Coal based IGCC technology

Size: px
Start display at page:

Download "Coal based IGCC technology"

Transcription

1 Coal based IGCC technology Ola Maurstad, post doc Based on work during stay at Massachusetts Institute of Technology

2 Gasification Gasification is the conversion of a solid fuel to a combustible syngas (CO+H 2 ) Gasification enables Coal to run gas turbines Fuel gas clean up Pre-combustion CO 2 capture Gasification is not a new technology 2

3 Main features of the 3 gasifier types Gasifier type Moving bed Fluidized bed Entrained flow Outlet temperature Low ( C) Moderate ( C) High ( C) Oxidant demand Low Moderate High Ash conditions Dry ash or slagging Dry ash or Slagging agglomerating Size of coal feed 6-50 mm 6-10 mm < 100 µm Acceptability of fines Limited Good Unlimited Other characteristics Methane, tars and oils present in syngas Low carbon conversion Pure syngas, high carbon conversion 3

4 Moving bed gasifier Fluidized bed gasifier Focus of commercial gasifier technology providers: Entrained flow slagging gasifier 4

5 Entrained flow slagging gasifiers Outlet syngas temperature: C Slagging: Ash is a low viscosity liquid Pure gas High carbon conversion Can handle any coal type (technical perspective) Coal is ground to < 100 microns particles Particle residence time: a few seconds 5

6 Maturity of gasifiers 3 major classes Moving bed Fluidized bed Entrained flow Key modern gasifiers are of the entrained flow type: GE (formerly Texaco) Shell ConocoPhilips: E-gas process (formerly Destec) The moving bed type The Lurgi dry ash gasifier (Sasol-Lurgi) Fluidized bed type gasifiers less developed Not fully commercialized 6

7 GE Shell ConocoPhillips 70 bar 39 bar Flow direction is really upwards?! ~35 bar Source: 7

8 Integrated Gasification Combined Cycle (IGCC) What is an IGCC? A combined cycle (CC) power plant with a gasifier in front of it to provide the gaseous fuel Gasification Converts coal to syngas (CO+H 2 ) Combined cycle Converts the syngas to electricity Consists of Gas turbine Steam cycle (HRSG & steam turbine) 8

9 Integrated gasification combined cycle (IGCC) without CO 2 capture Gasification Quench water Heat Hot raw syngas Coal feed Water quench or heat recov. Gasifier ~1500 C ~300 C Particulate removal ~40 C Sulfur removal H 2 S Depending on process configuration Steam turbine Combined cycle O 2 Clean syngas Hot steam Feed water N 2 ASU Air (15 atm) Gas turbine Exhaust ~600 C HRSG Flue gas ~120 C Air Air 9

10 Experience with coal based IGCCs Demonstration plants with government support Project participant/ Plant name Southern California Edison/ Cool Water Dow (Destec)/LGTI Nuon/ Nuon Power Buggenum Destec and PSI Energy/ Wabash River Tampa Electric Company/ Polk Power Station Elcogas/ Puertollano Sierra Pacific Power Company/Pinon Pine Location Barstow, CA Plaquemine, LA Buggenum, The Netherlands West Terre Haute, IN Mulberry, FL Puertollano, Spain Reno, NV Electric output (net) 100 MW 160 MW Gasifier type (current owner) GE with heat recovery ConocoPhillips E-gas 253 MW Shell 262 MW 250 MW ConocoPhillips E-gas GE with heat recovery 298 MW Prenflo 99 MW KRW air blown fluidized bed Gas turbine Dates of operation GE 7E Siemens SGT6-3000E Siemens SGT5-2000E GE 7FA GE 7 FA Siemens SGT5-4000F GE 6FA present present present present (18 start-up attempts, failed to achieve steady state operation) 10

11 Availability of IGCC demos 90.0% 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% Nuon Availability Wabash Availability TECO Availability Elcogas Availability Cool Water Availability LGTI Syngas Availability 20.0% 10.0% 0.0% 1st year 2nd year 3rd year 4th year 5th year 6th year 7th year 8th year 9th year 10th year 11th year 11

12 Increasing commercial interest in IGCC Several alliances formed in 2004 aiming to provide IGCC customers one stop shopping (buy the package instead of the pieces..) GE & Bechtel. GE purchased the Texaco gasifier from ChevronTexaco ConocoPhillips & Fluor Shell, Uhde and Black & Veatch Main challenges are to demonstrate competitiveness towards pulverized coal (PC) plants in the market Capital cost Availability 12

13 IGCC with CO 2 capture Quench water Heat Particulate removal ~300 C Water quench or heat recov. Shift CO+H 2 O =CO 2 +H 2 ~40 C Sulfur removal Steam H 2 S New blocks added for CO 2 capture Depending on process configuration Hot raw syngas ~1500 C ~40 C Coal feed Gasifier CO 2 capture CO 2 Steam turbine O 2 H 2 rich fuel Hot steam Feed water N 2 ASU Air Air (15 atm) Gas turbine Air Exhaust ~600 C HRSG Steam extraction to shift reaction Flue gas ~120 C 13

14 Sequence of gas clean up, shift and capture: Syngas from gasifier Candle filters ( C) Water scrubber Shift (if capture, 500 C & 200 C) Water gas shift reaction: CO + H 2 O => H 2 + CO 2 Simultaneous hydrolysis Exothermic, heat is released => chemical energy lost Demands steam from steam cycle => electricity lost Hydrolysis (if no capture, 180 C) COS + H 2 O => H 2 S + CO 2 Needed because sulfur removal is more effective for H 2 S Negligible impact on energy balance (due to ppm level) Sulfur removal Acid gas removal (AGR), 40 C: MDEA, Selexol Sulfur recovery unit (SRU): Claus plant, production of solid sulfur Tail gas treatment (TGT): E.g. SCOT, treatment of exit stream from SRU CO 2 capture, 40 C: MDEA, Selexol Shift (sour) Candle filter Scrubber Sulfur removal CO 2 capture Syngas to gas turbine Hydrolysis 14

