The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; Local 2307

Size: px
Start display at page:

Download "The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; Local 2307"

Transcription

1 The Chemistry of Carbon and Global Warming Potentials Dr. Erik Krogh, Department of Chemistry; Local 2307 Biogeochemical Cycling - Where on Earth is all the carbon and what s it doing there? Chemical speciation and Residence time Biogeochemical cycle of Carbon - Sources, Reservoirs, Sinks, Stocks and Fluxes The animations that Erik showed are from the King s Centre for Visualization in Science. There are some other instructive animations including one on Radiative Energy Balance and Ice-Core Analysis.

2 Global Warming Potentials (GWPs) An index developed by the IPCC (1990) 1 based on the time-integrated global mean radiative forcing of a pulse emission of some compound relative to the same mass of CO 2. GWP are calculated over a specific time interval and this value must be stated along with the GWP (typically 100 yrs) or else the number is meaningless. GWPs are a function of three intrinsic properties of a GHG; - absorption efficiency of IR radiation (extinction coefficient) - wavelength of IR radiation (relative to atmospheric IR windows) - atmospheric lifetime (τ= stock/flux and t 1/2 = τ) Global Warming Potentials (GWPs) are one type of simplified index based upon radiative properties that can be used to estimate the potential future impacts of emissions of different gases upon the climate system in a relative sense. High GWPs correlate with a strong infrared absorption coefficients in an atmospheric IR window and a long atmospheric lifetime. A gas has the most effect on GWP if it absorbs IR in a "window" of wavelengths where the atmosphere is fairly transparent. Because the GWP of a greenhouse gas depends directly on its infrared spectrum, the use of infrared spectroscopy to study greenhouse gases is centrally important in the effort to understand the impact of human activities on global climate change. The GWP is defined as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas: where TH is the time horizon over which the calculation is considered; a x is the radiative efficiency due to a unit increase in atmospheric abundance of the substance (i.e., Wm -2 kg -1 ) and [x(t)] is the time-dependent decay in abundance of the substance following an instantaneous release of it at time t=0. The denominator contains the corresponding quantities for the reference gas (i.e. CO 2 ). Note that a substance's GWP depends on the timespan over which the potential is calculated. A gas which is quickly removed from the atmosphere may initially have a large effect but for longer time periods as it has been removed becomes less important (see further GWP vales for methane and sulfur hexafluoride over 20 and 100 yr time horizons). Atmospheric Lifetime (yrs) Radiative Efficiency (W m -2 ppb -1 ) GWP GWP GWP 20 year 100 year 500 year CO x CH x N 2 O x SF ,000 22,800 32,600 HFC-23 (CHF 3 ) ,000 14,800 12,200 1 Intergovernmental Panel on Climate Change, Third Assessment Report, accessed Sept 16, 2008

3 Problem Exercises Exercise 1: Carbon Savings in Fuel Efficiency Estimate the mass of carbon dioxide prevented from entering the atmosphere per year year for an automobile rated at 9.2 L/100 km (30 mpg) versus one rated at 14 L/100 km (20 mpg). If the cost of removing carbon dioxide from the atmosphere is estimated to be $200/tonne, estimate the added hidden cost of the less efficient vehicle over a ten year life cycle. Information for Exercises 1 and 2 Density of gasoline ~ 0.75 kg/l % mass of carbon in gasoline ~ 85% Distance driven by average NA automobile 20,000 km/yr

4 Exercise 2: Adjusted Price at the Pump Estimate the adjusted price to a liter of gasoline to offset the cost associated with carbon capture and sequestration (CCS) at $200/ton of CO 2. The current costs of CCS are estimated by the Norwegian state oil company (StatoilHydro) to be roughly $300/ton of CO 2 at their Mongstad plant set to go into full operation in Economists estimate costs of CCS will drop to between $50 100/ton CO 2 with efficiencies of scale and new technologies over the next decade.

5 Exercise 3: Altering the Earth s Atmosphere by Burning Fossil Fuels 2 Background: The primary constituents of the three major types of fossil fuels (natural gas, petroleum and coal) are carbon and hydrogen. When fossil fuel is burned, the oxygen from the atmosphere combines with the carbon to make CO 2 and with the hydrogen to make H 2 O. The Earth s atmosphere contains about 1.8 x moles of air, of which about 7.0 x moles are CO 2 (using the current atmospheric concentration of 390 ppm v, i.e., 390 x 10-6 x 1.8 x ). Information about the average chemical composition and energy content of the three fossil fuels and global consumption rates are summarized below. Average composition Percent combustible of total Worldwide consumption 1980 (x J/yr) Energy content Petroleum CH % (w/w) x 10 6 J/kg Natural Gas CH % (v/v) x 10 7 J/m 3 (STP) Coal CH % (w/w) x 10 6 J/kg In 1980, how much O 2 was removed from the atmosphere due to the combustion of fossil fuels on Earth and how much CO 2 and H 2 O were produced in the combustion process? If all the CO 2 released to the atmosphere in 1980 from fossil-fuel burning remained there, by what percentage would it increase the 1980 atmospheric concentration of 340 ppm v? Update your answer using current fossil fuel consumption estimates. It turns out that H 2 O is a more effective absorber of infrared radiation than is CO 2. Given that the emissions of H 2 O were comparable to those of CO 2, why is there less concern about the effect of H 2 O emissions on the radiative balance in the atmosphere? Rank these fossil fuels based on the mass of CO 2 released per Joule of energy produced. 2 Exercise 3 and 4 adapted from Consider a Spherical Cow: A Course in Environmental Problem Solving, John Harte, University Science Books, Mill Valley, CA, 1988.

