Conversion of Biomass Particles
|
|
- Sherman Mathews
- 2 years ago
- Views:
Transcription
1 Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy from biomass Combustion of Biomass Particles Pyrolysis of Biomass Particles Biorefinery 1
2 2
3 3
4 80 Million barrels oil per day! Energy scenario s Present consumption of 80 Mbarrels/day In 2030: 120 Mbarrels/day Half of present production sites will be exhausted in 2030 So we need another 80 Mbarrels/day 8 4
5 Drivers for sustainable energy Energy resource scarcity in the long term Costs (oil 150 $ / barrel, ) Environmental and Climate change Mankind s CO 2 emissions Security of supply Matter of politics, Self-sufficiency Decentral electricity production Alternatives! Sustainable energy sources Solar PV Solar heat Wind Biomass Geothermal 5
6 Biomass: closed CO 2 cycle Biomass characteristics Renewable Large quantities available Can be stored & transported Contains C, H (& O) production of conventional (oxygenated) hydrocarbon chemicals & fuels Sustainable (under strict conditions) 6
7 Sustainability Criteria minister Cramer Reduction greenhouse gases No competition with food chain Biodiversity Environmental impact (soil, water,air) Local prosperity Local welfare Biofuels - generations 1 st generation edible 2 nd generation non-edible Waste / Residue Energy crops Sugar Cane Sawdust Grass Vegetable Oil Rice Husk Algae 7
8 Biomass to products Heat Electricity Fuels Chemicals Materials Resources Primary conversion Intermediate Secondary conversion Application Biomass (wood, straw etc) Wet biomass Liquid waste streams Sugar Starch Oil crops Combustion Gasification Pyrolysis Hydro-thermal upgrading Digestion Super Critical Gasification Hydrolysis + Fermentation Extraction + Esterification Producer gas Syn-gas Bio oil Bio crude Biogas Hydrogen Syn-gas Bioethanol Fermentation broth Biodiesel Fischer-Tropsch synthesis Extraction + Esterification Hydrocracking Methanisation De-oxygenation Hydrolysis + Fermentation Heat Electricity Fuel Chemicals 16 8
9 Thermal conversion of biomass Thermal Conversion of Biomass Particles 100 Moisture 100 C 400 C Moisture Volatiles Fixed Carbon Ash Sample Weight [%] Volatiles 900 C Fixed C Ash 0 Nitrogen time, temp. Air 9
10 Combustion CH 1.4 O O 2 CO H 2 O H=-17.5 MJ/kg Process Complete oxidation of the organic material in an air or oxygen environment at high temperatures Conditions T > 850 C air/o 2 Products Heat CO 2, H 2 O and ash Biomass particle heat in the high temp. flue gase air/o 2 Ash 06 March
11 Single Particle Model (mass balances) Single Particle Model (dimensionless) 11
12 Single Particle Model (mechanisms) Single Particle Model (energy balance) Particle overshoot temperature 12
13 Combustion systems Characteristics of Combustion Systems 13
14 Fluidized Bed Combustion (FBC) flue gas steam generation C coal lime stone ash withdrawal combustion air Comparison of Fluidised Bed and Pulverised Fuel Firing fluidised bed bubbling circulating pulverised fuel firing air velocity [m/s] flue gas velocity [m/s] < flue gas temperature [ C] average grain [µm] fuel/inert material [%] 0,5-1 (5) 0, air ratio 1,2 1,2 1,2-1,5 cross sectional heat ,5-6,5 release rate [MW/m²] firing efficiency [%]
15 Gasification CH 1.4 O O 2 CO H 2 Process Thermal degradation of the organic material and partial oxidation of the decomposition products Conditions T = C, T > 1350 C P = 1 70 bar O 2 /H 2 O Products Fuel gas (CO, CO 2, H 2, C n H m, H 2 O, tars) Synthesis gas (CO, H 2, H 2 O, CO 2,) Ash and heat O 2 /H 2 O biomass particle heat fuel gas heat Gasification 15
16 Gasification cher Tropsch (1/2) Flash pyrolysis HEAT Gas (15%) O 2 Biomass particle Oil (70%) HEAT Char (15%) 16
17 Decomposition of biomass decomposition to vapours hemi cellulose cellulose wood lignin temperature o C Elementary processes in pyrolysis heat transfer to the biomass particle intra particle heat transfer primary cracking of the biomass intra particle mass transfer of products external particle mass transfer secondary vapour cracking in the reactor 17
18 Rate determining step Biot number: Bi = h 2r p /λ p Bi << 1 external heat transfer limitation Bi >> 1 internal heat transfer limitation Pyle number: Py = λ p /k b c p ρ p r p 2 Py << 1 internal heat transfer limitation Py >> 1 kinetics controlling factor (external/internal heat transfer resistance) (internal heat transfer/reaction kinetics) Ext. Pyle number: Py = h/k b c p ρ p r p (external heat transfer/reaction kinetics) Py << 1 external heat transfer limitation Py >> 1 kinetics controlling factor With: h = external heat transfer coefficient r p = particle radius λ p = thermal conductivity of particle λ g = thermal conductivity of gas k b = kinetic constant ρ p = particle density c p = specific heat of particle Reaction mechanisms in pyrolysis Pyrolysis: dissociation of biomass many parallel and sequent reactions many products complex to describe biomass primary cracking secondary cracking k g k o k c gas bio-oil char k sg k sc gas char 18