15 Sulfur removal configurations NETL/MIT simulation: Air blown SRU Absorption process in TGT Recycle of concentrated H 2 S to SRU Higman, 2003 (Gasification text book), also IEA, 2003: Oxygen blown SRU No absorption process in TGT, only conversion of sulfur compounds to H 2 S Recycle of dilute H 2 S to AGR Elimination of emission stream from TGT Raw syngas AGR Clean syngas Raw syngas AGR Clean syngas H 2 S H 2 S Air SRU Solid sulfur Oxygen/Air SRU (Single stage Claus ) Solid sulfur Tail gas Tail gas Recycle of H 2 S TGT To incinerator Recycle of tail gas with H 2 S Hydrogenation/ Quench AGR Acid gas removal, SRU Sulfur recovery unit, TGT Tail gas treatment 15

16 Gas turbines & syngas/h 2 The new 9H turbine (50Hz) ready for testing in Baglan bay, UK. CC output: 480 MW Eff. 60 % LHV Source: GE Major large gas turbines in the 60 Hz market General Electric: 7FA*, 7FB, (7H) Siemens**: SGT6-5000F (W501F), SGT6-6000G (W501G) Mitsubishi: 501F, 501G Electric output per gas turbine 200 MW (+/-) Letters E,F,G,H in the order of higher efficiency * Used in Tampa and Wabash IGCC demonstrations, ** Siemens has in 2004 implemented a unified nomenclature 16

17 Increased turbine mass flow Fuel Gas turbine = compressor + combustor + turbine Compressor air Hot exhaust Because the heating value of syngas is lower, a higher mass flow rate of fuel is added to the turbine Potential increase in power (GE 7FA: From 172 to 192 MW, +12 %) Two ways to get more mass flow through the turbine: Decreased firing temperature (reduces CC efficiency) Higher pressure ratio (preferred) Higher pressure ratio requires sufficient compressor surge margin Alternatively (if no margin), bleed air from compressor outlet to ASU Gas turbine torque limit can be limiting 17

18 Integration of ASU and GT Fuel Nitrogen from ASU Air bleed to ASU Hot exhaust Compressor air Degree of integration Percentage of air needed in ASU which is bled from the GT compressor outlet A range from 0 % to 100 % is possible No integration (0 %): availability (+), efficiency (-) Full integration (100 %): availability (-), efficiency (+) Optimal trade-off*: 25 % - 35 % * Neville Holt, Turbomachinery International, May/June

19 IGCC turbines Modern gas turbines use combustors where fuel and air is premixed to reduce flame temperatures and therefore NO x formation (dry low NO x burners) Turbines in IGCC plants: Diffusion burners instead of DLN (avoiding the danger of flashback) Dilution with nitrogen and/or steam necessary, nitrogen preferred 19

20 Reduced GT firing temperature Increased % of H 2 O in the exhaust Leads to higher heat transfer Reduction of firing temperature (TIT) necessary to maintain material lifetime In order of increasing trouble: Natural gas Syngas from IGCC H 2 rich syngas from IGCC with CO 2 capture For same reason, N 2 dilution preferred over steam injection Compressor air ~15 C ~400 C Fuel ~1300 C Hot exhaust ~600 C What determines the gas turbine firing temperature / turbine inlet temperature (TIT)? Ans: The fuel supply in MW or btu/hour Graphics source: GE 20

21 Steam cycles Purpose: Utilize gas turbine exhaust and other heat sources to produce electricity Consists of HRSG (next slide) + steam turbine State-of-the-art cycle for CC 3 pressure level steam generation with reheat Steam parameters The three subcritical pressure levels (optimized in each case?) Superheat: Typical 540 C (Maximum 565 C) Reheat: Typical 540 C 21

22 HRSG = A big heat exchanger Cold stack gas, C Heat recovery steam generator Produces steam from the hot gas turbine exhaust Hot exhaust from gas turbine, 600 C 22

23 HRSG Construction of 100 MW CC plant by Kinder Morgan, Midland, Texas, 2004 (My photo). Left: HRSG Right: Inlet air filter above GE LM6000 gas turbine Evaporators (boilers): production of steam Economizers: Increasing the temperature of liquid water Superheaters: Increasing the temperature of steam (water vapor) May be integrated with IGCC syngas coolers. Steam is superheated in HRSG. Suppliers: Vogt-NEM, Nooter-Eriksen, Foster Wheeler, Aalborg Industries, and Deltak Source: GE 23

24 Air separation units (ASUs) Cryogenic air separation: A process in which air is separated into component gases by distillation at low temperatures Lowest cost alternative for large scale applications Single train production capacity (O 2 ): 3200 t/d Recognized for high reliability For IGCC, probably O 2 storage only for a few hours operation Major suppliers Air Products Air Liquide BOC Gases Praxair Linde Source: Air Products t/d 24

25 IGCC efficiency While natural gas based CCs have efficiencies (LHV) close to 60 %, coal based IGCCs have lower efficiencies (below 45 % for the same technology level) Main reason is the gasification step where part of the chemical energy in the coal (about 20-30%) is converted to heat This heat is less efficiently converted to electricity than the chemical energy in the produced syngas Another factor is the work required for air separation IGCCs have no clear efficiency benefit compared to supercritical pulverized coal plants 25

26 IGCC improvement potential Advances in several areas can potentially improve the performance of future IGCC plants Gasifiers Dry feed gasifier with two stages Refractory and feed injector lifetime Coal feed and slag removal systems Air separation Oxygen separating membranes (ionic transport membranes) Gas turbines Higher firing temperatures Novel cycles including high temperature fuel cells 26

27 According to a study*, a year 2020 IGCC plant could be 49 % (LHV) efficient without capture and 43 % efficient with capture Without CO 2 capture With CO 2 capture GE Shell 2020 plant GE Shell 2020 plant Efficiency (%,LHV) Capital cost ($/kw) For the year 2020 plant, the study* assumed Bituminous coal A two-stage dry feed gasifier A gas turbine more advanced than H-class Supercritical steam cycle Membrane air separation * IEA GHG report PH4/19, 2003 (by Foster Wheeler) 27