6 Exercise 4: Atmospheric CO 2 and the Ocean Sink Background: Prior to the industrial revolution in 1800, the concentration of CO 2 in the atmosphere was about 270 ppm v. Because the atmosphere contains 1.8 x moles of air, there were about 270 x 10-6 x 1.8 x or 4.9 x moles of CO 2 in the atmosphere at that time. The concentration of CO 2 in the atmosphere in 1980 was about 340 ppm v, corresponding to 6.1 x moles of CO 2 a gain of 1.2 x moles. The total CO 2 injected into the atmosphere between 1800 and 1980 is estimated to be about 1.6 x moles. Therefore, 1.2/1.6, or ~75% of the CO 2 originally injected from burning fossil fuels remained present in the atmosphere. A likely possibility is that the oceans have taken up most of the remaining 25%. Using the information in the figure of the carbon cycle, how much more inorganic carbon is present in the Earth s oceans than the atmosphere? What chemical processes are involved in the net flux of atmospheric CO 2 into the ocean? As more CO 2 is dissolved in seawater, what is the predicted effect on the ph of the ocean and the solubility of CaCO 3 and other carbonate bearing minerals?

7 Exercise 5: Assessing the Global Warming Potential of new atmospheric pollutants. Background: It has recently been suggested that nitrogen trifluoride a solvent used in the manufacture of new LCD televisions has significant contributions as a greenhouse gas 3. The global warming potential (GWP) of an atmospheric gas is a measure of its radiative contribution (W m -2 kg -1 ) to global warming relative to that of carbon dioxide. A GWP is calculated over a specific time interval (which must be stated). What information would you need to estimate the global warming potential of NF 3? How would you go about finding this information? What other information is relevant to determine if this gas makes a significant contribution to global warming? 3 For more information of this issue see M.J. Prather and J. Hsu, NF 3, the greenhouse gas missing from Kyoto, Geophysical Res. Letters, 35, L12810, 2008 and Velders et al., The large contribution of projected HFC emissions to future climate forcing, Proceedings of the National Academy of Science, 106, 10949, 2009.

8 Global Warming Potentials Reading Package for GEOL 412 Readings Included: 1. Something Nasty in the Air, New Scientist, 21 January CFC substitutes will still add to global warming, New Scientist, 14 April, TV Boom may boost Greenhouse Effect, New Scientist, 02 July Table 2.14 Lifetimes, Radiative efficiencies and GWPs relative to CO 2, Chapter 2, Third Assessment Report, IPCC 5. High Global Warming Potential (GWP) Gases, US EPA accessed Sept 24, 2009 Further Readings: 1. M.J. Prather and J. Hsu, NF 3, the greenhouse gas missing from Kyoto, Geophysical Res. Letters, 35, L12810, Velders et al., The large contribution of projected HFC emissions to future climate forcing, Proceedings of the National Academy of Science, 106, 10949, McKenna, Phil, Carbon Control: Turning carbon trash into treasure, New Scientist, Sept 22, Collisional Heating by CO 2 in the Atmosphere and Infrared Spectral Windows accessed Sept 28, 2010

Winter 2009: ATMS/OCN/ESS 588 The Global Carbon Cycle and Greenhouse Gases. Course Goals

Winter 2009: ATMS/OCN/ESS 588 The Global Carbon Cycle and Greenhouse Gases. Course Goals PCC 588 - January 6 and 8 2009 Winter 2009: ATMS/OCN/ESS 588 The Global Carbon Cycle and Greenhouse Gases T,Th 12:00-1:20 pm OSB 25 Course Goals The course focuses on factors controlling the global cycle

More information

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report :

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report : Introduction Greenhouse Gases & Climate Change Laurent Bopp LSCE, Paris When did the story start? ¾1827 Fourier hypothesizes greenhouse effect ¾1860 Tyndal identifies CO2 and water vapor as heat trapping

More information

UN Climate Council Words in red are defined in vocabulary section (pg. 9)

UN Climate Council Words in red are defined in vocabulary section (pg. 9) UN Climate Council Words in red are defined in vocabulary section (pg. 9) To minimize the negative effects of global climate change, scientists have advocated for action to limit global warming to no more

More information

Carbon Management 101

Carbon Management 101 Carbon Management 101 West Michigan Sustainable Business Forum January 12, 2009 Clinton S. Boyd, PHD Sustainable Research Group Decarbonization The systematic reduction of the carbon intensity* of emissions