19 Flash pyrolysis of biomass Wood pyrolysis on lab scale - movie 19
20 RPS filter integrated in cyclone Drag force Rotation Centifugal force Particles Gas flow A A Accumulated partic A A Particle separation W p = W gas for small particles = f (flow, D c ) u p = f ( d p, Ω, ρ p η g, r ) 100 % separation if: L d > c w gas u p100% 20
21 particle collection efficiency 100 collection eficiency [%] tobacco smoke [0.55] corn oil [0.27] atmosph. dust [0.57] NaCl [0.42] fly ash [0.76] combust. residue [0.98] theoretical result dimensionless particle diameter [-] PyRos reactor Combustor Regenerator 21
22 Pyrolysis Oil Quality Improvement by Catalysis PyRos pilot-plant 30 kg/h biomass feed 22
23 Near-future applications for pyrolysis oil Biomass Gas condenser PYROLYSIS REACTOR Char Separation Bio-oil Heat Char BIOREFINERY 23
24 Biobased economy In 2030 biobased raw materials can supply at least 30% of the need for raw materials and energy in the Netherlands! More specific: 60% of transport fuels 25% of chemicals and materials 17% of space heating 25% of the electricity demand. 47 Potentials of Biomass The End 48 24
Pyrolysis and Gasification
Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;
Mikko Hupa Åbo Akademi Turku, Finland
Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi
Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:
Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio
Biomass and Biofuels. Biomass
and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert
ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11
ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification
Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels
Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,
What is Bioenergy? William Robinson B9 Solutions Limited
What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly
International Workshop on Bioenergy Policies, Technologies and Financing
International Workshop on Bioenergy Policies, Technologies and Financing Utilisation of Biomass European Technologies and Expectations Dr.-Ing. Herbert-Peter Grimm Ribeirao Preto, September 2004 Energy
Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems
IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria
Biomass to Energy Conversions -Thermochemical Processes-
King Saud University Sustainable Energy Technologies Center (SET) BIOMASS GROUP Biomass to Energy Conversions -Thermochemical Processes- by Dr. Salim Mokraoui PhD Chemical Eng. MS. Mechanical Eng. E-mail:
The role of Biomass in Renewable Energy Sources and its potential for green house gas reduction
The role of Biomass in Renewable Energy Sources and its potential for green house gas reduction Paul van den Oosterkamp EDC conference, Groningen, November 22, 2011 www.ecn.nl Outline The Biomass value
Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches
Thermal Conversion of Animal Manure to Biofuel Samy Sadaka, Ph.D., P.E., P. Eng. Assistant Professor - Extension Engineer University of Arkansas Division of Agriculture - Cooperative Extension Service
Biofuels and Biorefineries
Biofuels and Biorefineries Stella Bezergianni, Angelos Lappas, and Iacovos Vasalos Laboratory of Environmental Fuels and Hydrocarbons (LEFH) (www.cperi.certh.gr) Center of Research & Technology Hellas
MILENA gasification technology for high efficient SNG production from biomass
ECN-RX--05-183 MILENA ification technology for high efficient SNG production from biomass A. van der Drift C.M. van der Meijden H. Boerrigter Published at 14th European Biomass Conference & Exhibition,
The National Bioenergy Center and Biomass R&D Overview
The National Bioenergy Center and Biomass R&D verview Dr. Michael A. Pacheco Director of National Bioenergy Center National Renewable Energy Laboratory May 20, 2004 National Bioenergy Center Announced
Andre Bezanson Mech 4840
Andre Bezanson Mech 4840 Introduction Pyrolysis is the decomposition of biomass in the absence of oxidizing agents. Usually at around 300-650⁰C Torrefaction is similar to Pyrolysis but occurs at lower
Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining
Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining G. Jungmeier 1, R. Van Ree 2, E. de Jong 3, H. Jørgensen 4, P. Walsh 4, M. Wellisch
Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.
Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass
Green Fuel Nordic The Smart Way. Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks
Green Fuel Nordic The Smart Way Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks Abstract Transitioning to a low-carbon economy is one of the major global
MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.
MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.
Gasification Research at OSU
Gasification Research at OSU Ajay Kumar, Assistant Professor Biobased Products and Energy Center (BioPEC), Biosystems and Agricultural Engineering, Oklahoma State University OK EPSCoR Annual State Conference
Biomass Processes & Technologies Adding Value to Home Grown Resources
FRONTLINE BIOENERGY, LLC Renewable Fuels & Products Biomass Processes & Technologies Adding Value to Home Grown Resources Jerod Smeenk Frontline BioEnergy, LLC Home Grown Energy Conference Morris, MN February
Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor
2011 International Conference on Biology, Environment and Chemistry IPCBEE vol.24 (2011) (2011)IACSIT Press, Singapoore Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor
BFB (bubbling fluidized bed) Power Plants (CHP) Fuel: RDF or Biomass CHP
BFB (bubbling fluidized bed) Power Plants (CHP) Fuel: RDF or Biomass CHP BFB power plant project (CHP) BFB plant is a ready-made, functional power plant. The project is handled from design through to commissioning
Gasification of Renewable Feedstocks for the Production of Synfuels and 2nd Generation Biofuels
Gasification of Renewable Feedstocks for the Production of Synfuels and 2nd Generation Biofuels Dr. A. Günther, Lurgi GmbH Congresso ECOGERMA 2011 AHK Brazil Sao Paulo, Brazil, 30.6.-1.7.2011 Time scale
DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR
DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR Prepared by Salman Zafar BioEnergy Consult (Aligarh, INDIA) and Carlos Serrano Decker TECAM Ltd. (Guayaquil, ECUADOR) May 2009 What is Biomass? Any material
Lecture 1: Energy and Environment
Lecture 1: Energy and Environment Energy is a prime mover of economic growth and is vital to sustain the economy. Energy consumption is an indicator of economic growth of a nation Economic growth depends,
2nd generation biofuels Güssing demo plant
2nd generation biofuels Güssing demo plant Dr. Reinhard Rauch Institute for Chemical Vienna, University of Technology Content IEA Bioenergy Task33 Thermal Gasification of Biomass Overview about research
Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and. Preparation for study trip to the CUTEC-Institute
Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and Energy Park Preparation for study trip to the CUTEC-Institute 1 2nd of November 2009 Current utilization of biomass 2 2nd of November 2009 Fuel cells
Improved solutions for solid waste to energy conversion
Improved solutions for solid waste to energy conversion C. Marculescu * Polytechnic University Bucharest, Romania * Corresponding author. Tel: +40745133713, Fax: +40214029675, E-mail: cosminmarcul@yahoo.co.uk
ENABLING SYNTHESIS OF BIOBASED CHEMICALS & FUELS
ENABLING SYNTHESIS OF BIOBASED CHEMICALS & FUELS CATALYTIC BIOBASED SYNGAS TECHNOLOGY TAR FREE NITROGEN FREE MODULAR LOW COST CIRCULAR APPROACH-ZERO WASTE CIRCULAR-BIOBASED-SUSTAINABLE 2 By 2050, we need
Decentralized Biomass Power Production
Decentralized Biomass Power Production by Dr. Eric Bibeau University of Manitoba (Alternative Energy Research) Biomass Energy II Heat and Power Workshop November 13, 2003 Activity at U of M biomass alternative
DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER
DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER Biomass is a source of renewable energy which is biological material derived from living or recently living organisms such as wood, waste and alcohol fuels.