28 IGCC issues Effect of coal quality Most studies on bituminous coal (high rank) Degree of integration (% of ASU air from GT) US demos: 0 % European demos 100 % Future plants: % (probably) Gas clean up (sulfur and CO 2 ) 2-stage Selexol, physical absorption seems to be preferred Co-capture of sulfur and CO 2 acceptable? Gas turbines on hydrogen rich fuels 28

29 IGCC Concluding remarks Several IGCC plants have been demonstrated, all with government support, private companies are now working to commercialize the technology IGCC challenges Demonstrate competitive capital cost and availability IGCC benefits (over pulverized coal plants) Lower environmental impact, probably easier permitting Lower cost option if CO 2 capture (greenfield & retrofit) Capture of CO 2 introduces some minor technical challenges related to gas turbines on hydrogen rich fuels For low rank coals such as lignite, less information on IGCC performance is available 29

30 Thank you! 30

2.0. IGCC TECHNOLOGY AND OPERATING EXPERIENCE

2.0. IGCC TECHNOLOGY AND OPERATING EXPERIENCE 2.0. IGCC TECHNOLOGY AND OPERATING EXPERIENCE IGCC is a power generation process that integrates a gasification system with a combustion turbine combined cycle power block. The gasification system converts

More information

Pre-Combustion Technology for Coal-fired Power Plants

Pre-Combustion Technology for Coal-fired Power Plants Pre-Combustion Technology for Coal-fired Power Plants Thomas F. Edgar University of Texas-Austin IEAGHG International CCS Summer School July, 2014 1 Introduction 2 CO 2 Absorption/Stripping of Power Plant

More information

COAL POWER PLANTS WITH CO 2 CAPTURE: THE IGCC OPTION

COAL POWER PLANTS WITH CO 2 CAPTURE: THE IGCC OPTION COAL POWER PLANTS WITH CO 2 CAPTURE: THE IGCC OPTION J. Davison IEA Greenhouse Gas R&D Programme L. Bressan - R.M. Domenichini - Foster Wheeler Italiana ABSTRACT One of the most promising technologies

More information

Thermodynamic performance of IGCC with oxycombustion

Thermodynamic performance of IGCC with oxycombustion Thermodynamic performance of IGCC with oxycombustion CO 2 capture G.Lozza, M. Romano, A. Giuffrida Dip. Energia, Politecnico di Milano, Italy Purpose of the study CO 2 capture from coal power plant. Configurations

More information

Coal based IGCC Plants - Recent Operating Experience and Lessons Learned

Coal based IGCC Plants - Recent Operating Experience and Lessons Learned Coal based IGCC Plants - Recent Operating Experience and Lessons Learned Neville Holt - EPRI Presented at the Gasification Technologies Conference Washington, DC October 4-6, 2004 IGCC Plant Information

More information

The Cost of Mercury Removal in an IGCC Plant

The Cost of Mercury Removal in an IGCC Plant The Cost of Mercury Removal in an IGCC Plant M.D. Rutkowski, M.G. Klett, R.C. Maxwell October 1, 2002 Washington, D.C. Acknowledgments Gary J. Stiegel James R. Longanbach David L. Denton U.S. DOE/NETL

More information

Coal Gasification. Sankar Bhattacharya. Energy Technology Collaboration Division International Energy Agency, Paris INTERNATIONAL ENERGY AGENCY

Coal Gasification. Sankar Bhattacharya. Energy Technology Collaboration Division International Energy Agency, Paris INTERNATIONAL ENERGY AGENCY Coal Gasification Sankar Bhattacharya Energy Technology Collaboration Division International Energy Agency, Paris International Seminar Brazilian Coal Association ABCM and International Energy Agency Brasilia,

More information

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute Pre-Investment of IGCC for CO 2 Capture with the Potential for Hydrogen Co-Production Gasification Technologies 2003 - San Francisco, California - October 12-15, 2003 Michael D. Rutkowski, PE Parsons Corporation

More information

Power Generation PG CTET-Han

Power Generation PG CTET-Han V94.2 Buggenum Experience and Improved Concepts for Syngas Applications F. Hannemann, U.Schiffers, J. Karg, Siemens AG Power Generation M. Kanaar, Nuon Power Generation PG CTET-Han Content Buggenum Plant

More information

GASIFICATION TECHNOLOGIES 2003

GASIFICATION TECHNOLOGIES 2003 S.Francisco, California October 12-15, 2003 GASIFICATION TECHNOLOGIES 2003 COAL POWER PLANTS WITH CO2 CAPTURE: THE IGCC OPTION J.Davison - IEA Greenhouse Gas R&D Programme L.Bressan - R.M.Domenichini -

More information

PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant

PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant IEA Greenhouse Gas R&D Programme 2013 Summer School. Nottingham, UK PRECOMBUSTION TECHNOLOGY for Coal Fired Power Plant MONICA LUPION Visiting Research Scientist MIT Energy Initiative MITEI's Research

More information

IMPROVED PERFORMANCE OF THE DESTEC GASIFIER Gasification Technologies Conference

IMPROVED PERFORMANCE OF THE DESTEC GASIFIER Gasification Technologies Conference IMPROVED PERFORMANCE OF THE DESTEC GASIFIER 1999 Gasification Technologies Conference Dr. David L. Breton Dynegy, Inc. 1000 Louisiana Street, Suite 5800 Houston, Texas 77002 ABSTRACT The DESTEC gasification

More information

Gasification Combined Cycles 101. Dr. Jeff Phillips EPRI

Gasification Combined Cycles 101. Dr. Jeff Phillips EPRI Gasification Combined Cycles 101 Dr. Jeff Phillips EPRI JPhillip@epri.com Outline What is coal? What is coal gasification? What is a combined cycle? What happens when we put them together? (IGCC) IGCC

More information

Focus on Gasification in the Western U.S.

