INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES

Size: px
Start display at page:

Download "INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES"

Transcription

1 INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES Dr Jean-Bernard Michel Professor, University of Applied Sciences Western Switzerland, Head, Industrial Bioenergy Systems unit

2 My home city: Fribourg, Switzerland 2

3 Campus Yverdon-les-Bains Cheseaux St. Roch Y-Parc HEIG-VD: the largest university of applied science campus 1600 students 3

4 4

5 THE ENERGY AND ENVIRONMENT ISSUES 5

6 World energy statistics (IEA 2014) 6

7 World Energy Outlook Extract (Released on 12 November 2014) The share of renewables in total power generation rises from 21% in 2012 to 33% in 2040, as they supply nearly half of the growth in global electricity generation. Renewable electricity generation, including hydropower, nearly triples over , overtaking gas as the second-largest source of generation in the next couple of years and surpassing coal as the top source after China sees the biggest absolute increase in generation from renewable sources, more than the gains in the European Union, United States and Japan combined. 7

8 Biomass potential in Europe (source: EEA) Note: The effect of a CO2 permit price of up to 65 EUR/ton by 2030 was estimated for agriculture in Germany and France only. Source: How much biomass can Europe use without harming the environment? EEA Briefing, 2005/02, ISSN WGC

9 9

10 Types of biomass Sugar type Ligno-cellulosic Wastes Oil type 10

11 Biomass pros and cons Difficult fuel Long term supply contract needed Variable feedstock (ash, moisture, heavy metals ) Low energy density complicated and expensive logistics Not stable: fermentation, degradation if not stored/dried properly Unsuited to large power plants Distributed resource Limited land productivity Cheap fuel As long as it is produced naturally Suitable to many uses Food Chemicals Energy Local use by local people Distributed power generation Job creation Good energy storage medium Renewable energy transition Power to fuel concepts Low CO 2 impact 11

12 Bioenergy pathways Production/harvesting/ preparation v Thermochemical Physicochemical combustion torrefaction pyrolysis gasification Press/ extraction Esterification Solid fuel liquid fuel F-.T gaseous fuel boiler Hot air turbine Motor/ Gas turbine Fuel cell Heat steam Power Biological Fermentation/ hydrolysis Methanisation transport biofuel 12

13 Question What is the conversion efficiency of solar energy to ethanol? Ex. Brazil: 6000 litres/ha 1 litre provides 5,9 kwh Average yearly solar radiation: 2300 kwh/m 2 /y Result: 0,15%! Result similar to biomass yield from a forest in Switzerland: 0,13% energy conversion efficiency Microalgae: up to 5% energy conversion efficiency (oil) 13

14 THERMOCHEMICAL BIOENERGY SYSTEMS 14

15 Typical moving grid furnace and boiler for ligneous biomass 15

16 Cogeneration of Heat and Power (CHP) with biomass CHP most efficient in terms of energy utilization Suitable for ligno-cellulosic biomass and wastes Conventional steam boiler: scaling-down necessary High investment cost and low/no ROI New boiler systems: not mature enough (steam piston or screw) Externally fired hot air turbine (Brayton cycle) : very promising but still in demonstration phase Gasification: Lots of demo plants no commercial breakthrough 16

17 Hot-air turbine for CHP from Schmid (CH) Wood chips input (50% moisture): 240 kg/h, 600 kw Heat production: 300 kw Power (gross): 95 kw Own consumption: 15 kw Total efficiency: 77%

18 How to store biomass wastes? One simple way: torrefaction Reference site: International Biomass Torrefaction Council 18

19 Torrefaction process Principle Raw biomass Drying (< 20% moisture) Gas recycling/ postcombustion (LCV 2 to 3 MJ/kg) Torgas Torrefaction Anaerobic heating 240 C-280 C Autothermal process Mass yield ~70% Energy yield ~90% 10% left is partly recovered LCV increase by 20% Torrefied biomass 19

20 Torrefied chips and pellets 20

21 Comparison with normal pellets Torrefied pellets Market advantages Energy density increase by 50% Calorific value increase by 30% Lower transport & strorage costs Better combustion characteristics Hydrophobic No bacterial activity Grinding energy reduction by 90% Outside storage Lower grinding costs Variety of input Availabilty and price of feedstock 21

22 Swelling and disintegration of pellets in water (60 seconds) 22

23 Small scale pilot torrefactor 20 kg/h 23

24 PHYSICOCHEMICAL BIOENERGY SYSTEMS (ENERGY FARMING) 24

25 Energy crops Second generation biofuels no longer supported in many countries Land productivity very low compared to PV systems Third generation biofuels may be the answer: Microalgae Integrated biorefinery systems But the future will certainly beyond our thinking! Genetic engineering Robototics 25