Biobased Economy. Wageningen UR Food & Biobased Research. InHolland 4 December 2013, Ben van den Broek
Biobased Economy Wageningen UR Food & Biobased Research InHolland 4 December 2013, Ben van den Broek Wageningen UR Food & Biobased Research Wageningen UR University Research Institutes Wageningen UR Food
Production of biochar- different aspects of pyrolysis
Production of biochar- different aspects of pyrolysis Biochar production, from lab to deployment; overview of challenges and opportunities in scaling-up biochar production Ondřej Mašek University of Edinburgh,
Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel
Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Singfoong Cheah Daniel Carpenter Calvin Feik Shealyn Malone National Renewable Energy Laboratory Golden,
The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion
The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion Charles Churchman, P.E. Stephanie England, E.I.T. International Applied Engineering, Inc. Marietta, Georgia
Options for Renewable Hydrogen Technologies
Options for Renewable Hydrogen Technologies Robert J. Evans Electric and Hydrogen Technologies & Systems Energy & Agricultural Carbon Utilization Athens, Georgia June 11-12, 2004 Presentation Outline Hydrogen
Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management
Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management Jeanette Brown, PE, BCEE, D.WRE, F.WEF,F.ASCE NEWEA-Annual Conference January 24, 2018 Presentation
Update on Biomass Gasification in New Zealand
Update on Biomass Gasification in New Zealand IEA Bioenergy Task 33 Meeting, Sweden November 2013 Shusheng Pang Department of Chemical and Process Engineering University of Canterbury Christchurch, New
Three-dimensional modelling of steam-oxygen gasification in a circulating fluidized bed
Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen June, 2012 Three-dimensional modelling of steam-oxygen gasification in a circulating fluidized bed Kari Myöhänen, Lappeenranta
LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS
ECN-RX--04-119 LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS Optimal gasification and gas cleaning systems H. Boerrigter A. van der Drift Presented at Congress on Synthetic Biofuels - Technologies,
Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree
Biorefineries International status quo and future directions Ed de Jong / Rene van Ree Contents 1. Biobased Economy 2. Biorefineries - Definition 3. Biorefineries - Categories 4. Biorefineries - Objective
USE OF BIOMASS IN THE LIGHT OF CO2 EMISSION AND SUSTAINABLE DEVELOPMENT
USE OF BIOMASS IN THE LIGHT OF CO2 EMISSION AND SUSTAINABLE DEVELOPMENT Tamas Dienes Central European University Budapest, Hungary The 23rd International Conference on Solid Waste Technology and Management
Module 1a Biomass Introduction
Module 1a Biomass Introduction Contents 1. Biomass as sustainable energy source/carrier 2. Rationale for renewable energy 3. Biomass as a fuel or feedstock for chemicals slide 2/22 1 1 Biomass or not?