Focus on Gasification in the Western U.S. Focus on Gasification in the Western U.S. GTC Workshop on Gasification Technologies Denver, Colorado March 14, 2007 Richard D. Boardman, Ph.D. INL R&D Lead for Gasification & Alternative Fuels (208) 526-3083;

More information

Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009)

Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009) Abstract Process Economics Program Report 180B CARBON CAPTURE FROM COAL FIRED POWER GENERATION (DECEMBER 2008 REPUBLISHED MARCH 2009) The most expensive part of the overall carbon capture and storage process

More information

Advanced Coal Power Plant Water Usage

Advanced Coal Power Plant Water Usage CoalFleet for Tomorrow Advanced Coal Power Plant Water Usage Ronald L. Schoff (rschoff@epri.com) Project Manager Advanced Coal Generation Options Charlotte, North Carolina July 8 9, 2008 CoalFleet for

More information

Siemens Technology Improvements Enhance IGCC Plant Economics

Siemens Technology Improvements Enhance IGCC Plant Economics . Siemens Power Generation 2004. All Rights Reserved Siemens Technology Improvements Enhance IGCC Plant Economics Harry Morehead, Frank Hannemann, Siemens Power Generation Gasification Technologies 2005

More information

Siemens Gas Turbine H 2 Combustion Technology for Low Carbon IGCC

Siemens Gas Turbine H 2 Combustion Technology for Low Carbon IGCC Siemens Gas Turbine H 2 Combustion Technology for Low Carbon IGCC Presented at:, Phillip Brown: Program Manger, SGT6-5000F IGCC Joe Fadok: Program Manager, Siemens/DOE Advanced Hydrogen Turbine Program

More information

Appendix 3.B Electricity Generation Primer

Appendix 3.B Electricity Generation Primer Appendix 3.B Electricity Generation Primer Table A-3.B.1 Analysis of Illinois #6 Bituminous Coal Used in the Design Base of Each of the Green-Field Generating Technologies ILLINOIS #6 BITUMINOUS COAL FUEL

More information

Coal gasification and CO 2 capture

Coal gasification and CO 2 capture Coal gasification and CO 2 capture an overview of some process options and their consequences (Evert Wesker) Some on the context Zooming in on Coal Gasification Pre combustion capture (after gasification)

More information

IGCC Development Program. Dr. Ahn, Dal-Hong Korea IGCC RDD&D Organization

IGCC Development Program. Dr. Ahn, Dal-Hong Korea IGCC RDD&D Organization 1 Introduction to Korea IGCC Development Program Dr. Ahn, Dal-Hong 2 IGCC Overview m Integrated Gasification Combined Cycle (IGCC) - Power plant combining a Gasification system with a CC - Coal is converted

More information

Clean coal technology required for the future and development of IGCC technology.

Clean coal technology required for the future and development of IGCC technology. Clean coal technology required for the future and development of IGCC technology. November 10, 2009 Tsutomu Watanabe Clean Coal P R&D Co., Ltd. 1 Copyright Clean Coal P R&D Co., Ltd Coal demand growth

More information

- The Osaki CoolGen Project -

- The Osaki CoolGen Project - Realization of Innovative High Efficiency and Low Emission Coal Fired Power Plant - The Osaki CoolGen Project - Kenji Aiso Osaki Coolgen Corporation Outline 1. Background 2. Gasification Technology 3.

More information

Development status of the EAGLE Gasification Pilot Plant

Development status of the EAGLE Gasification Pilot Plant Development status of the EAGLE Gasification Pilot Plant Gasification Technologies 2002 San Francisco, California, USA October 27-30, 2002 Masaki Tajima Energy and Environment Technology Development Dept.

More information

Computational Laboratory for Energy, Air, and Risk Department of Civil Engineering North Carolina State University Raleigh, NC

Computational Laboratory for Energy, Air, and Risk Department of Civil Engineering North Carolina State University Raleigh, NC Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier- Based Integrated Gasification Combined Cycle Systems Using ASPEN Prepared by: H. Christopher Frey Naveen

More information

A Parametric Investigation of Integrated Gasification Combined Cycles with Carbon Capture

A Parametric Investigation of Integrated Gasification Combined Cycles with Carbon Capture Proceedings of ASME Turbo Expo 2012 GT2012 June 11-15, 2012, Copenhagen, Denmark GT2012-69519 A Parametric Investigation of Integrated Gasification Combined Cycles with Carbon Capture Xuewei Li and Ting

More information

Perspective on Coal Utilization Technology

Perspective on Coal Utilization Technology Perspective on Coal Utilization Technology 21st Annual International Pittsburgh Coal Conference on 14-16 September, 2004 Naokazu Kimura Director, Wakamatsu Research Institute J-Power/EPDC Agenda - About

More information

BLUE OPTION White space is filled with one or more photos

BLUE OPTION White space is filled with one or more photos Driving Innovation Delivering Results BLUE OPTION White space is filled with one or more photos Performance Baseline for Direct-Fired sco 2 Cycles Nathan Weiland, Wally Shelton NETL Chuck White, David

More information

Advances in gasification plants for low carbon power and hydrogen co-production

Advances in gasification plants for low carbon power and hydrogen co-production Advances in gasification plants for low carbon power and hydrogen co-production IChemE New Horizons in Gasification Rotterdam, The Netherlands, 10-13 March, 2014 Luca Mancuso, Foster Wheeler Noemi Ferrari,

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

CO 2 Capture. John Davison IEA Greenhouse Gas R&D Programme.

