20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

Size: px
Start display at page:

Download "20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile"

Transcription

1 Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators Turbine generators Condensers NCG gas removal systems Cooling Towers 2 Simplified single-flash backpressure schematic Single flash power cycle 4 2 Separator Simplified single-flash condensing schematic TS - Diagram for steam 2 4 Separator CW

2 Single flash process- Working cycle One of the Design Objective To produce as much energy as possible from each kg geothermal fluid we extract from the geothermal reservoir Example: Let us assume that we know the reservoir enthalpy We know the condensing temperature, We need to estimate the separation temperature and pressure that gives us maximum energy 7 8 Backpressure, an alternative Example 9 10 Silica Solubility Silica Solubility

3 Basics for binary Power Plants Uses similar principle as conventional fossil or nuclear plants. Binary Power Plants Instead of water/steam the working fluid is Propane, i or n-butane, i or n Pentane, Ammonia or refrigerants with boiling point much lower than water at same pressure. Paratunka 1967, 670 kw First indirect plant in Larerello 1912, 250 kw with water/water cycle 13 Simple schematic and pressure-enthalpy diagram Various Cycles Hybrid, flash and Binary 16 Single flash + Binary 18 3

4 Single flow, top exhaust, impulse turbine Geothermal Steam Turbines 19 Types of steam turbines 20 Double flow, top exhaust reaction turbine Imulse turbine The turbine change the direction of flow of a high velocity steam jet. The resulting impulse spins the turbine and leaves the steam with diminished kinetic energy. There is no pressure change of the steam in the turbine moving blades. All the pressure drop takes place in the stationary blades. Reaction turbine These turbines develop torque by reacting to the steam pressure or mass. The pressure of the steam changes as it passes through the turbine rotor blades. The turbine must be fully immersed in the fluid flow (such as with wind turbines). The casing contains and directs the steam, maintains the suction imparted by the draft tube Single flow, multy pressure, top exhaust turbine The Condenser

5 Direct condenser Shell and Tube Condenser Non+condensable gases The Gas extraction systems In geothermal steam there will always be some traces of non condensable gases. The amount is usually in the range of 0-3% of the separated steam flow. In some cases up to 20% Since the gas in non-condensable this gas must be sucked out of the condensers, otherwise it will simply build up there, blocking the heat exchange between the cooling water and the steam There are several methods to remove the gases Methods of removing NCG Steam Ejector Steam ejectors, SE Two stages with intercondenser and sometimes and aftercondenser Liquid ring vacuum pumps, LRVP Hybrid systems One stages Steam ejector + LRVP Two stages Steam ejector + LRVP Compressors The pressure energy in the operating steam is converted into kinetic energy in the nozzle and this high velocity of the steam entrains the gas being pumped. The resulting mixture at the resulting velocity enters the diffuser where this velocity energy is converted to pressure energy so that the pressure of the mixture at the ejector discharge is substantially higher than the pressure in the suction chamber but lower than the pressure of the motive steam

6 Steam Ejector Velocity and Pressure Liquid Ring Vacuum Pump The compression is performed by a rotating ring of liquid, usually water, as the impeller rotates in eccentric position relative to the pump casing, the sealing liquid flows against the casing by the centrifugal force and the sealing liquid circulating flow is made, as the impeller is in an eccentric position a decreasing cavity is produced inside the pump. This cavity becomes smaller since the inside face of sealing liquid circulating flow gradually approaches the discharge port and compresses the gas in the inside Compressor Two stage Steam Ejector Hybrid, Steam ejector + LRVP Two stage ejector system

7 Air leakage and dissolved air in cooling water Estimated air leakage into the low pressure part Flanges Seals Due to sub-atmospheric pressure in condensers Dissolved air in cooling water Cooling Must be taken into account if the condenser is cooled directly Cooling Cooling tower Rivers, lakes or seawater Cooling with air Cooling tower Traditionally used for a flash cycle Air Cooler Often used for binary cycle Cooling tower Schematic Unit 6 - Cooling Tower and CW-Pumps Schematic drawing of a wet cooling tower