More information

Effects of Greenhouse Gas Emission

Effects of Greenhouse Gas Emission Effects of Greenhouse Gas Emission Reshmi Banerjee Assistant Professor, Dept. of EE, Guru Nanak Institute of Technology, Kolkata, W.B., India ABSTRACT: Gases that trap heat in the atmosphere are called

More information

climate change Contents CO 2 (ppm)

climate change Contents CO 2 (ppm) climate change CO 2 (ppm) 2007 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Contents 1. Summary 2. Background 3. Climate change: observations 4. CO 2 : ocean acidification 5. OtherGreenhouse

More information

Some resources (more websites later)

Some resources (more websites later) Some resources (more websites later) Intergovernmental Panel Climate Change 2001: The Scientific Basis at http://www.ipcc.ch/pub/reports.htm John Houghton Global Warming - the complete briefing Cambridge

More information

Greenhouse Gas Protocol Accounting Notes No. 1

Greenhouse Gas Protocol Accounting Notes No. 1 Greenhouse Gas Protocol Accounting Notes No. 1 Accounting and Reporting Standard Amendment February, 2012 Required greenhouse gases for inclusion in corporate and product life cycle This Accounting Note

More information

The Chemistry of Climate Change. Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy

The Chemistry of Climate Change. Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy The Chemistry of Climate Change Reading: Chapter 8 Environmental Chemistry, G. W. vanloon. S. J. Duffy The Science of Global Climate There's a lot of differing data, but as far as I can gather, over the

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32)

Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32) Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32) METR 113/ENVS 113 Spring Semester 2011 February 15, 2011 Suggested Reading

More information

Fact sheet 18 June Selecting and Using GWP values for Refrigerants

Fact sheet 18 June Selecting and Using GWP values for Refrigerants Selecting and Using GWP values for Refrigerants Summary and Recommendations Refrigerant GWP values have been revised with each new IPCC Assessment Report. Regulations and guidance for the use of GWP values

More information

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge GLOBAL WARMING Editorial Prof. B.N. Goswami (Director, IITM, Pune) Dr. G. Beig (ENVIS Co-ordinetor) Ms. Neha S. Parkhi (Program Officer) Mr. Rajnikant

More information

Radiative forcing of gases, aerosols and, clouds.

Radiative forcing of gases, aerosols and, clouds. Lecture 23. Radiative forcing of gases, aerosols and, clouds. 1. Concepts of radiative forcing, climate sensitivity, and radiation feedbacks. 2. Radiative forcing of anthropogenic greenhouse gases. 3.

More information

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface 4.4 CLIMATE CHANGE Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface Greenhouse Gases (GHG) Carbon dioxide and water vapour are the most significant greenhouse

More information

Greenhouse Effect. The Greenhouse Effect

Greenhouse Effect. The Greenhouse Effect Greenhouse Effect The Greenhouse Effect Greenhouse gases let short-wavelength radiation come into the Earth s atmosphere from the sun. However, they absorb and re-radiate Earth s long-wavelength radiation

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Basics of greenhouse gases and climate change

Basics of greenhouse gases and climate change Basics of greenhouse gases and climate change Facts and theories We need to distinguish between what we know (facts), and what we think will happen (theories). In the subject of greenhouse gases and global

More information

ATMOSPHERE CHEMISTRY

ATMOSPHERE CHEMISTRY ATMOSPHERE CHEMISTRY Lecture No.: 6 Slide No. 1 Organisation of study Lecturer: Marek Staf, MSc., Ph.D., phone: +420 220 444 458 e-mail:, web: building A, Dept. 216, door No.162 e-learning: Scale of subject:

More information

Japan s National Greenhouse Gas Emissions in Fiscal Year 2013 (Final Figures 1 ) <Executive Summary>

Japan s National Greenhouse Gas Emissions in Fiscal Year 2013 (Final Figures 1 ) <Executive Summary> Japan s National Greenhouse Gas Emissions in Fiscal Year 2013 (Final Figures 1 ) Japan s total greenhouse gas emissions in fiscal year* (FY) 2013 2 were 1,408 million tonnes of carbon

More information

Atmospheric Chemistry

Atmospheric Chemistry Atmospheric Chemistry Research Dr. Husam T. Majeed Department of Atmospheric Sciences 2nd Year Class First Semester 2018-2019 Course Syllabus 1. Introduction & Review Atmospheric Chemistry Box Models and

More information

Monday, October 29, Coming up: Short-term organic carbon cycle (p ) Marine organic carbon cycle and nutrient limitation (p )

Monday, October 29, Coming up: Short-term organic carbon cycle (p ) Marine organic carbon cycle and nutrient limitation (p ) Monday, October 29, 2017 Assessment available until Friday Topic - The Carbon Cycle (Chapter 8) Overview of the carbon cycle (p 149-151) Reservoirs (p 151-152) Steady State (p 152-153) Residence Time (p

More information

Estimated Global Temperature and Growth Rate since Estimated global mean temperature

Estimated Global Temperature and Growth Rate since Estimated global mean temperature 1.1 Global Warming Estimated Global Temperature and Growth Rate since 1850 14.6 Estimated global mean temperature C 14.4 14.2 14.0 13.8 13.6 Period Years 25 50 100 150 Annual mean Smoothed series Growth