Module 3c. Transportation fuels and biorefineries
Module 3c Transportation fuels and biorefineries Outline 1. Resources 2. Biomass based industries 3. Biorefinery definition 4. Biorefinery opportunities 5. From biomass sugars to residues 6. Fast pyrolysis
CREATIVITY AND EXPERTISE to develop solutions for the marine industry. Green Tech 2016 Marine fuels from forest biomass
CREATIVITY AND EXPERTISE to develop solutions for the marine industry Green Tech 2016 Marine fuels from forest biomass Marine fuels Marine fuels are specified according to ISO 8217:2012 Heavy fuel oil
Research and Development of Biomass conversion Technology in Shanghai JiaoTong University
August 28, 2009 Research and Development of Biomass conversion Technology in Shanghai JiaoTong University Ronghou Liu Professor, Director,PhD Biomass Energy Engineering Research Centre School of Agriculture
Biofuels Research Opportunities in Thermochemical Conversion of Biomass
University of Massachusetts Amherst ScholarWorks@UMass Amherst Conference on Cellulosic Biofuels September 2008 Biofuels Research Opportunities in Thermochemical Conversion of Biomass Douglas Elliott PNL,
GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014
GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able
Modelling of Biomass Pyrolysis
Modelling of Biomass Pyrolysis Samreen Hameed, Adhirath Wagh, Abhishek Sharma, Milin Shah, Ranjeet Utikar and Vishnu Pareek 13/09/2017 A global university Perth Kalgoorlie Dubai Malaysia Singapore Biomass
ECN Research and Development in bioenergy
ECN Research and Development in bioenergy June 2014, Environmental Day, Sao Paulo Tatjana Komissarova, Corporate business developer www.ecn.nl BRAZIL Brazil is nowadays the largest and BEST bioethanol
ECN Gasification expertise
ECN Gasification expertise Berend Vreugdenhil 2016 www.ecn.nl ECN: A rich and evolving history ~600 employees ~20 patents a year ~500 reports in 2011 ~270 conferences in 2011 ~5 licenses a year We are
MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT
MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjørn Qvale, Ulrik Henriksen Technical University of Denmark Jens Dall Bentzen 1 and Reto Hummelshøj COWI A/S ABSTRACT A low-tar,
Liquid Fuel Production by Fast Pyrolysis of Biomass
Liquid Fuel Production by Fast Pyrolysis of Biomass September 2013. DTU International Energy Conference Peter Arendt Jensen, paj@kt.dtu.dk DTU, Chemical Engineering, CHEC Flash pyrolysis process Biomass
Development and optimization of a two-stage gasifier for heat and power production
Journal of Physics: Conference Series PAPER OPEN ACCESS Development and optimization of a two-stage gasifier for heat and power production Related content - Design and implementation of a laserbased absorption
Innovations in Thermal Conversion. Bill Toffey, MABA Stan Chilson, GHD-CET Biosolids Session, WaterJAM September 10, 2012
Innovations in Thermal Conversion Bill Toffey, MABA Stan Chilson, GHD-CET Biosolids Session, WaterJAM September 10, 2012 A Holy Grail for Biosolids Biosolids to Biofuels Enjoys popular public support as
Drying, devolatilization & char oxidation of solid fuel
Drying, devolatilization & char oxidation of solid fuel Oskar Karlström Dr. Sc. Åbo Akademi 2017: Chemistry in Combustion Processes Solid fuel combustion Solid fuel combustion fuel In pulverized fuel combustion,
Sugar Industry Restructuring by Implementing Biorefinery Technology
Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce
Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy
Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild June 2015 ECN-L--15-038 Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild www.ecn.nl Contents Intro ECN
Fast Pyrolysis: Pathway to Unlocking Value from Forest Product Residuals. Randal Goodfellow March 15 th, 2011
Fast Pyrolysis: Pathway to Unlocking Value from Forest Product Residuals Randal Goodfellow March 15 th, 2011 Envergent Envergent Technologies Technologies 2009 2009 Agenda Introduction Rapid Thermal Processing
GASIFICATION: gas cleaning and gas conditioning
GASIFICATION: gas cleaning and gas conditioning A. van der Drift November 2013 ECN-L--13-076 GASIFICATION: gas cleaning and gas conditioning Bram van der Drift SUPERGEN Bioenergy Hub Newcastle, UK 23 October