26 Microalgae and the issue of land use Open pond: tons/ha/year 40-50% oil Tubular systems: tons/ha/year Photobioreactors: tons/ha/year potential biodiesel cost of 0.8 $/litre to 1.5 $/litre 80 t/ha oil = 27 times Jatropha yield = 1/5 of PV systems 26

27 Example of photobioreactor (Valcent products, El Paso Interrupted devpt.) 27

28 BIOLOGICAL ENERGY SYSTEMS The world of enzymes and bacteries Unknown to classical engineering 28

29 Example: ORION project SME agro-food industries produce large quantities of organic waste (OW) 2006 figures: 240 Million tons of OW in the EU Biowaste: 30 % to 45 % of municipal solid waste High costs of waste treatment: 50 to 200 Euros per ton storage costs in cool areas specific transportation costs incineration or recovery. Examples: Dairy processing industry: spends 100 Million Euros in OW disposal in Europe 29

30 The case of restaurant wastes in Switzerland e.g. : 1200 meals/day 110 tons/year Total cost ~ $/year Ecological and sanitary impact due to storage, transport and incineration. 30

31 How to get rid of agro-food waste economically? 31

32 Project challenges Serial production of a new type of machine Keep disposal costs below 50 /ton Produce and make use of biogas locally Keep bacterial activity/populations in good health to prevent process breakdown Prevent fouling and blockage Develop an automated process control system 12 industrial/sme partners + 9 RTD partners. 32

33 Manure wastes 33

34 Food preparation wastes 34

35 Agro-food wastes Example: Irish salmon producer with 1000 tons/year of waste - Cost about Euros/year 35

36 Types of biological systems Temperature range: psychrophilic C in lakes Mesophilic C farm digesters, landfills Thermophilic C better for food wastes Systems: Natural biogas production: ponds, stockpiles of wet biomass, landfills Industrial biogas systems: Dry or wet processes Horizontal (plug flow) or vertical (stirred) 36

37 Orion project: 650 l prototype biphasic system 37

38 ISO 20 Container Before assembly Transportability Every module inside the container Simple deployment, easy to assemble. During operation Accessibility Maintenance 38

39 Body of digester Sieving grid, Filters the overflow. Retains particles of insoluble matter. Jabot, Substrate distribution unit. Feeds the methanation tank regularly. Initiates first step of the digestion. Methanation tank, Biogas production from a biological methanogenic process. Hot water tank Geneva, Thursday 30 th October 2014

40 My dream project: cow robots for waste recycling 40

41 «There is no energy crisis, only a crisis of ignorance" Richard Buckminster Fuller ( ) 41

42 42

What is Bioenergy? William Robinson B9 Solutions Limited

What is Bioenergy? William Robinson B9 Solutions Limited What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

Global Bioenergy Market Developments

Global Bioenergy Market Developments Global Bioenergy Market Developments Dr. Heinz Kopetz World Bioenergy Association Tokyo, 9 March 2012 Japan Renewable Energy Foundation - Revision 2012 The importance of biomass Biomass is organic matter

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT COMPETE Conference and Policy Debate on Biofuels Sustainability Schemes, 16th to 18th June 2008 Arusha, Tanzania Faith Odongo Senior Renewable

More information

Prospects for the International Bioenergy Market and Scientific Cooperation

Prospects for the International Bioenergy Market and Scientific Cooperation Prospects for the International Bioenergy Market and Scientific Cooperation Network of Expertise in Energy Technology Integrated Approaches to Energy Technologies Beijing, China November 27, 2012 Jonathan

More information

Bio-energy in the FP7

Bio-energy in the FP7 Bio-energy in the FP7 National Contact Point Andrzej Sławiński andrzej.slawinski@kpk.gov.pl UE Framework Programmes 60 50,52 50 40 30 20 13,12 14,96 19,11 10 3,27 5,36 6,6 0 1984-1987 1987-1991 1990-1994

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

green energy to the power3

green energy to the power3 green energy to the power3 Three exhibitions in parallel, 30-31 january, Parc Expo Rennes ReGen Europe Biogaz Europe Bois Energie waste to energy biogas-biomethane wood heating networks 1-4 Coming to Rennes

More information

FINNISH WASTE-TO-ENERGY AND BIOENERGY OFFERING

FINNISH WASTE-TO-ENERGY AND BIOENERGY OFFERING FINNISH WASTE-TO-ENERGY AND BIOENERGY OFFERING WHAT FINLAND OFFERS TO YOU SOLUTIONS FOR THE WHOLE VALUE CHAIN FROM FOREST TO ENERGY END-USER Decades of experience with woody biomass, forest industry side