More information

GLOBAL WARMING COMPUTER LAB

GLOBAL WARMING COMPUTER LAB GLOBAL WARMING COMPUTER LAB A COMPUTER SIMULATION PROGRAM ON TEMPERATURE CHANGE AND SEA LEVEL RISING After performing this computer simulation lab you will be able to: 1) understand the greenhouse effect

More information

TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition

TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition TODAY: TOPIC #6 WRAP UP!! Atmospheric Structure & Composition There s one more thing to correct in our the depiction of incoming Solar....... the atmosphere is NOT totally TRANSPARENT to INCOMING Solar

More information

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at GLOBAL WARMING Global warming is evidenced by a steady rise in average global temperatures, changing climate, the fact that snow cover has decreased 10% over the past half-century and that glaciers have

More information

Terrie Boguski Harmony Environmental, LLC Kansas State University. January 2010

Terrie Boguski Harmony Environmental, LLC Kansas State University. January 2010 Terrie Boguski Harmony Environmental, LLC Kansas State University January 2010 What are Greenhouse Gases? Gases that allow sunlight to enter the atmosphere freely. When sunlight strikes the Earth s surface,

More information

Global Warming Potentials in AR4. V. Ramaswamy. NOAA/ Geophysical Fluid Dynamics Laboratory, Princeton University

Global Warming Potentials in AR4. V. Ramaswamy. NOAA/ Geophysical Fluid Dynamics Laboratory, Princeton University Global Warming Potentials in AR4 V. Ramaswamy NOAA/ Geophysical Fluid Dynamics Laboratory, Princeton University GWP Definition Defined as the ratio of the time-integrated radiative forcing from the instantaneous

More information

Geochemistry of other trace gases (non-c02 greenhouse gase Global Warming Science March Dan Cziczo Reading: Archer, Chapter 4

Geochemistry of other trace gases (non-c02 greenhouse gase Global Warming Science March Dan Cziczo Reading: Archer, Chapter 4 Geochemistry of other trace gases (non-c02 greenhouse gase 12 340 Global Warming Science March 20 2012 Dan Cziczo Reading: Archer, Chapter 4 oday s Class recap the atmosphere and greenhouse concept he

More information

Climate Change: The Debate

Climate Change: The Debate Climate Change: The Debate Key Concepts: Greenhouse Gas Carbon dioxide Fossil fuels Greenhouse effect Greenhouse gases Methane Nitrous oxides Radiative forcing WHAT YOU WILL LEARN 1. You will learn about

More information

Fast Facts. U.S. Transportation Sector Greenhouse Gas Emissions

Fast Facts. U.S. Transportation Sector Greenhouse Gas Emissions U.S. Transportation Sector Greenhouse Gas Emissions 1990-2014 Office of Transportation and Air Quality EPA-420-F-16-020 June 2016 Transportation Emissions of the United States The transportation sector

More information

Radiative Forcing Components

Radiative Forcing Components Radiative Forcing Components Content Definition of Radiative Forcing Radiation Balance Climate sensitivity Solar forcing Forcing due to atmospheric gas Definition of Radiative Forcing In climate science,

More information

OVERVIEW AND INTRO TO CLIMATE SCIENCE MIT SUMMER HSSP, 2016 WEEK 1

OVERVIEW AND INTRO TO CLIMATE SCIENCE MIT SUMMER HSSP, 2016 WEEK 1 OVERVIEW AND INTRO TO CLIMATE SCIENCE MIT SUMMER HSSP, 2016 WEEK 1 COURSE OVERVIEW THIS IS GOING TO BE FUN (I HOPE ) JOSH S BACKGROUND MIT: 2 nd Year Ph.D. Student Researching Atmospheric Chemistry U.C.

More information

MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH

MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH MAE 119 W2018 FINAL EXAM PROF. G.R..TYNAN Part I: MULTIPLE CHOICE SECTION 2 POINTS EACH 1. Which best describes the working definition of energy used in class: a. Energy can be transformed and in doing

More information

Earth s Atmosphere Lecture 14 2/28/2013

Earth s Atmosphere Lecture 14 2/28/2013 Earth s Atmosphere Lecture 14 2/28/2013 MRS 1 Due Tuesday The Earth s atmosphere has changed substantially over our planet s history First gases surrounding Earth were originally hydrogen and helium (during

More information

Earth s Atmosphere Lecture 14 3/6/2014

Earth s Atmosphere Lecture 14 3/6/2014 Earth s Atmosphere Lecture 14 3/6/2014 MRS 1 Due Tuesday Second exam will be postponed until after spring break The sun drives the climate of Earth http://www.spaceweather.com/images2002/18mar02/cme_c3_big.gif

More information

Japan s National Greenhouse Gas Emissions in Fiscal Year 2016 (Final Figures 1 ) <Executive Summary>

Japan s National Greenhouse Gas Emissions in Fiscal Year 2016 (Final Figures 1 ) <Executive Summary> Japan s National Greenhouse Gas in Fiscal Year 2016 (Final Figures 1 ) Japan s total greenhouse gas 2 in fiscal year (FY) 2016 were 1,307 million tonnes of carbon dioxide equivalents