CO 2 Capture. John Davison IEA Greenhouse Gas R&D Programme. CO 2 Capture John Davison IEA Greenhouse Gas R&D Programme Overview of this Presentation Leading CO 2 capture technologies for power generation Descriptions Main advantages and disadvantages Examples of

More information

Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts -

Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts - Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts - Table of Contents 1. Project Background 2. Progress of Osaki CoolGen Project (1) Outline of Osaki CoolGen

More information

PRENFLO: PSG and PDQ

PRENFLO: PSG and PDQ 1 PRENFLO: PSG and PDQ Latest Developments based on 10 years Operating Experience at Elcogas IGCC, Puertollano, Spain Karsten Radtke, Max Heinritz-Adrian; Uhde, Germany Max Hooper, Bill Richards; Uhde

More information

IGCC & Gasification for a Changing Marketplace

IGCC & Gasification for a Changing Marketplace IGCC & Gasification for a Changing Marketplace Neville Holt - EPRI Technical Fellow, Advanced Coal Generation Technology MIT Carbon Sequestration Forum V11 Cambridge, MA October 31, 2006 1 Options for

More information

UPDATE ON THE KEMPER COUNTY IGCC PROJECT Gasification Technologies Conference

UPDATE ON THE KEMPER COUNTY IGCC PROJECT Gasification Technologies Conference UPDATE ON THE KEMPER COUNTY IGCC PROJECT 2012 Gasification Technologies Conference Kemper County IGCC Overview 2x1 Integrated Gasification Combined Cycle (IGCC) 2 Transport Gasifiers 2 Siemens SGT6-5000F

More information

THE WABASH RIVER IGCC PROJECT REPOWERING COAL FIRED POWER PLANTS

THE WABASH RIVER IGCC PROJECT REPOWERING COAL FIRED POWER PLANTS THE WABASH RIVER IGCC PROJECT REPOWERING COAL FIRED POWER PLANTS PHIL AMICK VICE PRESIDENT, COMMERCIAL DEVELOPMENT GLOBAL ENERGY, INC. 1 2 Our company: Project Developer for Gasification Facilities Environmentally

More information

TRONDHEIM CCS CONFERENCE

TRONDHEIM CCS CONFERENCE TRONDHEIM CCS CONFERENCE June 15, 2011 6th Trondheim Conference on CO 2 Capture, Transport and Storage Pedro Casero Cabezón (pcasero@elcogas.es) ELCOGAS S.A (www.elcogas.es) 1 SCOPE IGCC & ELCOGAS, S.A

More information

Flexible Integration of the sco 2 Allam Cycle with Coal Gasification for Low-Cost, Emission-Free Electricity Generation

Flexible Integration of the sco 2 Allam Cycle with Coal Gasification for Low-Cost, Emission-Free Electricity Generation GTC 2014 28 October 2014 1 Allam Cycle Flexible Integration of the sco 2 Allam Cycle with Coal Gasification for Low-Cost, Emission-Free Electricity Generation GTC 2014 Dr. Xijia Lu, 8 Rivers Capital GTC

More information

THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2

THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2 THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2 Report Number PH3/4 November 1998 This document has been prepared for the Executive Committee of the Programme. It is not a publication of the Operating

More information

Cost and Performance Baseline for Fossil Energy Plants

Cost and Performance Baseline for Fossil Energy Plants Cost and Performance Baseline for Fossil Energy Plants CMU Seminar September 26, 2007 Julianne Klara, National Energy Technology Laboratory Fossil Energy Plant Baseline Study -Report Contains- Subcritical

More information

Customizing Syngas Specifications with E-Gas Technology Gasifier

Customizing Syngas Specifications with E-Gas Technology Gasifier Customizing Syngas Specifications with E-Gas Technology Gasifier Arnold Keller, David Breton, Chancelor Williams and Graham Poulter, ConocoPhillips, Houston, Texas Gasification Technology Conference San

More information

Half of all electricity generated in

Half of all electricity generated in em forum Forum invites authors to share their opinions on environmental issues EM readers. Opinions expressed in Forum are those of the author(s), and do not reflect official A&WMA policy. EM encourages

More information

Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant

Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant Scott Hume Principal Technical Leader The 5th International Symposium - Supercritical CO 2 Power Cycles March 28-31, 2016,

More information

Reducing CO 2 Emission by Hydrogen IGCC Power Plants. Hydrogen IGCC

Reducing CO 2 Emission by Hydrogen IGCC Power Plants. Hydrogen IGCC 2002 Gasification Technology Conference Reducing CO 2 Emission by Power Plants Robert M. Jones, Joachim Wolff, Uhde GmbH (Speaker) Increasing Environmental Benefit of IGCC 1. Carbon Sequestration 2. Design

More information

Polk Power Key Lessons for IGCC Gasification Technologies Conference October 15, 2015

Polk Power Key Lessons for IGCC Gasification Technologies Conference October 15, 2015 Polk Power Key Lessons for IGCC Gasification Technologies Conference October 15, 2015 Mark Hornick Tampa Electric Company Tampa Electric Company Investor owned - NYSE Regulated rates FL PSC $2.4b Revenue

More information

The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results

The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results Ronald L. Schoff (rschoff@epri.com) Electric Power Research Institute Sr. Project Manager IEA CCT2011 Conference Zaragoza, Spain May 10, 2011

More information

NOx CONTROL FOR IGCC FACILITIES STEAM vs. NITROGEN

NOx CONTROL FOR IGCC FACILITIES STEAM vs. NITROGEN NOx CONTROL FOR IGCC FACILITIES STEAM vs. NITROGEN GASIFICATION TECHNOLOGIES CONFERENCE SAN FRANCISCO, CALIFORNIA OCT. 27-30, 2002 Phil Amick, Global Energy Inc. Ron Herbanek, Global Energy Inc. Robert

More information

Hydrogen and Syngas Combustion: Pre-Condition for IGCC and ZEIGCC

Hydrogen and Syngas Combustion: Pre-Condition for IGCC and ZEIGCC Hydrogen and Syngas Combustion: Pre-Condition for IGCC and ZEIGCC F. Hannemann, B. Koestlin, G. Zimmermann, G. Haupt, Siemens AG Power Generation Power Generation W8IN, G233, CTET Content Introduction

More information

OPERATIONAL EXPERIENCE AND CURRENT DEVELOPMENTS.