More information

Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017

Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017 Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017 Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer Biosystems Engineering Section Develop

More information

AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities

AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities An Overview of Biomass Energy Technologies for Campuses AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities Pittsburgh, PA Kamalesh Doshi, Senior Program Director Biomass Energy Resource

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Development of the bioenergy sector

Development of the bioenergy sector Development of the bioenergy sector Jean Marc Jossart AEBIOM Eberswalde, 8 December 2009 AEBIOM AEBIOM European Biomass Association Representing and promoting interests of bioenergy stakeholders 30 national

More information

International Workshop on Bioenergy Policies, Technologies and Financing

International Workshop on Bioenergy Policies, Technologies and Financing International Workshop on Bioenergy Policies, Technologies and Financing Utilisation of Biomass European Technologies and Expectations Dr.-Ing. Herbert-Peter Grimm Ribeirao Preto, September 2004 Energy

More information

Combustion evaluation of torrefied woodpellets for domestic applications

Combustion evaluation of torrefied woodpellets for domestic applications Combustion evaluation of torrefied woodpellets for domestic applications Jean-Bernard Michel Industrial Bioenergy Systems group University of Applied Sciences of Western Switzerland, Yverdon Martin Schmid

More information

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc Anaerobic Digestion not just biogas production FARM BIOGAS Methane consulting cc Use of fire - the greatest achievement of the human race FARM BIOGAS Methane consulting cc Reduction of GHG s emission FARM

More information

Chapter page 1

Chapter page 1 Chapter 04-04 page 1 04-04: Odd biomass fractions Properties and processes Introduction There are mainly five different processes to choose from to produce useful energy from any type of biomass. Three

More information

Current and future activities concerning biogas plant methane emissions in the EC and IEA Bioenergy Task 37

Current and future activities concerning biogas plant methane emissions in the EC and IEA Bioenergy Task 37 Current and future activities concerning biogas plant methane emissions in the EC and IEA Bioenergy Task 37 David BAXTER European Commission, JRC Institute for Energy and Transport Leader of IEA Bioenergy

More information

Energy Generation from Recovered Wood for Greenhouse Gas Reduction

Energy Generation from Recovered Wood for Greenhouse Gas Reduction Energy Generation from Recovered Wood for Greenhouse Gas Reduction Gerfried Jungmeier Joint Workshop COST Action E31 and IEA Bioenergy Task 38 Greenhouse Gas Aspects of Biomass Cascading Reuse, Recycling

More information

Research priorities for large scale heating and industrial processes

Research priorities for large scale heating and industrial processes Biomass Technology Panel Second Annual Conference of the European Technology Platform on Renewable Heating and Cooling 5-6 May 2011, Budapest, Hungary Research priorities for large scale heating and industrial

More information

Highlights of the Conference Nicolae Scarlat

Highlights of the Conference Nicolae Scarlat Highlights of the Conference Nicolae Scarlat Technical Programme Chairman European Commission, Joint Research Centre, Directorate for Energy, Transport and Climate, ITALY 2 SCIENTIFIC OPENING: APPLICATIONS

More information

R&D Activities & Initiatives for Biorefinery Development in Canada

R&D Activities & Initiatives for Biorefinery Development in Canada R&D Activities & Initiatives for Biorefinery Development in Canada IEA Task 42 Progress Meeting April 19 and 20 th, 2016 Eric Soucy Natural Resources Canada - CanmetENERGY Recent Canadian Biorefinery Initiatives

More information

Biomass and Biogas Conference Overview of Biomass Technology in Germany

Biomass and Biogas Conference Overview of Biomass Technology in Germany Energy Biomass and Biogas Conference Overview of Biomass Technology in Germany Dipl.-Ing. Werner Siemers, CUTEC 12 June 2012, Bangkok, Thailand Content Background Potentials and Applications Examples New

More information

The Current State of Bioenergy

The Current State of Bioenergy The Current State of Bioenergy Mark H. Eisenbies State University of New York College of Environmental Science and Forestry 2015 National STEM Teachers Workshop on Bioenergy Overview Energy use in the

More information

DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR

DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR Prepared by Salman Zafar BioEnergy Consult (Aligarh, INDIA) and Carlos Serrano Decker TECAM Ltd. (Guayaquil, ECUADOR) May 2009 What is Biomass? Any material

More information

ECN s torrefaction-based BO 2 - technology from pilot to demo

ECN s torrefaction-based BO 2 - technology from pilot to demo ECN s torrefaction-based BO 2 - technology from pilot to demo Jaap Kiel Presented at IEA Bioenergy workshop Torrefaction, Graz Austria, 28 January 2011 ECN-M 11-024 FEBRUARY 2011 2 ECN-M 11-024 ECN s torrefaction-based