8 Reykjanes Power Plant Example Reykjanes Power Plant Reykjanes 50 MW Single flash - 3 units Reykjanes - Steam separator station Reykjanes - Brine exhaust silencers Reykjanes - 50 MW steam turbine Double flow Double exhaust Cross over Duct CW In/out Condenser Generator Control valve Steam strainer Main stop valve Steam traps and drain pipes

9 Reykjanes - Sea water cooling Example Svartsengi Power Plant Why construct a power plant so close to the pool? Svartsengi - Overview Blue Lagoon Medical Clinic Cosmetics Production Power Plant High Pressure dry steam area, Steam Cap Re-injection pipeline Water dominated area Svartsengi - Formation of the steam cap Svartsengi - Steam cap area and collecting pipes Geothermal well Steam cap

10 Svartsengi Resource Park - Schematic Svartsengi Power Plant (2009) Svartsengi, Unit 5 - Turbine / Generator Svartsengi, Unit 5 - Condenser Svartsengi, Unit 5 - Water heaters Svartsengi, Unit 5 - Gas Removal system

11 Svartsengi, Unit 5 - Cooling Tower Svartsengi, Unit 6. T/G - Moisture removal vessels Svartsengi, Unit 6- Piping Svartsengi, Unit 6 - Condenser Cross Over Duct MP Outlet LP Inlet MP Inlet HP control valve HP main stop valve HP steam strainer Oil Unit HP=High pressure, 16 bara MP=Medium press. 6,5-6,7 bara LP=Low pressure, 1,2 bara Svartsengi, Unit 6 - Condenser Unit 6 - Cooling Tower and CW-Pumps Cross Over Duct NCG Extraction Condenser dome VAC tank connection Drain from ejector syst. CW Outlet CW from aux systems CW Inlet

12 Unit 6, Cooling Tower - Winter conditions Example - Binary Power Plant Binary Power Plant - Azores Sao Miguel Azores - Pico Vermelho Plant Pico Vermehlo - 10 MW PFD 10 MW binary Power Plant - Plan View

13 Typical well pad Well head and safety equipment Safety valve with a rupture disk assembly on upstream side Well head, steam separator, brine tank, rock muffler and gathering pipelines Well head, master valve and branch valve Separator and brine tank Typical well pad Brine tank and brine pups Vertical steam separator Well head, steam separator, brine tank, rock muffler and gathering pipelines Brine pumps Condensers, vaporizer and preheaters

14 Turbine (s) and generator Reinjection pumps

GEOTHERMAL POWER PLANTS FOR MEDIUM AND HIGH TEMPERATURE STEAM AND AN OVERVIEW OF WELLHEAD POWER PLANTS

GEOTHERMAL POWER PLANTS FOR MEDIUM AND HIGH TEMPERATURE STEAM AND AN OVERVIEW OF WELLHEAD POWER PLANTS Presented at SDG Short Course II on Exploration and Development of Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 9-29, 2017. Kenya Electricity

More information

Geothermal Steam Turbines for Various Purposes

Geothermal Steam Turbines for Various Purposes Geothermal Steam Turbines for Various Purposes Shigeto Yamada 1. Introduction Geothermal power generation was first experimentally developed in Italy in 1904, and commercial power generation also commenced

More information

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature.

C. heating turbine exhaust steam above its saturation temperature. D. cooling turbine exhaust steam below its saturation temperature. P74 (B2277) Condensate depression is the process of... A. removing condensate from turbine exhaust steam. B. spraying condensate into turbine exhaust steam. C. heating turbine exhaust steam above its saturation

More information

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic

More information

31.3 GEOTHERMAL CYCLES

31.3 GEOTHERMAL CYCLES FIGURE..9 screen. GEOTHERMAL CYCLES Geothermal energy comes from the gradual temperature increase as one penetrates deeper into the earth s crust, either because of the natural gradient ( C/00 m, with

More information

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV)

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV) ME 215 Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY Mechanical Engineering Department Open Systems-Control Volumes (CV) A CV may have fixed size and shape or moving boundaries Open