OPERATIONAL EXPERIENCE AND CURRENT DEVELOPMENTS. PUERTOLLANO Puertollano IGCC IGCC Power Plant POWER - ELCOGAS PLANT. OPERATIONAL EXPERIENCE AND CURRENT DEVELOPMENTS. International Freiberg Conference on IGCC & XtL Technologies 8-12 May, 2007 Freiberg,

More information

Scott Hume. Electric Power Research Institute, 1300 West WT Harris Blvd, Charlotte NC 28262

Scott Hume. Electric Power Research Institute, 1300 West WT Harris Blvd, Charlotte NC 28262 The 5th International Symposium - Supercritical CO 2 Power Cycles March 28-31, 2016, San Antonio, Texas Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant Scott Hume Electric

More information

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University Analysis of Hydrogen and Co-Product Electricity Production from Coal with Near Zero Pollutant and CO 2 Emissions using an Inorganic Hydrogen Separation Membrane Reactor Paolo Chiesa Politecnico di Milano

More information

Pushing Forward IGCC Technology at Siemens

Pushing Forward IGCC Technology at Siemens Pushing Forward IGCC Technology at Siemens F. Hannemann, B. Koestlin, G. Zimmermann, Siemens AG Power Generation H. Morehead, Siemens Westinghouse Power Corporation F.G. Peña, ELCOGAS SA 13 Oct 2003 Power

More information

Carbon (CO 2 ) Capture

Carbon (CO 2 ) Capture Carbon (CO 2 ) Capture Kelly Thambimuthu, Chief Executive Officer, Centre for Low Emission Technology, Queensland, Australia. & Chairman, International Energy Agency Greenhouse Gas Program (IEA GHG) CSLF

More information

CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION. Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan. Daniel P. Connell

CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION. Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan. Daniel P. Connell CALCIUM LOOPING PROCESS FOR CLEAN FOSSIL FUEL CONVERSION Shwetha Ramkumar, Robert M. Statnick, Liang-Shih Fan William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University

More information

The Progress of Osaki CoolGen Project

The Progress of Osaki CoolGen Project The Progress of Osaki CoolGen Project ~ Oxygen-blown Integrated Coal Gasification Fuel Cell Combined Cycle Demonstration Project ~ September, 2017 Osaki Coolgen Corporation 1 Outline 1. Background and

More information

Higher Efficiency Power Generation Reduces Emissions

Higher Efficiency Power Generation Reduces Emissions 1 Higher Efficiency Power Generation Reduces Emissions National Coal Council Issue Paper 2009 János M.Beér MIT Coal is the primary fuel for generation of electricity in the United States and many other

More information

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT JEROD SMEENK 1, GEORGE STEINFELD 2, ROBERT C. BROWN 1, ERIC SIMPKINS 2, AND M. ROBERT DAWSON 1 1 Center for Coal and the Environment

More information

Fossil Energy. Fossil Energy Technologies. Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor)

Fossil Energy. Fossil Energy Technologies.  Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor) Fossil Energy Technologies Coal steam power Gasification Power Access (clean HH fuel) Coal Direct Liquefaction Gasification liquids Air quality (outdoor) Natural Gas Biomass Power/liquids Co-production

More information

Chemical Looping Gasification Sulfur By-Product

Chemical Looping Gasification Sulfur By-Product Background: Coal Gasification Technology Chemical Looping Gasification Sulfur By-Product Fanxing Li and Liang-Shih Fan* Fly Ash By-Product Department of Chemical and Biomolecular Engineering The Ohio State

More information

Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture

Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture Techno-Economic Assessment of Oxy-Combustion Turbine Power Plants with CO 2 Capture John Davison IEA Greenhouse Gas R&D Programme, Cheltenham, UK Paper by Luca Mancuso, Noemi Ferrari Amec FosterWheeler,

More information

Technologies for CO 2 Capture From Electric Power Plants

Technologies for CO 2 Capture From Electric Power Plants Technologies for CO 2 Capture From Electric Power Plants The Energy Center at Discovery Park Purdue University CCTR, Potter Center Suite 270 500 Central Avenue West Lafayette, IN 47907 http://discoverypark.purdue.edu/wps/portal/energy/cctr

More information

Dynamis SP2: Power plant & capture technologies

Dynamis SP2: Power plant & capture technologies H 2 Coal Natural Gas Chemical conversion C x H y H 2 + CO 2 Integration? Thermal conversion C x H y Power + CO 2 Electricity Dynamis SP2: CO 2 capture Power plant & capture technologies Castor-Encap-Cachet-Dynamis

More information

Canadian Clean Power Coalition: Clean Coal Technologies & Future Projects Presented to. David Butler Executive Director

Canadian Clean Power Coalition: Clean Coal Technologies & Future Projects Presented to. David Butler Executive Director Canadian Clean Power Coalition: Clean Coal Technologies & Future Projects Presented to David Butler Executive Director Presentation Outline Canadian Clean Power Coalition (CCPC) Overview Technology Overview

More information

OPTIMIZATION OF THE SHIFT CONVERSION UNIT IN A GASIFICATION PLANT

OPTIMIZATION OF THE SHIFT CONVERSION UNIT IN A GASIFICATION PLANT OPTIMIZATION OF THE SHIFT CONVERSION UNIT IN A GASIFICATION PLANT Gasification Technologies Council Annual Meeting 2006 Washington, DC October 1-4, 2006 Ashok Rao Akshay Verma Advanced Power and Energy

More information

CO 2 Capture: Impacts on IGCC Plant Performance in a High Elevation Application using Western Sub-Bituminous Coal

CO 2 Capture: Impacts on IGCC Plant Performance in a High Elevation Application using Western Sub-Bituminous Coal CO 2 Capture: Impacts on IGCC Plant Performance in a High Elevation Application using Western Sub-Bituminous Coal Satish Gadde, Jay White WorleyParsons Ron Herbanek, Jayesh Shah ConocoPhillips Gasification

More information

Problematica e Tecnologie per la cattura di CO 2 Stefano Consonni Dipartimento di Energetica - Politecnico di Milano

Problematica e Tecnologie per la cattura di CO 2 Stefano Consonni Dipartimento di Energetica - Politecnico di Milano Pianeta 3000 La ricerca scientifica per l'ambiente e il Territorio Problematica e Tecnologie per la cattura di CO 2 Stefano Consonni Dipartimento di Energetica - Politecnico di Milano Milano, 12 novembre

More information

Mr. Daniel has authored a gasification patent and represents GE on the Gasification Technologies Council.