More information

Biomass and the RPS. Anthony Eggert Commissioner. California Energy Commission

Biomass and the RPS. Anthony Eggert Commissioner. California Energy Commission Biomass and the RPS Anthony Eggert Commissioner California Energy Commission 1516 Ninth St, MS-47 Sacramento, CA USA 95814-5504 Introduction Outline Biomass Policy Context California s Electricity Supply

More information

Cost and energy efficient, environmentally friendly micro and small scale CHP. Walter Haslinger

Cost and energy efficient, environmentally friendly micro and small scale CHP. Walter Haslinger Cost and energy efficient, environmentally friendly micro and small scale CHP Walter Haslinger Key questions What is the state-of-the-art in micro and small scale biomass CHP? What can we learn from the

More information

Biomass Electricity. Megan Ziolkowski November 29, 2009

Biomass Electricity. Megan Ziolkowski November 29, 2009 Biomass Electricity Megan Ziolkowski mziolkowski@kentlaw.edu November 29, 2009 Agenda 1. Introduction 2. Conversion Process 3. Environmental Impact 4. Benefits for the US 5. The Future of Biomass Electricity

More information

SOME CHALLENGES OF BIOMASS

SOME CHALLENGES OF BIOMASS SOME CHALLENGES OF BIOMASS Energy density, moisture Handling characteristics Shelf life and hazards Composition (inorganics) Digestibility and enzyme conversion rates/efficiencies Economics of process

More information

Seminar on the Production and Use of Biogas. Production and Use of Biogas: EU Regulations and Research. David Baxter

Seminar on the Production and Use of Biogas. Production and Use of Biogas: EU Regulations and Research. David Baxter Seminar on the Production and Use of Biogas Production and Use of Biogas: EU Regulations and Research David Baxter (With input from Kyriakos Maniatis: EC-DG TREN) Contents of Presentation Outline of EU

More information

Biomass Technology for Electricity Generation in Community

Biomass Technology for Electricity Generation in Community International Journal of Renewable Energy, Vol. 3, No. 1, January 2008 Biomass Technology for Electricity Generation in Community Mirko Barz Laboratory of Integrated Energy Systems - Fachhochschule Stralsund

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

Sustainable Waste Diversion Technologies to promote a circular economy

Sustainable Waste Diversion Technologies to promote a circular economy NY Federation Conference May 2018 Richard Schofield Project Development Manager Sustainable Waste Diversion Technologies to promote a circular economy Enerkem at a glance Biofuels and renewable chemicals

More information

Portfolio. - Analyzing waste - - and turning it into value -

Portfolio. - Analyzing waste - - and turning it into value - Portfolio - Analyzing waste - - and turning it into value - Our mission Finding innovative solutions to transform waste products into new resources is the core idea behind Novis. We believe, if you use

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community

Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community Vermont Tech Community Anaerobic Digester! Harvesting renewable energy & recycling nutrients for a more sustainable community!"#$%& '(%)*+&,-$).%($#& www.digester.! VTCAD 3 April! It takes a village! Major

More information

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer Bioenergy Optimization Program Demonstration Project Presentation BIOCLEANTECH Forum In Ottawa ON Grid Stability, Remote Communities, and Air Quality Biopower Session on November 3, 2016 Dennis St. George,

More information

State-of-the-art Anaerobic digestion of solid waste

State-of-the-art Anaerobic digestion of solid waste Print this article Close State-of-the-art 2008 - Anaerobic digestion of solid waste From a naturally occurring process to a high-tech industry anaerobic digestion has come a long way and should now be

More information

USDA Western Regional Research Center Albany, California

USDA Western Regional Research Center Albany, California USDA Western Regional Research Center Albany, California Albany ~380 people ~50 in Biofuels/ & Bioproducts Known for biotechnology especially crop biotech. !"#$%&'()*+,&'-$+.#/'01+"%/' Renewable Fuel Standard-2

More information

Renewable Energy Technologies I. Exercise 10

Renewable Energy Technologies I. Exercise 10 Renewable Energy Technologies I Exercise 10 Prof. A Wokaun Assistant: Brian Cox (brian.cox@psi.ch) 17 November 2015 Instructions Please give the results in the units provided Round your results to a reasonable

More information

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 RENEWABLE GASES: Definitions Biogas is the raw product of the biological process of anaerobic fermentation. Typically

More information

Sugar Industry Restructuring by Implementing Biorefinery Technology

Sugar Industry Restructuring by Implementing Biorefinery Technology Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce

More information

Thailand Bioenergy Technology Status Report 2013

Thailand Bioenergy Technology Status Report 2013 Thailand Bioenergy Technology Status Report 2013 The working group for Bioenergy Science Technology and Innovation Policy for Thailand in the context of AEC For more information please contact: The working