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Ç engel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Objectives Develop the conservation

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Appendix B. Glossary of Steam Turbine Terms

Appendix B. Glossary of Steam Turbine Terms Operator s Guide to General Purpose Steam Turbines: An Overview of Operating Principles, Construction, Best Practices, and Troubleshooting. Robert X. Perez and David W. Lawhon. 2016 Scrivener Publishing

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies,

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Mehmet Kanoglu University of

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

GEOFAR : Innovative geothermal technologies Last modifications: BINARY PLANTS

GEOFAR : Innovative geothermal technologies Last modifications: BINARY PLANTS BINARY PLANTS GENERAL PRESENTATION Context Geothermal resources vary in temperature from app. 50 C to 350 C. With dry steam or flash steam plants an economical exploitation of the geothermal resource for

More information

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES SUMMARY 1 CONSERVATION OF MASS Conservation

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Power Recovery in LNG Regasification Plants

Power Recovery in LNG Regasification Plants Power Recovery in LNG Regasification Plants Harry K. Clever Director of Sales hclever@ebaraintl.com Hans E. Kimmel Executive Director R&D hkimmel@ebaraintl.com Ebara International Corporation Sparks, Nevada,

More information

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering Time: 3 Hrs. Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following. [10] Q.1(a) Explain difference between Thermodynamic

More information

Turbo Machines Pumps and Turbines ME 268

Turbo Machines Pumps and Turbines ME 268 Turbo Machines Pumps and Turbines ME 268 Turbo Machines Turbo machines are dynamic fluid machines that either extract energy from a fluid (turbine) or add energy to a fluid (pump) as a result of dynamic

More information

Guidance page for practical work electricity production from geothermal energy

Guidance page for practical work electricity production from geothermal energy Guidance page for practical work electricity production from geothermal energy 1) Objectives of the practical work The project objective is to study the operation of power plants using geothermal energy

More information

Turboden, a Presentation of Recent Worldwide Developments and the Latest Technical Solutions for Large-Scale Geothermal ORC Power-Plants

Turboden, a Presentation of Recent Worldwide Developments and the Latest Technical Solutions for Large-Scale Geothermal ORC Power-Plants GRC Transactions, Vol. 39, 2015 Turboden, a Presentation of Recent Worldwide Developments and the Latest Technical Solutions for Large-Scale Geothermal ORC Power-Plants Joseph Bonafin 1, Clotilde Rossi

More information

WELLHEAD POWER PLANTS

WELLHEAD POWER PLANTS Installed power [GWe] Proceedings, 6 th African Rift Geothermal Conference Addis Ababa, Ethiopia, 2 nd 4 th November 2016 WELLHEAD POWER PLANTS Yngvi Gudmundsson, Elin Hallgrimsdottir Verkís, Mannvit,

More information

Optimization of NCG System Lineups

Optimization of NCG System Lineups GRC Transactions, Vol. 38, 2014 Optimization of NCG System Lineups Matthew Fishman 1 and William Harvey 2 1 POWER Engineers 2 Reykjavik University Keywords Ejectors, hybrid, non-condensable gas, optimization,

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING COURSE COURSE 134 1 - Level 3 - Equipment & System Principles 4 - TURBINE, GENERATOR & AUXILIARIES Index 134.00-0 Objectives

More information

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017

STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 STEAM TURBINE-GENERATOR & AUXILLIARY SYSTEMS Presentation by: RANA NASIR ALI General Manager, Power Plants Projects, at PITCO November 02, 2017 CO-GENERTATION POWER PLANT CONCEPT For dimensioning, design

More information

Steam balance optimisation strategies

Steam balance optimisation strategies Steam balance optimisation strategies Publicado en Chemical Engineering, Noviembre 2002 Background Optimising a steam balance in a plant with several steam mains pressures is not always a simple intuitive

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY ES 202 - Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY Objective The objective of this laboratory experience is to demonstrate how mechanical power can be generated using a steam turbine

More information

Steam Power Station (Thermal Station)