More information

Information on Global Warming Potentials

Information on Global Warming Potentials UNITED NATIONS Distr. GENERAL FCCC/TP/2004/3 15 June 2004 ENGLISH ONLY Information on Global Warming Potentials Technical Paper Summary Global Warming Potentials (GWPs) are used to estimate, compare and

More information

Main Natural Sources of Greenhouse Gases

Main Natural Sources of Greenhouse Gases Main Natural Sources of Greenhouse Gases Content Atmospheric Composition Composition of the Earth s Atmosphere Greenhouse Gases The Radiative Forcing bar chart: AR5 version Natural Greenhouse Gases Water

More information

Other GHGs. IPCC Climate Change 2007: The Physical Science Basis

Other GHGs. IPCC Climate Change 2007: The Physical Science Basis Other GHGs IPCC Climate Change 2007: The Physical Science Basis 1 Atmospheric Chemistry and other long-lived GHG during the industrial period 1750-2000 The radiative forcing of climate during the period

More information

What Exactly is a Greenhouse Gas?

What Exactly is a Greenhouse Gas? 1 What Exactly is a Greenhouse Gas? You may have stood in a greenhouse and felt the heat, but what do greenhouse gases have to do with greenhouses? A greenhouse gas is any gas that absorbs and re-emits

More information

Chapter 2. Climate Change: Scientific Basis

Chapter 2. Climate Change: Scientific Basis a. The Greenhouse Effect Chapter 2 Climate Change: Scientific Basis Climate scientists have clearly established that: The Earth s atmosphere is like a greenhouse, reflecting some of the sun s harmful rays

More information

Global Warming Potentials as revised in 2013

Global Warming Potentials as revised in 2013 LEARN ABOUT Climate change, global warming & HFCs Created: October 2013 Updated: January 2016 In preparation for the Fifth Scientific Assessment Report (AR5) by the Intergovernmental Panel on Climate Change

More information

Chemistry 471/671. Global Climate Change

Chemistry 471/671. Global Climate Change Chemistry 471/671 Global Climate Change The Greenhouse Effect and Global Warming These are NOT the same thing! To begin with, let s make the distinction 2 Earth Average temperature 15 C Average pressure:

More information

Executive Summary [BEGIN BOX] Box ES- 1: Recalculations of Inventory Estimates

Executive Summary [BEGIN BOX] Box ES- 1: Recalculations of Inventory Estimates Executive Summary Central to any study of climate change is the development of an emissions inventory that identifies and quantifies a country's primary anthropogenic 1 sources and sinks of greenhouse

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Global Climate Change

Global Climate Change Global Climate Change Greenhouse Gases and Earth s Energy Balance 400 380 CO 2 in air 360 340 320 1960 1970 1980 1990 2000 2010 Year Global Climate Change 1 / 30 Outline of Topics 1 The Natural Earth System

More information

Table TSD-A.1 Source categories included under Section 202 Section 202 Source IPCC Sector IPCC Source Category Greenhouse Gases

Table TSD-A.1 Source categories included under Section 202 Section 202 Source IPCC Sector IPCC Source Category Greenhouse Gases Technical Support Document Section 202 Greenhouse Gas Emissions Roadmap to Annex This Annex describes greenhouse gas emissions information from Section 202 source categories. The Annex provides an overview

More information

Explore one of the global environmental issues associated with increased combustion of fossil fuels.

Explore one of the global environmental issues associated with increased combustion of fossil fuels. 6.2 Energy Use and the Atmosphere Purpose Explore one of the global environmental issues associated with increased combustion of fossil fuels. Introduction Carbon dioxide (CO 2 ) is a colorless, odorless

More information

READING QUESTIONS: Global Climate Change GEOL /WI. 2. Fill in the blanks in the following sentences from the textbook (p.

READING QUESTIONS: Global Climate Change GEOL /WI. 2. Fill in the blanks in the following sentences from the textbook (p. READING QUESTIONS: Global Climate Change GEOL 131 18/WI NAME DUE: Tuesday, April 24 57pts Climate and Geology (p. 382) 1. List the five spheres included in the climate system. (5 pts) Detecting Climate

More information

Fast Facts. U.S. Transportation Sector Greenhouse Gas Emissions

Fast Facts. U.S. Transportation Sector Greenhouse Gas Emissions U.S. Sector Greenhouse Gas Emissions 1990-2011 Office of and Air Quality EPA-420-F-13-033a September 2013 Emissions of the United States The transportation end-use sector 1 is one of the largest contributors

More information

Climate: Earth s Dynamic Equilibrium

Climate: Earth s Dynamic Equilibrium Climate: Earth s Dynamic Equilibrium review session CCIU April 30, 2016 High-school standard HS-ESS2-4 focuses on the role energy flows play in Earth s climate HS-ESS2-4 Use a model to describe how variations