Mr. Daniel has authored a gasification patent and represents GE on the Gasification Technologies Council. Mr. Daniel Tse Gasification Expert GE Holding a B.S. degree in Electrical Engineering from the University of Houston, Mr. Daniel has 17 years of experience in the gasification industry including roles

More information

Process Economics Program

Process Economics Program IHS Chemical Process Economics Program Report 148C Synthesis Gas Production from Coal and Petroleum Coke Gasification By Jamie Lacson IHS Chemical agrees to assign professionally qualified personnel to

More information

ADVANCED F CLASS GAS TURBINES CAN BE A RELIABLE CHOICE FOR IGCC APPLICATIONS

ADVANCED F CLASS GAS TURBINES CAN BE A RELIABLE CHOICE FOR IGCC APPLICATIONS ADVANCED F CLASS GAS TURBINES CAN BE A RELIABLE CHOICE FOR IGCC APPLICATIONS Satish Gadde, John Xia and Gerry McQuiggan Siemens Power Generation Inc., 4400 Alafaya Trail, Orlando, FL 32826-2399 Ph: 407

More information

Ceramic Membranes for Oxygen Production in Vision 21 Gasification Systems

Ceramic Membranes for Oxygen Production in Vision 21 Gasification Systems Ceramic Membranes for Oxygen Production in Vision 21 Gasification Systems VanEric Stein and Ted Foster Gasification Technologies 2001 San Francisco, CA October 10, 2001 Acknowledgments Gary Stiegel Arun

More information

An Opportunity for Methanol; the Production Starting from Coal

An Opportunity for Methanol; the Production Starting from Coal An Opportunity for Methanol; the Production Starting from Coal by Luigi Bressan and Luca Mancuso Foster Wheeler Italiana and Ermanno Filippi, Methanol Casale S.A. presented at the 2008 WORLD METHANOL CONFERENCE

More information

WITH CO2 SEQUESTRATION

WITH CO2 SEQUESTRATION PROJECT DESIGNS FOR IGCC & SNG WITH CO2 SEQUESTRATION Gasification Technologies Conference October 5, 2009 Ron Herbanek, Bill Mooneyhan ConocoPhillips Company Presentation Outline Introduction Design Premise

More information

Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution

Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution INTRODUCTION Coal fired power plants have been producing a significant amount of power in the United

More information

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society 24 SATOSCHI DODO *1 MITSUHIRO KARISHUKU *2 NOBUO YAGI *2 TOMOHIRO ASAI *3 YASUHIRO

More information

H AUDUS, IEA Greenhouse Gas R&D Programme, CRE, Stoke Orchard, Cheltenham, GL52 4RZ, UK.

H AUDUS, IEA Greenhouse Gas R&D Programme, CRE, Stoke Orchard, Cheltenham, GL52 4RZ, UK. LEADING OPTIONS FOR THE CAPTURE OF AT POWER STATIONS H AUDUS, IEA Greenhouse Gas R&D Programme, CRE, Stoke Orchard, Cheltenham, GL52 4RZ, UK. email:harry@ieagreen.demon.co.uk ABSTRACT In recent years there

More information

Advanced Coal Technologies for Power Generation

Advanced Coal Technologies for Power Generation Advanced Coal Technologies for Power Generation Briggs M. White, PhD Project Manager, Strategic Center for Coal December 17, 2013 National Energy Technology Laboratory National Energy Technology Laboratory

More information

J-POWER s CCT Activities

J-POWER s CCT Activities J-POWER s CCT Activities Hiroto Shimizu Senior Advisor, International Business Management Department 2013. 9.6 3E + S Philosophy* *) Basis of Energy Policy Who is J POWER? Established as Government owned

More information

1. Process Description:

1. Process Description: 1. Process Description: The coal is converted to Raw Syngas in the Gasification Section. The Raw Syngas produced out of the Gasifier would be shifted (water gas shift) to adjust required H2/CO ratio and

More information

ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL

ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL ROYAL SOCIETY OF CHEMISTRY TECHNOLOGY IN THE USE OF COAL Professor James Harrison FRSC FEng 1 National Coal Board 1947 Mines 958 Manpower 718000 Use electricity 28 -domestic 37 -steel 43 -other 80 Total

More information

Thermodynamic Performance of IGCC with Oxy-Combustion CO 2 Capture

Thermodynamic Performance of IGCC with Oxy-Combustion CO 2 Capture Thermodynamic Performance of IGCC with Oxy-Combustion CO 2 Capture G. Lozza, M. Romano, A. Giuffrida Dipartimento di Energia, Politecnico di Milano, Via Lambruschini 4,2056 Milano giovanni.lozza@polimi.it

More information

Rectisol Wash Units Acid Gas Removal for Polygeneration Concepts downstream Gasification

Rectisol Wash Units Acid Gas Removal for Polygeneration Concepts downstream Gasification Rectisol Wash Units Acid Gas Removal for Polygeneration Concepts downstream Gasification Ulvi Kerestecioğlu, Thomas Haberle GTC Conference, Washington DC, USA, November 3rd, 2010 Agenda of the Presentation

More information

Analysis of Exergy and Energy of Gasifier Systems for Coal-to-Fuel

Analysis of Exergy and Energy of Gasifier Systems for Coal-to-Fuel Analysis of Exergy and Energy of Gasifier Systems for Coal-to-Fuel 1 Nishant Sharma, 2 Bhupendra Gupta, 3 Ranjeet Pratap Singh Chauhan 1 Govt Engg College Jabalpur 2 GEC College Gwalior 3 Department of

More information

Energy Procedia

Energy Procedia Available online at www.sciencedirect.com Energy Procedia 4 (2011) 1066 1073 Energy Procedia 00 (2010) 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-10 Development

More information

Company Brochure 2012

Company Brochure 2012 Company Brochure 2012 2 Table of contents 1. Company Profile / Company Description... 3 2. Scope of Services... 4 3. Gasification... 6 4. Feedstocks and by-products... 7 5. History of gasification process...