Steam Power Station (Thermal Station) Steam Power Station (Thermal Station) A generating station which converts heat energy into electrical energy through turning water into heated steam is known as a steam power station. A steam power station

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

Power Engineering II. Technological circuits of thermal power plants

Power Engineering II. Technological circuits of thermal power plants Technological circuits of thermal power plants Lay out scheme of coal power plant climatetechwiki.com Technological circuits 2 Coal and ash circuit Air and gas circuit Feed water and steam circuit Cooling

More information

GEOTHERMAL POWER PLANTS: OPERATION AND MAINTENANCE

GEOTHERMAL POWER PLANTS: OPERATION AND MAINTENANCE Presented at SDG Short Course II on Exploration and Development of Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 9-29, 2017. Kenya Electricity

More information

Recent Technology of Geothermal Steam Turbines

Recent Technology of Geothermal Steam Turbines Recent Technology of Geothermal Steam Turbines Yoshifumi Kato 1. Introduction The cumulative capacity of geothermal power plants constructed worldwide has reached 7,974MW, which is a 16.6% increase in

More information

Rotokawa geothermal combined-cycle power plant

Rotokawa geothermal combined-cycle power plant Bulletin d'hydrogiologie No I7 (1999) Centre d'hydrogiologie, Universid de Neuchritel EDITIONS PETER LANG Rotokawa geothermal combined-cycle power plant by Hilel Legmann Ormat Industries, Ltd., P.O. Box

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

Example SPC-2: Effect of Increasing Column P on a C3 splitter

Example SPC-2: Effect of Increasing Column P on a C3 splitter Example SPC-2: Effect of Increasing Column P on a C3 splitter Consider the separation of a mixture of 50 mol/hr of propane C 3 H 8 (1) and 50 mol/hr propene, C 3 H 6 (2) at a pressure of 1.1 bar and a

More information

Engr. Adnan Qamar Lecturer Energy Resources

Engr. Adnan Qamar Lecturer Energy Resources Engr. Adnan Qamar Lecturer engr.adnan.pk@gmail.com Energy Resources Geothermal Energy Definition: geothermal energy is the thermal energy stored in the earth s crust. 'Geothermal energy' is often used

More information

SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS

SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS SIMPACK - MODEL DEVELOPMENT PACKAGE FOR POWER PLANTS 1.0 OVERVIEW SIMPACK is a totally integrated set of simulation software development modules for power plants. It is template based modeling tool and

More information

GEOTHERMAL BINARY CYCLE POWER PLANTS PRINCIPLES, OPERATION AND MAINTENANCE: A CASE STUDY FROM EL SALVADOR

GEOTHERMAL BINARY CYCLE POWER PLANTS PRINCIPLES, OPERATION AND MAINTENANCE: A CASE STUDY FROM EL SALVADOR Presented at Short Course VI on Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, March 23-29,

More information

Russian Geothermal Power Plants Equipped with ORC-units

Russian Geothermal Power Plants Equipped with ORC-units Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Russian Geothermal Power Plants Equipped with ORC-units Alexander I. Nikolskiy, Andrey A. Shipkov, Valery N. Semenov, Grigory

More information

Geothermal Power Plant

Geothermal Power Plant Geothermal Power Plant Star Energy Geothermal (Wayang Windu) Ltd., Indonesia Wayang Windu Geothermal Power Plant 1 110MW and 1 117MW 01A3-E-0020 14 Outline Wayang Windu Geothermal Power Plant is located

More information

SUMMER 13 EXAMINATION

SUMMER 13 EXAMINATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

A Study and Analyze of an Ejector in Steam Power Plant

A Study and Analyze of an Ejector in Steam Power Plant Volume-4, Issue-3, June-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Available at: www.ijemr.net Page Number: 195-199 A Study and Analyze of an Ejector in Steam

More information

Alpha College of Engineering

Alpha College of Engineering Alpha College of Engineering Department of Mechanical Engineering TURBO MACHINE (10ME56) QUESTION BANK PART-A UNIT-1 1. Define a turbomahcine. Write a schematic diagram showing principal parts of a turbo