More information

The IPCC 2006 Guidelines and their evolution from the Revised 1996 Guidelines

The IPCC 2006 Guidelines and their evolution from the Revised 1996 Guidelines Inventories INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE IPCC National Greenhouse Gas Inventories Programme The IPCC 2006 Guidelines and their evolution from the Revised 1996 Guidelines Simon Eggleston IPCC

More information

Overview of GHG emissions from energy generation

Overview of GHG emissions from energy generation of GHG emissions from energy generation of greenhouse gas emissions and the contribution from energy generation Electricity generation Greenhouse gas emissions by sector Contribution from electricity generation

More information

CO 2 equivalent with Advanced High-Strength Steels

CO 2 equivalent with Advanced High-Strength Steels CO 2 equivalent with Advanced High-Strength Steels Dr. Roland Geyer The Donald Bren School of Environmental Science and Management University of California at Santa Barbara Outline Outline Greenhouse Gas

More information

Statewide Greenhouse Gas Emissions inventory data with preliminary emissions estimates for 2016

Statewide Greenhouse Gas Emissions inventory data with preliminary emissions estimates for 2016 Oregon Greenhouse Gas Statewide Sector-Based Inventory Statewide Greenhouse Gas Emissions 1990-2015 inventory data with preliminary emissions estimates for 2016 Oregon s greenhouse gas statewide sector-based

More information

Chapter 19 Global Change. Wednesday, April 18, 18

Chapter 19 Global Change. Wednesday, April 18, 18 Chapter 19 Global Change Module 62 Global Climate Change and the Greenhouse Effect After reading this module you should be able to distinguish among global change, global climate change, and global warming.

More information

At present rates of increase it would take about 360 years for atmospheric methane levels to double.

At present rates of increase it would take about 360 years for atmospheric methane levels to double. The Methane Misconceptions A paper by Dr Wilson Flood Summary A doubling of the amount of methane in the atmosphere with its present composition would produce a warming equal to only about one thirtieth

More information

Major Volcanic Eruptions in the past. Major Volcanic Eruptions in the past. Volcanic Eruptions and Global Temperature

Major Volcanic Eruptions in the past. Major Volcanic Eruptions in the past. Volcanic Eruptions and Global Temperature Mechanism of Volcanic Perturbation Amount of sunlight scattered depends greatly on size and amount of aerosol particles The global monitoring of aerosols began in ~1980 Hence, the history of the amplitude

More information

1. The diagram below shows a greenhouse.

1. The diagram below shows a greenhouse. 1. The diagram below shows a greenhouse. 5. A gradual increase in atmospheric carbon dioxide would warm Earth s because carbon dioxide is a A) poor reflector of ultraviolet radiation B) good reflector

More information

Contributory Role of Atmospheric Methane and the Natural Gas Industry on Global Warming Radiative Forcing

Contributory Role of Atmospheric Methane and the Natural Gas Industry on Global Warming Radiative Forcing Supplemental Information Contributory Role of Atmospheric Methane and the Natural Gas Industry on Global Warming Radiative Forcing RADIATIVE FORCING AND ATMOSPHERIC METHANE The National Oceanic & Atmospheric

More information

Maxwell Climate Change Workshop Background: The Nature of the Problem

Maxwell Climate Change Workshop Background: The Nature of the Problem Maxwell Climate Change Workshop Background: The Nature of the Problem Peter J Wilcoxen Departments of Economics and Public Administration The Maxwell School of Syracuse University September 21, 2010 1

More information

Possible Exam Questions for Other Topics in Chemistry 10

Possible Exam Questions for Other Topics in Chemistry 10 Climate Change (first exam) Possible Exam Questions for Other Topics in Chemistry 10 1. Convert between the following terms and definitions Anthracite = the highest rank of coal harder, glossy black coal

More information

Fossil Fuels, Fossil Rules and Fossil Fools

Fossil Fuels, Fossil Rules and Fossil Fools Name: Date: Fossil Fuels, Fossil Rules and Fossil Fools You ve probably heard the term fossil fuels before. Maybe you already know all about fossil fuels. Maybe you stopped and wondered: What are fossil

More information

Chemistry in the Environment

Chemistry in the Environment Chemistry in the Environment Section 261 Earth s Atmosphere In your textbook, read about the terms used to describe the physical and chemical properties of Earth s atmosphere Complete each statement 1

More information

How Can Thermal Effects Be Explained?

How Can Thermal Effects Be Explained? How Can Thermal Effects Be Explained? Lesson 6, Part 3: Climate Science The Enhanced Greenhouse Effect The Earth will maintain equilibrium (constant stable temperature level) if the energy coming in is.