More information

The Cost of CO 2 Capture and Storage

The Cost of CO 2 Capture and Storage The Cost of Capture and Storage Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation to the

More information

FUEL-FLEXIBLE GAS- TURBINE COGENERATION. Robin McMillan & David Marriott, Siemens Industrial Turbomachinery Ltd., Lincoln, U.K.

FUEL-FLEXIBLE GAS- TURBINE COGENERATION. Robin McMillan & David Marriott, Siemens Industrial Turbomachinery Ltd., Lincoln, U.K. FUEL-FLEXIBLE GAS- TURBINE COGENERATION Robin McMillan & David Marriott, Siemens Industrial Turbomachinery Ltd., Lincoln, U.K. Su, Ri Han, Siemens China, Shanghai, China POWER-GEN Asia 2008 Kuala Lumpur,

More information

Wabash River Coal Gasification Repowering Project. June 12, 2007.

Wabash River Coal Gasification Repowering Project. June 12, 2007. Wabash River Coal Gasification Repowering Project June 12, 2007. Wabash River One of the Cleanest Coal Fired Power Plants in the World 1.7 million tons of bituminous coal 2.0 + million tons of petcoke

More information

ANALYSIS OF POWER GENERATION PROCESSES USING PETCOKE

ANALYSIS OF POWER GENERATION PROCESSES USING PETCOKE i ANALYSIS OF POWER GENERATION PROCESSES USING PETCOKE A Thesis by RAMKUMAR JAYAKUMAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for

More information

IGCC Plants : a Practical Pathway for Combined Production of Hydrogen and Power from Fossil Fuels

IGCC Plants : a Practical Pathway for Combined Production of Hydrogen and Power from Fossil Fuels International Hydrogen Energy Congress and Exhibition IHEC 2005 Istanbul, Turkey, 13-15 July 2005 IGCC Plants : a Practical Pathway for Combined Production of Hydrogen and Power from Fossil Fuels Luigi

More information

R & D plan results and experience in the Puertollano IGCC

R & D plan results and experience in the Puertollano IGCC The 4th International Freiberg Conference on IGCC & XtL Technologies 3-5 May 2010- Dresden, Germany R & D plan results and experience in the Puertollano IGCC Francisco García Peña fgarcia@elcogas.es ELCOGAS,

More information

Development of the Highly Durable COS Hydrolysis Catalyst for IGCC Gas Clean-up System

Development of the Highly Durable COS Hydrolysis Catalyst for IGCC Gas Clean-up System Development of the Highly Durable COS Hydrolysis Catalyst for IGCC Gas Clean-up System Mitsubishi Heavy Industries, Ltd. Kaori Yoshida 2012 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. October

More information

PRECOMBUSTION CAPTURE OF CO 2 Opportunities and Challenges. Kristin Jordal, SINTEF Energy Research Marie Anheden, Vattenfall Utveckling

PRECOMBUSTION CAPTURE OF CO 2 Opportunities and Challenges. Kristin Jordal, SINTEF Energy Research Marie Anheden, Vattenfall Utveckling PRECOMBUSTION CAPTURE OF CO 2 Opportunities and Challenges Kristin Jordal, SINTEF Energy Research Marie Anheden, Vattenfall Utveckling 1 Three Main Routes to CO 2 Capture Pre-combustion decarbonisation

More information

WRITECoal Gasification of Low- Rank Coals for Improved Advanced Clean Coal Gasifier / IGCC Design

WRITECoal Gasification of Low- Rank Coals for Improved Advanced Clean Coal Gasifier / IGCC Design WRITECoal Gasification of Low- Rank Coals for Improved Advanced Clean Coal Gasifier / IGCC Design Alan E. Bland, Jesse Newcomer and Tengyan Zhang- Western Research Institute Kumar M. Sellakumar - Etaa

More information

The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal

The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal The Effects of Operation Parameters on the Performance of Entrained-bed Pulverized Coal Gasifier with High Fusion Temperature Coal Zhenghua Dai*, Zhonghua Sun, Xin Gong, Zhijie Zhou, Fuchen Wang Institute

More information

The Role of Solid Fuel Conversion in Future Power Generation

The Role of Solid Fuel Conversion in Future Power Generation The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content

More information

Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production

Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production Lurgi s MPG Gasification plus Rectisol Gas Purification Advanced Process Combination for Reliable Syngas Production Ulrich Koss, Holger Schlichting Gasification Technologies 2005 San Francisco, 9. 12.

More information

Improving IGCC Flexibility Through Gas Turbine Enhancements

Improving IGCC Flexibility Through Gas Turbine Enhancements Improving IGCC Flexibility Through Gas Turbine Enhancements H. Morehead, Siemens Westinghouse Power Corporation F. Hannemann, B. Koestlin, G. Zimmermann, J. Karg, Siemens AG Power Generation Presented

More information

Advanced Coal Technology 101

Advanced Coal Technology 101 Advanced Coal Technology 101 National Conference of State Legislators Conference November 1, 2007 Dr. Jeffrey N. Phillips Program Manager Advanced Coal Generation Options CO 2 Capture in Coal Power Systems

More information

with Physical Absorption

with Physical Absorption meinschaft Mitglied der Helmholtz-Gem Pre-Combustion Carbon Capture with Physical Absorption Sebastian Schiebahn, Li Zhao, Marcus Grünewald 5. Juli 2011 IEK-3, Forschungszentrum Jülich, Germany ICEPE Frankfurt

More information

EVALUATION OF INNOVATIVE FOSSIL CYCLES INCORPORATING CO 2 REMOVAL

EVALUATION OF INNOVATIVE FOSSIL CYCLES INCORPORATING CO 2 REMOVAL EVALUATION OF INNOVATIVE FOSSIL CYCLES INCORPORATING CO 2 REMOVAL 2000 Gasification Technologies Conference San Francisco, California October 8-11, 2000 Michael R. DeLallo Thomas L. Buchanan Jay S. White

More information