More information

THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE

THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE 2 New Zealand Workshop THE GEOTHERMAL POWER PLANT AT SANJACINTO-TIZATE 'Geoterm SC, Moscow, 111250Russia SC Kaluga Turbine Plant KTZ), Kaluga, Russia 2 The Nicaraguan-Russian held company INTERGEOTERM

More information

Experimental investigation of solar-driven double ejector refrigeration system

Experimental investigation of solar-driven double ejector refrigeration system Experimental investigation of solar-driven double ejector refrigeration system Jedsada Visedmanee a *, Anan Pongtornkulpanich a, Sakda Somkun a and Ananchai U-kaew b a Thermal Energy Research Unit, School

More information

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies

PEMP RMD & Cycle Performance. M.S.Ramaiah School of Advanced Studies Steam Se Turbine ub ecyces Cycles & Cycle Performance Session delivered by: Prof. Q.H. Nagpurwala 1 Session Objectives This session is intended to discuss the following: Basic construction and classification

More information

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases.

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. P77 Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

More information

Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator

Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator Khairy Agha,, Khalid Al Fared, Ali Rashed, and Salem Ghurbal Simulation Group,

More information

INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155

INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155 INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155 Authors: Rafael Peiró Ripoll, Foster Wheeler Iberia, S.A., Spain Joaquín Gil Abad, Foster Wheeler

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

Geothermal Power Plant

Geothermal Power Plant Geothermal Power Plant The Tokyo Electric Power Co., Inc., Japan Hachijo-jima Geothermal Power Plant 3,300kW 0A3-E-009 Outline All equipment and system except for the civil work and geothermal wells were

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

RMIT University. Presentation at IIT Madras

RMIT University. Presentation at IIT Madras RMIT University RMIT is a global university of technology and design and Australia's largest tertiary institution. The University enjoys an international reputation for excellence in practical education

More information

Organic Rankine Cycle Configurations

Organic Rankine Cycle Configurations Proceedings European Geothermal Congress 2007 Unterhaching, Germany, 30 May-1 June 2007 Organic Rankine Cycle Configurations Uri Kaplan Ormat Technologies, Inc., 6225 Neil Road, Suite 300 - Reno, NV 89511-1136,

More information

Chapter-2 LITERATURE REVIEW. A brief review of previous and ongoing research investigations on thermal

Chapter-2 LITERATURE REVIEW. A brief review of previous and ongoing research investigations on thermal Chapter-2 LITERATURE REVIEW A brief review of previous and ongoing research investigations on thermal desalination processes is presented in this chapter. The chapter begins with the introduction of the

More information

Department of Mechanical Engineering. MSc/PGDip/PGCert in Energy Systems and the Environment. Specialist Modules

Department of Mechanical Engineering. MSc/PGDip/PGCert in Energy Systems and the Environment. Specialist Modules Department of Mechanical Engineering MSc/PGDip/PGCert in Energy Systems and the Environment Specialist Modules Wednesday 17 January 2007 2.00pm 5.00pm (3 hours) Full-time MSc/PGDip/PGCert students should

More information

1. The Energy Content of Fuels

1. The Energy Content of Fuels Heat Engines 1. The Energy Content of Fuels How heat is derived from fuels? For example, we may consider the burning process for heptane, C 7 H 16, colorless liquid constituent of gasoline. C 7 H 16 +

More information

THERMAL AND HYDRAULIC MACHINES UNIT 2

THERMAL AND HYDRAULIC MACHINES UNIT 2 THERMAL AND HYDRAULIC MACHINES UNIT 2 A steam turbine is a device that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation

More information

Agenda. Two Examples from Sports. Olympic Gold Medal Winners in High Jump. CII Sohrabji Godrej Green Business Centre, Hyderabad. Energy Conservation