More information

Greenhouse Gas Emissions: Past, Present and Future

Greenhouse Gas Emissions: Past, Present and Future Greenhouse Gas Emissions: Past, Present and Future Session 5, Changing Planet Workshop, June 27 30, 2011, Dickinson College, Carlisle, PA Neil Leary, Center for Sustainability Education, Dickinson College

More information

Greenhouse Gas Inventory

Greenhouse Gas Inventory 3 Greenhouse Gas Inventory n emissions inventory that identifies and quantifies a country s primary anthropogenic1 sources and sinks of greenhouse gases is essential for addressing climate change. The

More information

Chapter 19 Global Change

Chapter 19 Global Change Chapter 19 Global Change Global Change Global change- any chemical, biological or physical property change of the planet. Examples include cold temperatures causing ice ages. Global climate change-changes

More information

GLOBAL WARMING AND THE EFFECT ON AGRICULTURE

GLOBAL WARMING AND THE EFFECT ON AGRICULTURE GLOBAL WARMING AND THE EFFECT ON AGRICULTURE L. Duckers Agriculture and the environment are closely and inextricably linked to each other. In this paper the changes to the global climate are examined,

More information

Why is carbon dioxide so important? Examining the evidence

Why is carbon dioxide so important? Examining the evidence Why is carbon dioxide so important? Examining the evidence In the light of new evidence and taking into account the remaining uncertainties, most of the observed warming over the last 50 years is likely

More information

Overview of Global Warming, Ozone Depletion, and Air Quality

Overview of Global Warming, Ozone Depletion, and Air Quality Overview of Global Warming, Ozone Depletion, and Air Quality AOSC 433/633 & CHEM 433/633 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2013 Notes: Ross, Allison & Tim co-teach this

More information

Draft Environmental Impact Statement

Draft Environmental Impact Statement The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021 2026 Passenger Cars and Light Trucks Draft Environmental Impact Statement July 2018 Docket No. NHTSA-2017-0069 Greenhouse Gas

More information

Training workshops on mainstreaming climate change in national development planning and budgeting HANDOUT FOR PARTICIPANTS

Training workshops on mainstreaming climate change in national development planning and budgeting HANDOUT FOR PARTICIPANTS Global Climate Change Alliance Support Facility Training workshops on mainstreaming climate change in national development planning and budgeting HANDOUT FOR PARTICIPANTS MODULE 3 Understanding the basics

More information

Climate Change Vocabulary Global Challenges for the 21 st Century Tony Del Vecchio, M.Ed. Atmosphere

Climate Change Vocabulary Global Challenges for the 21 st Century Tony Del Vecchio, M.Ed. Atmosphere Atmosphere The mixture of gases surrounding the Earth. The Earth's atmosphere consists of about 79.1% nitrogen (by volume), 20.9% oxygen, 0.036% carbon dioxide and trace amounts of other gases. The atmosphere

More information

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018 1 Physics 100 Lecture 17 The Greenhouse Effect and Global Warming April 2, 2018 2 Class Quiz Ch. 7: Suppose your car burned bituminous coal instead of gasoline. How much coal would provide the same energy

More information

CO 2 Capture and Storage: Options and Challenges for the Cement Industry

CO 2 Capture and Storage: Options and Challenges for the Cement Industry CO 2 Capture and Storage: Options and Challenges for the Cement Industry Martin Schneider, Düsseldorf, Germany CSI Workshop Beijing, 16 17 November 2008 CO 2 abatement costs will tremendously increase

More information

Is Your Landfill Generating Carbon Credits, or Just Hot Air? A Verifier s s Perspective

Is Your Landfill Generating Carbon Credits, or Just Hot Air? A Verifier s s Perspective Is Your Landfill Generating Carbon Credits, or Just Hot Air? A Verifier s s Perspective Presented June 26, 2008 Virginia SWANA Conference 2008 By Matt Lamb Richardson Smith Gardner and Associates Global

More information

Chapter 19 Global Change

Chapter 19 Global Change Chapter 19 Global Change Global Change change - any chemical, biological or physical property change of the planet. Examples include cold temperatures causing ice ages. Global change - changes in the climate

More information

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Klimaänderung Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Vorlesung WS 2017/18 LMU München 6. Kohlenstoff- und andere biogeochemische Kreisläufe

More information

U.S. Emissions

U.S. Emissions PSEG Voluntary Greenhouse Gas Emissions Inventory 2000 2006 U.S. Emissions Public Service Enterprise Group (PSEG) 80 Park Plaza Newark, NJ 07102 www.pseg.com October 2007-1- Printed on Recycled Paper Table

More information

Overview of Global Warming, Ozone Depletion, and Air Quality AOSC 433 & 633. Ross Salawitch

Overview of Global Warming, Ozone Depletion, and Air Quality AOSC 433 & 633. Ross Salawitch Overview of Global Warming, Ozone Depletion, and Air Quality AOSC 433 & 633 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Note: An entry for CHEM 433 has appeared on Testudo

More information

J.O. Sewall. The Climate Challenge: Setting the Context for Considering our Energy Future Options. Jacob O. Sewall

J.O. Sewall. The Climate Challenge: Setting the Context for Considering our Energy Future Options. Jacob O. Sewall The Climate Challenge: Setting the Context for Considering our Energy Future Options Jacob O. Sewall Department of Geosciences Virginia Tech Warming Our Planet NASA Steele Hill/NASA Steele Hill/NASA NASA

More information

An emissions inventory that identifies and quantifies a country s primary anthropogenic1 sources and sinks of

An emissions inventory that identifies and quantifies a country s primary anthropogenic1 sources and sinks of Executive Summary An emissions inventory that identifies and quantifies a country s primary anthropogenic1 sources and sinks of greenhouse gases is essential for addressing climate change. This inventory

More information

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms The Carbon Cycle Carbon is an essential part of life on Earth. About half the dry weight of most living organisms is carbon. It plays an important role in the structure, biochemistry, and nutrition of

More information

Emissions of Selected Greenhouse Gases from a Landfill. Jim Hanson, Ph.D., PE Alex Sohn Nazli Yesiller, Ph.D. Derek Manheim, M.S.