More information

NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION. NEWMOA Solid Waste Program Staff Workshop May 11, 2017

NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION. NEWMOA Solid Waste Program Staff Workshop May 11, 2017 NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION NEWMOA Solid Waste Program Staff Workshop May 11, 2017 Managing change ORGANICS MANAGEMENT WASTE RECOVERY GLOBAL CORPORATE SUSTAINABILITY in a resourceconstrained

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

Future challenges for AD to deliver economically and environmentally sustainable fuel and bioenergy. Charles Banks

Future challenges for AD to deliver economically and environmentally sustainable fuel and bioenergy. Charles Banks Future challenges for AD to deliver economically and environmentally sustainable fuel and bioenergy Charles Banks IEA Bioenergy Conference, Vienna, November 12 13 th, 2012 Contribution of biogas technology

More information

Industrial Biotechnology and Biorefining

Industrial Biotechnology and Biorefining Industrial Biotechnology and Biorefining Industrial Biotechnology and Biorefining The Centre for Process Innovation From innovation to commercialisation The High Value Manufacturing Catapult is a partnership

More information

Green Biorefinery IEA Biorefinery Course, 13th September 2010 Edwin Keijsers WUR Food and Biobased Research Michael Mandl JOANNEUM RESEARCH RESOURCES

Green Biorefinery IEA Biorefinery Course, 13th September 2010 Edwin Keijsers WUR Food and Biobased Research Michael Mandl JOANNEUM RESEARCH RESOURCES Green Biorefinery IEA Biorefinery Course, 13th September 2010 Edwin Keijsers WUR Food and Biobased Research Michael Mandl JOANNEUM RESEARCH RESOURCES Contents Green Biorefinery overview Array of products

More information

Scientific Support to the Danube Strategy The Bio-Energy Nexus. Heinz Ossenbrink, Renewable Energy Unit.

Scientific Support to the Danube Strategy The Bio-Energy Nexus. Heinz Ossenbrink, Renewable Energy Unit. Scientific Support to the Danube Strategy The Bio-Energy Nexus Heinz Ossenbrink, Renewable Energy Unit www.jrc.ec.europa.eu 21-22 March 2013 Joint Research Centre Ispra, (IT) Serving society Stimulating

More information

Process Modeling and Life Cycle Assessment of Biomass Conversion

Process Modeling and Life Cycle Assessment of Biomass Conversion Process Modeling and Life Cycle Assessment of Biomass Conversion Dr. Wen Zhou Department of Chemical Engineering Michigan Tech October 12, 2017 Conversion Pathways Hemicellulose-Cellulosic Substrate Comparison

More information

NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities. David Sanchez EURICLIMA project 13th March 2013, Santiago de Chile

NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities. David Sanchez EURICLIMA project 13th March 2013, Santiago de Chile NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities David Sanchez dsanchez@cener.com EURICLIMA project 13th March 2013, Santiago de Chile Content 1. Introduction: CENER 2. Resources and facilities:

More information

ECN s torrefaction-based BO 2. -technology from pilot to demo. Jaap Kiel. IEA Bioenergy workshop Torrefaction, Graz Austria, 28 January 2011

ECN s torrefaction-based BO 2. -technology from pilot to demo. Jaap Kiel. IEA Bioenergy workshop Torrefaction, Graz Austria, 28 January 2011 ECN s torrefaction-based BO 2 -technology from pilot to demo Jaap Kiel IEA Bioenergy workshop Torrefaction, Graz Austria, 28 January 2011 Presentation overview ECN Energy research Centre of the Netherlands

More information

6. Good Practice Example: Biogas in Germany

6. Good Practice Example: Biogas in Germany 6. Good Practice Example: Biogas in Germany Key words Energy, Power, Renewables, Biogas, Organic waste, Landfill. Name and location Using biogas as an energy resource for small power plants in Germany

More information

Biomass and Energy A Perspective from Municipal Solid Waste (MSW)

Biomass and Energy A Perspective from Municipal Solid Waste (MSW) Biomass and Energy A Perspective from Municipal Solid Waste (MSW) Agamuthu P. and Fauziah S.H. Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

More information

RENEWABLE ENERGY RESOURCES

RENEWABLE ENERGY RESOURCES Region 5 Renewable Energy Study Summary August 2009 Conservation is the first step. Renewable energy is wasted without energy conservation efforts like insulation, caulking, and energy efficient lighting

More information

Biogas in Canada Jody Barclay CETC - NRCan

Biogas in Canada Jody Barclay CETC - NRCan Biogas in Canada Jody Barclay CETC - NRCan Report to IEA Bioenergy Task 37 Lille, France November, 2007 Canadian Energy Supply Natural Gas, 33% Nuclear, 7% Renewables & Hydro, 17% Coal, 11% Biomass 6%