Agenda. Two Examples from Sports. Olympic Gold Medal Winners in High Jump. CII Sohrabji Godrej Green Business Centre, Hyderabad. Energy Conservation Energy Conservation CII Sohrabji Godrej Green Business Centre, Hyderabad A unique Public Private Partnership ( CII, Govt of Andhra Pradesh, USAID and Pirojsha Godrej Foundation ) Opportunities in Boilers

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

Reading Problems , 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74

Reading Problems , 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Rankine Cycle Reading Problems 11.1 11.7 11.29, 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Definitions working fluid is alternately vaporized and condensed as it recirculates in a closed cycle the

More information

SJT Steam Jet Thermocompressor

SJT Steam Jet Thermocompressor SJT Steam Jet Thermocompressor Description Jet Compressors can be utilized in a number of applications for steam circulation and increasing lower pressures to be functional. Jet Compressors are generally

More information

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine?

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Dr Frédéric Marcuccilli, Senior Process Engineer Hervé Mathiasin, Sales Engineer Electricity generation from Enhanced Geothermal

More information

Download From:

Download From: Fluid Mechanics 1. A single acting reciprocating pump, running at 60 r.p.m, delivers 0.01 m2/sec of water. The area of the piston is0.05m2 and stroke length is 40 cm. Then theoretical discharge of the

More information

GEOTHERMAL SPACE COOLING

GEOTHERMAL SPACE COOLING GEOTHERMAL SPACE COOLING 6th African Rift Geothermal Conference ARGeo-C6 Short Course 1 Project Management for Geothermal Development Þorleikur Jóhannesson (Presenter: Yngvi Guðmundsson) Compressor driven

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS PRINCIPLES: THERMODYNAMICS & ENERGY BALANCES 1 Copyright 2018. All rights reserved. How to use this book The exam specifications in effect

More information

UNIT 5 HYDRAULIC MACHINES. Lecture-01

UNIT 5 HYDRAULIC MACHINES. Lecture-01 1 UNIT 5 HYDRAULIC MACHINES Lecture-01 Turbines Hydraulic machines which convert hydraulic energy into mechanical energy. This mechanical energy is used to run electric generator which is directly coupled

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics Content Heat engine and its efficiency. Reversible and irreversible processes. The Carnot machine. Kelvin Planck Statement. Refrigerator and Coefficient of Performance. Statement

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR310303 Set No. 1 III B.Tech I Semester Regular Examinations, November 2006 THERMAL ENGINEERING-II (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment

Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment Recent Rehabilitation Technology for Aging Thermal Power Generation Equipment Satoru Imaichi Mitsuhiro Uemura Yutaka Tamaya 1. Introduction Having successfully delivered many power generating plants both

More information

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki)

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki) Chapter 5 1. Hydraulic Pumps (pp. 47 90, Gorla & Khan; Wiki) 1. Two Basic Categories of Pumps Positive Displacement (PD) Pumps A positive displacement pump causes a fluid to move by trapping a fixed amount

More information

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling A. Mortazavi 1, P. Rodgers 2, S. Al-Hashimi 2, Y. Hwang 1 and R. Radermacher 1 1 Department of Mechanical Engineering, University

More information

RRB TECHNICAL EXAM QUESTIONS

RRB TECHNICAL EXAM QUESTIONS RRB TECHNICAL EXAM QUESTIONS Fluid Mechanics 1. A single acting reciprocating pump, running at 60 r.p.m, delivers 0.01 m2/sec of water. The area of the piston is0.05m2 and stroke length is 40 cm. Then

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine. P77 Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

More information

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM 1. Answer the following by circling the BEST answer. 1) The boundary work associated with a constant volume process is always

More information

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site

HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to Your Division s GradeScope Site HW-1: Due Tuesday 13 Jun 2017 by 2:00:00 pm EDT to A residential ceiling fan is shown in the photograph below. It consists of an electric motor, the fan blades, and the light. Sketch each of these three

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Elias

More information

Tracer Dilution Measurements for Two-Phase Geothermal Production: Comparative Testing and Operating Experience