Research Activities in the Field of Second Generation Biofuels
Research Activities in the Field of Second Generation Biofuels Hermann Hofbauer Transport Fuels: Crucial factor and driver towards sustainable mobility R&Dprojects, research institutions and funding programs
VOL. 39, Introduction
1189 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;
Thermochemical conversion routes of lignocellulosic biomass
Thermochemical conversion routes of lignocellulosic biomass S. GERBINET and A. LEONARD saicha.gerbinet@ulg.ac.be University of Liège LABORATORY of CHEMICAL ENGINEERING Processes and Sustainable development
PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY
International Gas Union Research Conference 2014 PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY Christiaan van der Meijden Luc Rabou Britta van Boven (Gasunie) Bram van der
Pilot Scale Biorefinery for Sustainable Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion
8 th Task Meeting, Chicago, Illinois, 4 6 October, 2010 Pilot Scale Biorefinery for Sustainable Fuels Biomass via Integrated and Catalytic Hydroconversion Steve Lupton UOP LLC, A Honeywell Company IEA
Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass
Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Sanjeev K. Gajjela and Philip H. Steele Department of Forest Products College of Forest Resources Mississippi State University
Biomass Combustion Technology
Lecture-6 Biomass Combustion Technology Combustion Biomass combustion is a complex process that consists of consecutive heterogeneous and homogeneous reactions. The main process steps are drying, devolatilization,
Modelling & experimental validation of biomass-steam gasification in bubbling fluidized bed reactor
Modelling & experimental validation of biomass-steam gasification in bubbling fluidized bed reactor Prasanth Gopalakrishnan Supervisor: Professor Shusheng Pang Co-supervisor: Dr Chris Williamson Department
ORC BOTTOMING OF A GAS TURBINE: AN INNOVATIVE SOLUTION FOR BIOMASS APPLICATIONS
ORC BOTTOMING OF A GAS TURBINE: AN INNOVATIVE SOLUTION FOR BIOMASS APPLICATIONS Questa memoria è tratta in larga parte dalla presentazione del Prof. M. Gaia al convegno ASME sui sistemi ORC (Ottobre 2015)
Exploring the Feasibility of Biosolids to Energy
Exploring the Feasibility of Biosolids to Energy Ohio Water Environment Association Annual Conference June 16, 2010 Agenda A primer on renewable energy What it is and what it isn t What makes sense and
Allothermal Gasification for Indirect Co-Firing
Allothermal Gasification for Indirect Co-Firing A. van der Drift G. Rietveld July 2013 ECN-L--13-059 Allothermal Gasification for Indirect C0-Firing China International Bio-Energy Summit & Expo 2013 3-5
Atom Economical Biofuel Production from Biomass. Devinder Mahajan. AEC 2010 New York Hilton New York. November 8-9, 2010
Atom Economical Biofuel Production from Biomass Devinder Mahajan AEC 2010 New York Hilton New York November 8-9, 2010 Industry/University Cooperative Research Centers *dmahajan@notes.cc.sunysb.edu Our
Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept
Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Sudhakar Sagi 23 rd Nov 2010 Aston University Birmingham The scale of the UK CO 2 challenge Pyrolysis is a thermochemical decomposition
RESEARCH GROUP: Future Energy Technology
RESEARCH GROUP: Email: hermann.hofbauer@tuwien.ac.at Web: http://www.vt.tuwien.ac.at Phone: +43 1 58801 166300 Fax: +43 1 58801 16699 Institute of Chemical Engineering page 1 Project Groups of : Univ.Prof.
Energy-Crop Gasification
Energy-Crop Gasification R. Mark Bricka Mississippi State University Mississippi State, MS Biomass may be obtained from many sources. Already mentioned at this conference are switchgrass, corn stover,
REALIZING RENEWABLE ENERGY POTENTIAL
REALIZING RENEWABLE ENERGY POTENTIAL BY Patrick Hirl, PE Renewable natural gas (RNG) is a universal fuel that enhances energy supply diversity; uses municipal, agricultural and commercial organic waste;
ABLATIVE FAST PYROLYSIS PROCESS FOR VALORIZATION OF RESIDUAL BIOMASS
ABLATIVE FAST PYROLYSIS PROCESS FOR VALORIZATION OF RESIDUAL BIOMASS Tim Schulzke, Group Manager Thermochemical Processes and Hydrocarbons Stefan Conrad Folie 2 Outline 1. Fundamentals of pyrolysis 2.