More information

Production from Organic Residues. Biogas

Production from Organic Residues. Biogas Biogas Production from Organic Residues Biogas Maxx 910 West End Ave, 10025 New York, NY www.biogasmaxx.com Contact: Leodegario Lopez, M.Eng. Rottaler Modell Network Tel: +1 917 2677936 Email: leo@biogasmaxx.com

More information

EXECUTIVE SUMMARY PROCESS AND SITE SELECTION

EXECUTIVE SUMMARY PROCESS AND SITE SELECTION EXECUTIVE SUMMARY The Cornell University Renewable Bioenergy Initiative (CURBI) was developed by a team under the direction of Michael Hoffmann, Director, and Drew Lewis, Director of Operations, of the

More information

The Role of Technology A Manure-to-Energy Primer

The Role of Technology A Manure-to-Energy Primer The Role of Technology A Manure-to-Energy Primer September 8 th, 2011 Bob Monley, General Manager Farm Pilot Project Coordination, Inc. Challenge of Implementing Technology: Reclaim energy and nutrients

More information

Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management

Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management Jeanette Brown, PE, BCEE, D.WRE, F.WEF,F.ASCE NEWEA-Annual Conference January 24, 2018 Presentation

More information

Bioconversion of different wastes for ENERGY options

Bioconversion of different wastes for ENERGY options Bioconversion of different wastes for ENERGY options Himali Mehta Principal Scientist Sardar Patel Renewable Energy Research Institute Vallabh Vidyanagar Indian Energy Scenario Coal dominates the energy

More information

Biomass Processes & Technologies Adding Value to Home Grown Resources

Biomass Processes & Technologies Adding Value to Home Grown Resources FRONTLINE BIOENERGY, LLC Renewable Fuels & Products Biomass Processes & Technologies Adding Value to Home Grown Resources Jerod Smeenk Frontline BioEnergy, LLC Home Grown Energy Conference Morris, MN February

More information

Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model

Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model Sheila Samsatli, Nouri Samsatli, Nilay Shah Birmingham 16-18 December Energy Systems Engineering Development

More information

Biomass Cogeneration Network- BIOCOGEN

Biomass Cogeneration Network- BIOCOGEN Biomass Cogeneration Network- BIOCOGEN Ms Ioanna Papamichael, Dr Calliope Panoutsou, Mr Andrew Lamb Center for Renewable Energy Sources (CRES), Pikermi - GREECE ABSTRACT The main goal of the BIOCOGEN network

More information

Densification of torrefied materials

Densification of torrefied materials Densification of torrefied materials Experiences from the EU research project SECTOR Wolfgang Stelte Center for Biomass and Biorefinery Danish Technological Institute DTI Densification of torrefied materials

More information

Opportunity for NC. January 25, Alex Hobbs, PhD, PE NC Solar Center. ncsu Advancing Renewable Energy for a Sustainable Economy

Opportunity for NC. January 25, Alex Hobbs, PhD, PE NC Solar Center. ncsu Advancing Renewable Energy for a Sustainable Economy Biomass & CHP Opportunity for NC Energy Policy Council January 25, 2010 Alex Hobbs, PhD, PE NC Solar Center www.ncsc.ncsu.edu ncsu NC REPS Definition of Biomass The NCUC decided not to expand the definition

More information

BioDigestion and Biogas Energy

BioDigestion and Biogas Energy BioDigestion and Biogas Energy Ruihong Zhang, PhD, Professor Biological and Agricultural Engineering Department University of California, Davis Email: rhzhang@ucdavis.edu November 20, 2014 BioDigestion-

More information

Biomass Conversion Technologies

Biomass Conversion Technologies Biomass Conversion Technologies Prashanth R. Buchireddy, Ph.D. University of Louisiana at Lafayette. 16 th August 2018 Jackson, MS Potential to produce 732 Billion Kwh (Appx. 20% of U.S. Power Consumption)

More information

RES - Status Quo, Potential and Prospects Vasileios Tsolakidis, CRES

RES - Status Quo, Potential and Prospects Vasileios Tsolakidis, CRES RES - Status Quo, Potential and Prospects Vasileios Tsolakidis, CRES 20 June 2017, Thessaloniki Greek energy sector 2 Source: Eurostat (2017) RES targets Directive 2009/28/EC Gross final energy consumption

More information

Biogas Production from Municipal Solid Waste in Havana, Cuba

Biogas Production from Municipal Solid Waste in Havana, Cuba Powergen Asia 2007 Bangkok Thailand Biogas Production from Municipal Solid Waste in Havana, Cuba Miro R. Susta IMTE AG Switzerland Project Objective To establish at a pilot level the technical and economic