Tracer Dilution Measurements for Two-Phase Geothermal Production: Comparative Testing and Operating Experience Hirtz and. Tracer Dilution Measurements for Two-Phase Geothermal Production: Comparative Testing and Operating Experience Paul Hirtz, Thermochem, Inc. Jim Lovekin, California Energy Company, Inc. Key Words:

More information

2. TECHNICAL DESCRIPTION OF THE PROJECT

2. TECHNICAL DESCRIPTION OF THE PROJECT 2. TECHNICAL DESCRIPTION OF THE PROJECT 2.1. What is a Combined Cycle Gas Turbine (CCGT) Plant? A CCGT power plant uses a cycle configuration of gas turbines, heat recovery steam generators (HRSGs) and

More information

Waste Heat Recovery Research at the Idaho National Laboratory

Waste Heat Recovery Research at the Idaho National Laboratory Waste Heat Recovery Research at the Idaho National Laboratory www.inl.gov Donna Post Guillen, PhD, PE Technology Forum: Low Temperature Waste Energy Recovery in Chemical Plants and Refineries, Houston,

More information

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature International Journal of Technology Enhancements and Emerging Engineering Research, VOL 1, ISSUE 1 20 Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature V. Gopinath 1, G. Navaneethakrishnan

More information

ME 6701 POWER PLANT ENGINEERING -DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

ME 6701 POWER PLANT ENGINEERING -DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318753065 ME 6701 POWER PLANT ENGINEERING -DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

ANALYSIS OF OPERATION OF THE CONDENSER IN A 120 MW THERMAL POWER PLANT

ANALYSIS OF OPERATION OF THE CONDENSER IN A 120 MW THERMAL POWER PLANT Milić, S., et al.: Analysis of Operation of the Condenser in a 120 MW THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 735-746 735 ANALYSIS OF OPERATION OF THE CONDENSER IN A 120 MW THERMAL POWER PLANT

More information

Large scale hydrogen liquefaction in combination with LNG re-gasification

Large scale hydrogen liquefaction in combination with LNG re-gasification Large scale hydrogen liquefaction in combination with LNG re-gasification Andres Kuendig a, Karl Loehlein a, Gert Jan Kramer b, Joep Huijsmans c a Linde Kryotechnik AG, Daettlikonerstrasse 5, 8422 Pfungen,

More information

Permanent City Research Online URL:

Permanent City Research Online URL: Read, M. G., Smith, I. K. & Stosic, N. (2015). Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders. Paper presented at the 3rd International Seminar on ORC

More information

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III 3. 1 CONTENTS 3.1 Flow of steam through nozzles: 3.2 Continuity and steady flow energy equations 3.3 Types of Nozzles

More information

Suction and compression of gas

Suction and compression of gas AIR JET VACUUM EJECTOR FOR LIQUID RING VACUUM PUMPS Suction and compression of gas Ejector in AISI 316 In spite of other gas ejectors, air jet vacuum ejectors for liquid ring vacuum pump use atmospheric

More information

Magma On the other hand, molten rock is under active volcanoes at accessible depths. The temperatures excess 650 o C.

Magma On the other hand, molten rock is under active volcanoes at accessible depths. The temperatures excess 650 o C. Geothermal Energy Geothermal energy is energy from the earth. It lies deep within the Earth. The respective available annual energy globally is 996,000 PJ/year (PJ=petajoule=10 15 J). Currently, especially

More information

OPTIMIZATION OF ELECTRICAL POWER PRODUCTION FROM HIGH-TEMPERATURE GEOTHERMAL FIELDS WITH RESPECT TO SILICA SCALING PROBLEMS

OPTIMIZATION OF ELECTRICAL POWER PRODUCTION FROM HIGH-TEMPERATURE GEOTHERMAL FIELDS WITH RESPECT TO SILICA SCALING PROBLEMS GEOTHERMAL TRAINING PROGRAMME Reports 211 Orkustofnun, Grensásvegur 9, Number 2 IS-18 Reykjavík, Iceland OPTIMIZATION OF ELECTRICAL POWER PRODUCTION FROM HIGH-TEMPERATURE GEOTHERMAL FIELDS WITH RESPECT

More information