Eng. C.Eng., MIE(SL) Drainage Requirement of Highway Drainage System Introduction Drainage means

More information

SECTION 4 STORM DRAINAGE

SECTION 4 STORM DRAINAGE 4.01 GENERAL SECTION 4 STORM DRAINAGE These standards shall provide minimum requirements for the design of Storm Drainage and related appurtenances within the City of West Sacramento rights of way and

More information

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model 9 th International Conference on Urban Drainage Modelling Belgrade 2012 Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model Beniamino Russo, David Suñer, Marc Velasco,

More information

Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017

Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017 Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017 Jill Bicknell, P.E., EOA, Inc. Presentation Overview Sizing/Design of Self Treating and Self Retaining Areas

More information

Planning Considerations for Stormwater Management in Alberta. R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013.

Planning Considerations for Stormwater Management in Alberta. R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013. Planning Considerations for Stormwater Management in Alberta R. D. (Rick) Carnduff, M. Eng., P. Eng. February 20, 2013 Photo Optional Purpose The purpose of urban stormwater management is to provide solutions

More information

Autodesk Storm & Sanitary Analysis 2015

Autodesk Storm & Sanitary Analysis 2015 Autodesk Storm and Sanitary Analysis 2015 Autodesk Storm & Sanitary Analysis 2015 Technical Capabilities and Functionalities Autodesk Storm and Sanitary Analysis 2015 Contents Autodesk SSA Technical Capabilities

More information

University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil.

University (UERJ), Rua São Francisco Xavier, 524, , Rio de Janeiro, RJ, Brazil. Unconventional Measures and Hydrodynamic Simulation with Mathematical Model in Sacarrão River Basin, Jacarepaguá, West Area of the City of Rio de Janeiro, Brazil P.L. da Fonseca 1 *, L. Pimentel da Silva

More information

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. ANALYSIS TOOLS FOR STORMWATER CONTROLS ON CONSTRUCTION SITES

More information

APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN

APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CIVIL & GEOTECHNICAL FINAL DESIGN APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN PARSONS P:\Honeywell -SYR\44483 - Lake Detail Design\9

More information

CVEN 339 Summer 2009 Final Exam. 120 minutes allowed. 36 Students. No curve applied to grades. Median 70.6 Mean 68.7 Std. Dev High 88 Low 24.

CVEN 339 Summer 2009 Final Exam. 120 minutes allowed. 36 Students. No curve applied to grades. Median 70.6 Mean 68.7 Std. Dev High 88 Low 24. CVEN 339 Final Exam 120 minutes allowed 36 Students No curve applied to grades Median 70.6 Mean 68.7 Std. Dev. 13.7 High 88 Low 24.5 Name: CVEN 339 Water Resources Engineering Summer Semester 2009 Dr.

More information

Section 600 Runoff Table of Contents

Section 600 Runoff Table of Contents Section 600 Runoff Table of Contents 601 INTRODUCTION...600-1 602 RATIONAL METHOD...600-1 602.1 Rational Method Formula...600-2 602.2 Time of Concentration...600-2 602.3 Intensity...600-4 602.4 Runoff

More information

Modelling storm water control operated by green roofs at the urban catchment scale

Modelling storm water control operated by green roofs at the urban catchment scale Modelling storm water control operated by green roofs at the urban catchment scale A. Palla*, C. Berretta, L.G. Lanza and P. La Barbera Department of Civil, Environmental and Architectural Engineering,

More information

Intelligent, Efficient Hydrology and Hydraulic Modelling and Analysis Using Autodesk Storm and Sanitary Analysis

Intelligent, Efficient Hydrology and Hydraulic Modelling and Analysis Using Autodesk Storm and Sanitary Analysis Autodesk Storm and Sanitary Analysis Intelligent, Efficient Hydrology and Hydraulic Modelling and Analysis Using Autodesk Storm and Sanitary Analysis Autodesk have provided a unique solution catering to

More information

Insights from editing the ARR Urban Book. Peter J Coombes

Insights from editing the ARR Urban Book. Peter J Coombes Insights from editing the ARR Urban Book Peter J Coombes Motivation for revision of ARR Many practices and data in ARR 1987 are outdated More rainfall and streamflow data Improved understanding of climate

More information

Water supply components

Water supply components Water supply components Water sources structures (Dams, wells, reservoirs) Surface water Groundewater Pipelines from source Water treatment plant components Pumping stations Storage (elevated tanks) Distribution

More information

City Of Toronto S Approach On Implementing The New Federal Wastewater Effluent Regulations Using A GIS-Based Hydrologic And Hydraulic Model

City Of Toronto S Approach On Implementing The New Federal Wastewater Effluent Regulations Using A GIS-Based Hydrologic And Hydraulic Model City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 City Of Toronto S Approach On Implementing The New Federal Wastewater Effluent Regulations Using

More information

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality M.J. Cambez 1, J. Pinho 1, L.M. David 2 * 1 Trainee at Laboratório Nacional de Engenharia Civil (LNEC) 2 Research Officer at

More information

NC2 Ash Disposal Area Run-on and Run-off Control System Plan

NC2 Ash Disposal Area Run-on and Run-off Control System Plan NC2 Ash Disposal Area Run-on and Run-off Control System Plan Omaha Public Power District Nebraska City Station Nebraska City, Nebraska October 17, 2016 OPPD NC2 Ash Disposal Area Run-On and Run-Off Control

More information