Energy Densification via Hydrothermal Pre-Treatment of Cellulosic Biomass
Energy Densification via Hydrothermal Pre-Treatment of Cellulosic Biomass AWMA International Specialty Conference: Leapfrogging Opportunities for Air Quality Improvement May 10-14, 2010 Xi an, Shaanxi
NEW 2 MW GASIFICATION PILOT PLANT AT CB2G
NEW 2 MW GASIFICATION PILOT PLANT AT CB2G 5th International Freiberg Conference on IGCC and XtL Technologies, 21-24 May 2012, Leipzig, Germany Gobierno de Navarra Ministerio de Ciencia e Innovación Ciemat
The Next Generation of Biofuels
The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil
Pressurised gasification of coal and biomass for the production of H 2 -rich gas
Department of Energy & Pressurised gasification of coal and biomass for the production of -rich gas J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, M.D. Casal, C.F. Martín, F. Rubiera, J.J. Pis Instituto
Pilot Scale Testing of Biomass Torrefaction Technology. Sudhagar Mani
Pilot Scale Testing of Biomass Torrefaction Technology Sudhagar Mani Assistant Professor, Biological & Agricultural Engineering Faculty of Engineering, University of Georgia, Athens, GA Ph: (706) 542-2358;
Biogas Production from Lignocellulosic Biomass
Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction
GoBiGas Hours of Operation. Anton Larsson IEA FBC and IEA Bioenergy Task 33 joint workshop
GoBiGas 10 000 Hours of Operation Anton Larsson IEA FBC and IEA Bioenergy Task 33 joint workshop 2017 10 24 Our owners say: Göteborg Energi shall actively contribute to the development of a sustainable
Thermochemical Gasification of Agricultural Residues for Energetic Use
Thermochemical Gasification of Agricultural Residues for Energetic Use Uzuneanu Krisztina, Ion V.Ion Thermochemical Gasification of Agricultural Residues for Energetic Use: In this paper we present the
Cleaning biomass generated syngas: is biochar a cheaper alternative to expensive catalysts? Ajay Kumar Oklahoma State University
Cleaning biomass generated syngas: is biochar a cheaper alternative to expensive catalysts? Ajay Kumar Oklahoma State University Biomass Feedstocks Biofuels through Thermochemical Conversions Characterization
The Role of Solid Fuel Conversion in Future Power Generation
The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content
Chemistry of Fossil Fuels and Biofuels
Chemistry of Fossil Fuels and Biofuels HAROLD SCHOBERT The Pennsylvania State University and North-West University CAMBRID GE UNIVERSITY PRESS Contents Preface page xv Acknowledgments xvii Acknowledgments
New Power Plant Concept for Moist Fuels, IVOSDIG
ES THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 91-GT-293 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings
LIQUEFACTION OF BIOMASS AND ORGANIC WASTE BY INTERMITTENT FLUID BED PYROLYSIS (IFB PYROLYSIS)
LIQUEFACTION OF BIOMASS AND ORGANIC WASTE BY INTERMITTENT FLUID BED PYROLYSIS (IFB PYROLYSIS) Roland V. SIEMONS, Clean Fuels b.v. (The Netherlands) Loek BAAIJENS, Clean Fuels b.v. (The Netherlands) ABSTRACT
Introduction to Bioenergy
1 Introduction to Bioenergy 1. Global Warming and Carbon Cycle Carbon Cycle Carbon cycle Carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere,
Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry
Biomass co-firing Technology, barriers and experiences in EU TNO Science and Industry Prof.dr.ir. Gerrit Brem GCEP Advanced Coal Workshop March 15 th -16 th 2005, Provo (UT), USA Presentation overview
Two-stage Gasification of Untreated and Torrefied Wood
133 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 50, 2016 Guest Editors: Katharina Kohse-Höinghaus, Eliseo Ranzi Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-41-9; ISSN 2283-9216
Water Quality Management Nutrient Research and Biomass Production
Water Quality Management Nutrient Research and Biomass Production Dr. Eric Bibeau Mechanical & Industrial Engineering Dept Manitoba Hydro/NSERC Chair in Alternative Energy Conference event by Frontier
Principles of Pyrolysis
Lecture- 10 Principles of Pyrolysis Pyrolysis Pyrolysis is the one of the most common methods in thermal conversion technology of biomass. In pyrolysis, biomass is heated to moderate temperatures, 400-600
The potential and challenges of drop in biofuels
The potential and challenges of drop in biofuels OH OH H O H H OH H HO OH H OH - O 2 H H H H H O H H H C C C C H OH H H H H H HO OH Carbohydrate Hydrocarbon Petroleum-like biofuel H OH Sergios Karatzos,
Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification
Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification Pradeep K. Agrawal School of Chemical and Biomolecular Engineering Georgia Institute of Technology June 15, 2012 Auburn University
SOME CHALLENGES OF BIOMASS
SOME CHALLENGES OF BIOMASS Energy density, moisture Handling characteristics Shelf life and hazards Composition (inorganics) Digestibility and enzyme conversion rates/efficiencies Economics of process