More information

Overview of renewable energy

Overview of renewable energy Overview of renewable energy Outline What is renewable energy? Renewable energy sources Renewable energy technologies: - Characteristics - Uses What is renewable energy? Energy that doesn t run out! Energy

More information

WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT

WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT Marta Starostka-Patyk Czestochowa University of Technology, Faculty of Management, Armii Krajowej 19B, 42-200 Czestochowa, Poland Abstract

More information

Harvest green energy through energy recovery from waste: The story of Singapore. Presenter: Tong Huanhuan PI: Prof Tong Yen Wah 11-Sept-2017

Harvest green energy through energy recovery from waste: The story of Singapore. Presenter: Tong Huanhuan PI: Prof Tong Yen Wah 11-Sept-2017 Harvest green energy through energy recovery from waste: The story of Singapore Presenter: Tong Huanhuan PI: Prof Tong Yen Wah 11-Sept-2017 Contents Seeking renewable energy from MSW Anaerobic Digestion

More information

Technical and commercial Aspects for the Development of Biomass and Biogas Projects

Technical and commercial Aspects for the Development of Biomass and Biogas Projects Technical and commercial Aspects for the Development of Biomass and Biogas Projects Jörg Bohlmann Fichtner GmbH & Co. KG 5848A06/FICHT-7252383-v1 Content of the presentation Pathways for biomass utilization

More information

GIANT KING GRASS: A Dedicated Energy Crop for Electricity Generation, Pellets & Biofuels. Munzer Sundos, PhD

GIANT KING GRASS: A Dedicated Energy Crop for Electricity Generation, Pellets & Biofuels. Munzer Sundos, PhD GIANT KING GRASS: A Dedicated Energy Crop for Electricity Generation, Pellets & Biofuels Munzer Sundos, PhD Chief Business Officer VIASPACE Inc. Irvine, CA USA msundos@viaspace.com www.viaspace.com VIASPACE

More information

Module 3b. Bioenergy end-use and applications

Module 3b. Bioenergy end-use and applications Module 3b Bioenergy end-use and applications Outline Solids, gas, liquids Electricity, heat, power, CHP Prime movers Small scale rural and urban usage Modern industrial usage slide 2/24 1 Biofuels Solid

More information

ECN Research and Development in bioenergy

ECN Research and Development in bioenergy ECN Research and Development in bioenergy June 2014, Environmental Day, Sao Paulo Tatjana Komissarova, Corporate business developer www.ecn.nl BRAZIL Brazil is nowadays the largest and BEST bioethanol

More information

CENTRO NACIONAL DE ENEGÍAS RENOVABLES NATIONAL RENEWABLE ENERGY CENTER OF SPAIN

CENTRO NACIONAL DE ENEGÍAS RENOVABLES NATIONAL RENEWABLE ENERGY CENTER OF SPAIN CENTRO NACIONAL DE ENEGÍAS RENOVABLES NATIONAL RENEWABLE ENERGY CENTER OF SPAIN Goizeder Barberena Strategy and Business Development Manager gbarberena@cener.com BIO2C Biorefinery and Bioenergy Centre

More information

OPTIMISATION OF WOOD-FIRED BOILERS USING OPTICAL SENSORS

OPTIMISATION OF WOOD-FIRED BOILERS USING OPTICAL SENSORS OPTIMISATION OF WOOD-FIRED BOILERS USING OPTICAL SENSORS Jean-Bernard MICHEL - University of Applied Sciences of Western Switzerland - Geneva O. Sari - University of Applied Sciences of Western Switzerland

More information

Introduction. Andrew Clinton Supply Chain and Manufacturing Operations Specialist Leader Deloitte Consulting LLP

Introduction. Andrew Clinton Supply Chain and Manufacturing Operations Specialist Leader Deloitte Consulting LLP Introduction Andrew Clinton Supply Chain and Manufacturing Operations Specialist Leader Deloitte Consulting LLP Waste to Energy in the Renewable and Alternative Energy Space Roy Johnston Director Corporate

More information

Modelling Biomass in TIMES models

Modelling Biomass in TIMES models Modelling Biomass in TIMES models Hilke Rösler, Sander Lensink Amsterdam 22 th October 2007 www.ecn.nl Introduction NEEDS project: building 29 country models, representation of the complete energy system

More information

Sustainable Bioenergy Solutions from Viessmann

Sustainable Bioenergy Solutions from Viessmann Sustainable Bioenergy Solutions from Viessmann Foil 2, 11/2014 Viessmann Manufacturing Viessmann Company Profile 3rd generation, family owned company. Founded in 1917. 22 production facilities in 11 Countries.