Emissions of Selected Greenhouse Gases from a Landfill. Jim Hanson, Ph.D., PE Alex Sohn Nazli Yesiller, Ph.D. Derek Manheim, M.S. Emissions of Selected Greenhouse Gases from a Landfill Jim Hanson, Ph.D., PE Alex Sohn Nazli Yesiller, Ph.D. Derek Manheim, M.S. SWANA 2016 San Luis Obispo, California April 14th, 2016 F-Gases Chlorinated

More information

Akira Sekiya. Background and targets

Akira Sekiya. Background and targets United Nations Forum on Climate Change Mitigation, Fuel Efficiency and Sustainable Urban Transport Korea Press Center, Seoul, Republic of Korea 6-7 March 2 Reducing the climate impacts of mobile air conditioning

More information

Climate Change, Greenhouse Gases and Aerosols

Climate Change, Greenhouse Gases and Aerosols Climate Change, Greenhouse Gases and Aerosols J Srinivasan J Srinivasan is a Professor at the Centre for Atmospheric and Oceanic Sciences at Indian Institute of Science, Bangalore. He was a lead author

More information

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed?

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Prepare for Learning A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Why is carbon important? Carbon is the main constituent of all living cells (biochemistry, organic chemistry) Component

More information

Climate Change and Ozone Depletion

Climate Change and Ozone Depletion Climate Change and Ozone Depletion Troposphere 78% N 2, 21% O 2, 0.09% Ar,, 0.035% CO 2 Global warming occurs here Stratosphere global sunscreen (ozone layer) Keeps 95% of the sun s s harmful UV radiation

More information

Project report on. Climate Change and Carbon Emission

Project report on. Climate Change and Carbon Emission Project report on Climate Change and Carbon Emission Introduction Climate is not the same as weather, but rather, its meteorological elements include precipitation, temperature, humidity, sunshine, wind

More information

3.6 Greenhouse Gases and Climate Change

3.6 Greenhouse Gases and Climate Change 3.6 Greenhouse Gases and Climate Change 3.6.1 Introduction This section describes existing conditions for climate change impacts related to greenhouse gas (GHG) emissions from the Project, and maximum

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then she squeezes the brakes and comes

More information

Insights from the WGI Perspective

Insights from the WGI Perspective Insights from the WGI Perspective Jan Fuglestvedt Lead Author, Chapter 8 WGI, Contributing Author WGIII CWT Synthesis Report Yann Arthus-Bertrand / Altitude SBSTA-IPCC special event on Common metrics to

More information

GLOBAL Energy Flow Thru Atmosphere

GLOBAL Energy Flow Thru Atmosphere GLOBAL Energy Flow Thru Atmosphere Global Atmo Energy Balance In a stable climate, Solar Energy IN = IR Energy OUT IR Out Ahrens, Fig. 2.14 Solar in The Natural Greenhouse Effect: clear sky O 3 8% CH 4

More information

Atmospheric Chemistry (Option 1B)

Atmospheric Chemistry (Option 1B) Atmospheric Chemistry (Option 1B) Introduction Option 1B consists of the following subsections: 1B.1 Oxygen 1B.2 Nitrogen 1B.3 Carbon Dioxide 1B.4 Atmospheric Pollution 1B.5 The Ozone Layer Some chemistry

More information

New Jersey Clean Air Council Primer on Highly Warming Gases and Related Topics

New Jersey Clean Air Council Primer on Highly Warming Gases and Related Topics New Jersey Clean Air Council Primer on Highly Warming Gases and Related Topics Air Quality, Energy and Sustainability New Jersey Department of Environmental Protection December 12, 2018 Commissioner s

More information

Carbon Dioxide and Global Warming Case Study

Carbon Dioxide and Global Warming Case Study Carbon Dioxide and Global Warming Case Study Key Concepts: Greenhouse Gas Carbon dioxide El Niño Global warming Greenhouse effect Greenhouse gas La Niña Land use Methane Nitrous oxide Radiative forcing

More information

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science CLIMATE CHANGE AND ACID RAIN Mr. Banks 7 th Grade Science COMPOSITION OF AIR? COMPOSITION OF AIR? 78% Nitrogen 21% Oxygen 0.93% Argon and other noble gases 0.04% carbon dioxide Variable amounts of water

More information

Curbing Greenhouse Gases: Agriculture's Role

Curbing Greenhouse Gases: Agriculture's Role Curbing Greenhouse Gases: Agriculture's Role Bruce A. McCarl Professor Department of Agricultural Economics Texas A&M University (409) 845-7504 (fax) mccarl@tamu.edu Uwe Schneider Research Associate Department

More information