More information

Realistic opportunities for wood energy

Realistic opportunities for wood energy Realistic opportunities for wood energy Warren Mabee Forest Products Biotechnology, University of British Columbia 4043-2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 warren.mabee@ubc.ca Forest Sector Competitiveness:

More information

Sustainable Energy Recovery from Organic Waste

Sustainable Energy Recovery from Organic Waste Sustainable Energy Recovery from Organic Waste Waste 2012 Conference - Australia Coffs Harbour ; Elmar Offenbacher www.bdi-bioenergy.com Energy Recovery from Waste Waste Combustion Typical MSW has a moisture

More information

Non-food use of agricultural products Suceava

Non-food use of agricultural products Suceava Non-food use of agricultural products Suceava 26.10.2016 Anniina Kontiokorpi Project Manager, M.Sc. Environmental Technology Regional Council of North Karelia North Karelia in a nutshell the easternmost

More information

WHY WASTE TO ENERGY (WTE)?

WHY WASTE TO ENERGY (WTE)? WASTE TO ENERGY TECHNOLOGIES Missouri Waste Control Coalition Laura Drescher Monday, July 13 th, 2015 WHY WASTE TO ENERGY (WTE)? Heightened interest in green energy with President Obama calling for 80%

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle 11/18/2010 1 st Renewable Energy Technologies, LP 8147 Clear Shade Drive, Windber, PA 15963 Phone: (814) 467-0431 Fax: (814) 467-8675 Email: Sales@1stRET.com Web: www.1stret.com Organic Rankine Cycle The

More information

Sustainable non-food sources of biofuels

Sustainable non-food sources of biofuels African Caribbean and Pacific Group of States Science and Technology Programme Sustainable non-food sources of biofuels Professor Patricia Harvey University of Greenwich p.j.harvey@greenwich.ac.uk 2 April

More information

Integrating Renewable Fuel Heating Systems

Integrating Renewable Fuel Heating Systems Integrating Renewable Fuel Heating Systems An Overview of Wood Heating Systems Better Buildings by Design 2009 February 12th, 2009 Adam Sherman, Program Manager Biomass Energy Resource Center Biomass Energy

More information

EUBCE th European Biomass Conference & Exhibition

EUBCE th European Biomass Conference & Exhibition EUBCE 2017 25th European Biomass Conference & Exhibition CALL FOR PAPERS 12-15 JUNE STOCKHOLM - SWEDEN Call for papers TABLE OF CONTENT Conference Subjects 4 Helpful hints for Abstract Submission 6 NEW!

More information

Biomass as an Energy Resource for Michigan: Opportunities, Challenges and Policies. William A. Knudson Working Paper January 2011

Biomass as an Energy Resource for Michigan: Opportunities, Challenges and Policies. William A. Knudson Working Paper January 2011 THE STRATEGIC MARKETING INSTITUTE WORKING PAPER Biomass as an Energy Resource for Michigan: Opportunities, Challenges and Policies William A. Knudson Working Paper 01-0111 January 2011 80 AGRICULTURE HALL,

More information

Agenda and Goals for Today

Agenda and Goals for Today Creating Renewable Energy From Livestock Waste: Overcoming Barriers to Adoption Power-Gen Renewable Energy and Fuels Conference Brent Gloy Cornell University February 21, 2008 Agenda and Goals for Today

More information

Corn Ethanol Process and Production Economics

Corn Ethanol Process and Production Economics 1 Corn Ethanol Process and Production Economics Presented to the 2007 Fertilizer Outlook and Technology Conference Arlington, VA November 8, 2006 John M. Urbanchuk Director, LECG LLC 1255 Drummers Lane,

More information

Energy balance of algal biogas production

Energy balance of algal biogas production Energy balance of algal biogas production J.J. Milledge & S. Heaven The British Phycological Society 62 nd Annual Meeting 25-27 June 2014, Galway Dr John Milledge Research Fellow Bioenergy Faculty of Science

More information

How to Approach a Biomass Project

How to Approach a Biomass Project How to Approach a Biomass Project Adirondack North Country Biomass 101 Workshop The Wild Center, Tupper lake, New York Kamalesh Doshi, Senior Program Director Biomass Energy Resource Center April 19, 2011

More information

Biogas Technology. INNOVAS (Munich) Proactive Energy Management. in the field of Biogas & Biomass Technology a cooperation with

Biogas Technology. INNOVAS (Munich) Proactive Energy Management. in the field of Biogas & Biomass Technology a cooperation with Biogas Technology in the field of Biogas & Biomass Technology a cooperation with INNOVAS (Munich) partner located in Germany Biogas Bio diesel Biomass E-Power Heat Steam Consultancy Concept Design Projects

More information