Optimal Investment in Ecological Conservation and Restoration Projects under Climate Change: A Spatial Intertemporal Analysis

Size: px
Start display at page:

Download "Optimal Investment in Ecological Conservation and Restoration Projects under Climate Change: A Spatial Intertemporal Analysis"

Transcription

1 Optimal Investment in Ecological Conservation and Restoration Proects under Climate Change: A Spatial Intertemporal Analysis Koel Ghosh James S. Shortle Pennsylvania State University Carl Hershner Virginia Institute of Marine Science Panel: Consortium for Atlantic Regional Assessment (CARA): Complex Coupled Systems Prepared for presentation at the Open Meeting of the Global Environmental Change Research Community, Montreal, Canada, October, 2003

2 1. INTRODUCTION Proected climate change in this century is expected to pose significant threats to ecosystems and biodiversity. Climate change will affect fundamental ecological processes and the spatial distribution of terrestrial and aquatic species. The successful survival of the species will depend critically on the availability of migration corridors and the existence or emergence of suitable habitats. Because land use can affect these opportunities, a crucial issue in facilitating ecosystem adaptation to climate change is managing land use and landscapes to preserve migration corridors and potentially emergent habitats. This has important spatial implications for ecosystem management in general and conservation and restoration policy analysis and design in particular. Site-specific biotic conditions affect species ability to reproduce, a crucial determinant of successful restoration, thereby making returns to restoration effort site-specific. The returns to investment in ecological conservation and restoration will therefore be affected by the choice of site. Climate change is expected to alter the geographic distribution of the biotic conditions that impact species survival. There is gross uncertainty about where in space the biotic conditions most conducive to species conservation or restoration will emerge. The spatial uncertainty emerges as a key source of uncertainty in dealing with investment in ecological restoration proects. The fact that the locations of the most cost effective sites for conservation and restorations under a changed climate are uncertain raises two important ecologicaleconomic issues. The first has to do with evaluating the option of preserving alternative sites for cost effective restoration. This is important because, although a preserve all 2

3 strategy is infeasible, allowing for development poses the risk of physical irreversibility from altering the ecological basis of particular locations, thus eliminating them as future restoration sites and potentially decreasing the overall restoration opportunities. The second issue arises in context of the opportunity cost of excluding alternative land uses from current conservation or restoration sites that will no longer be useful for conservation purposes under an altered climate. These foregone current benefits are irreversibly lost forever and this is important if we consider heterogeneous preferences over time. These lost benefits, from the social perspective, constitute a part of the economic costs of conservation. This paper tries to explore the spatial implications of climate change for investment in ecological conservation and restoration proects. The paper concentrates on the design of economically optimal strategies for species conservation and restoration in an aquatic environment, using the Submerged Aquatic Vegetation (SAV) restoration program in the lower Chesapeake Bay as a case study. In context of the case study, the paper develops a methodological framework that addresses the key issues of uncertainty, irreversibility and space in climate change that is then used to determine optimal spatial allocation of restoration and competing land uses. The current paper is organized in the following manner. Section 2 introduces the case study and provides detailed background both on how climate change is expected to impact the returns to the restoration program and how existing restoration policies might cease to be optimal unless they are adapted accordingly. The section also highlights how the case study is a good fit for addressing the two ecological economic issues pointed out previously. Section 3 reports the spatial model that has been developed in context of the 3

4 case study and briefly comments on the data. Section 4 lays out the decision analysis that determines what the optimal restoration strategies and land use at the sites will be under the uncertainty of climate. The research is still an on going effort. Section 5 ends with future plans for the study. 2. CASE STUDY SAV s are ecologically important for the aquatic environment of the Chesapeake Bay. They are important natural resources that provide food and habitat for waterfowl, fish and invertebrates and mitigate shoreline erosion. They are also important for water quality, a concern in the Chesapeake Bay, as they produce oxygen, filter and trap sediments, and remove excess nutrients that can fire up unwanted algal growth. SAV abundance in the Chesapeake Bay regions was historically recorded to exceed 600,000 acres but by 1978 aerial surveys conducted by Virginia Marine Resources Commission documented only 41,000 acres (Moore and Orth, 1983). Declining water quality of the Bay characterized by high sediment and nutrient level were held primarily responsible in general. These prompted several diverse bay management and interest groups into planning and implementing SAV restoration programs throughout the bay. It has been established that the presence of SAV is good for the ecological health of the Bay and consequently SAV restoration is a top priority with the Chesapeake Bay Authority. Within the Hampton Roads area in Virginia, the case study site, it is the Virginia Marine Resource Commission that is tasked with restoration efforts. Map 1 shows the case study area, with the red areas on the map indicating existing SAV as of The SAV in this lower bay region is predominantly eelgrass (Zostera Marina) and they occur at water depths of 0.5 to 2 meters. The habitat requirements for SAV are listed as (1) 4

5 temperature, (2) light penetration, (3) water currents and wave action, (4) bottom sediment, and (5) water depth (range: below low tide line to about 2 meters in depth). Map 1: The case study site-hampton Roads area, Virginia. In Virginia, restoration is implemented at sites in which the SAV had been historically abundant. The understanding here is that SAV can be restored in areas where they had been previously known to exist. Combining historic abundance and habitat conditions, historic coverage areas from 0.5 meters to 2 meters in water depth are targeted as SAV restoration sites in Virginia s waters. However, the sites in Virginia prioritized for SAV restoration coincides with locations that have been delineated suitable for aquaculture of oysters. Aquaculture in addition to bringing farmed seafood to the table and providing recreational opportunities 5

6 also assists in resource and habitat restoration. In particular aquaculture is ecologically and economically important for the restoration of the once renowned Bay oyster populations much of which was eliminated due to the onset of parasitic diseases like Dermo and MSX (Leffler, 1998). The decline of the fishery, once the nation's most prosperous, has impacted processing houses and supporting businesses throughout the Bay's waterside communities, especially on the Eastern Shore of Virginia resulting in social and economic pressures. Plants processing oysters declined in number from 80 in 1974 to 28 in 1990 in Virginia alone (Lipton, 2002). In addition, oysters provide important habitat services and also contribute to improving water quality in the Bay by filtering algae. The ecological services provided by the oysters are very similar to the ecological services provided by SAV. Current regulation in Virginia favors SAV over aquaculture in all conflict areas. Under the current policy, aquaculture is prohibited from the waters that house any SAV restoration sites. One of the most well understood impacts of climate change is sea level rise. The National Oceanic and Atmospheric Administration (NOAA) s National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) collects and distributes observations and predictions of water levels and currents. The rate of mean sea level rise or fall determined for the long-term water level stations in Virginia indicate a rising trend. An increase in the sea level implies that the water depth, an important habitat criterion for SAV, will increase at the current restoration sites by the amount of increase in sea level. Everything else remaining unchanged, this means that most suitable habitat conditions will emerge at sites where the appropriate water depth 6

7 occurs post the sea level rise. The current restoration sites will cease to be optimal for restoration because of the change in water depth at these sites. With rising sea level the ideal restoration sites will be migrating to shallower waters. Figure 1 illustrates how changing sea level might results in SAV relocating to shallower depth. The C indicates current sea level while the F indicates the future sea level. The SAV relocate to places where the water depth is appropriate. Figure 1: Migration of SAV in accordance with changing water depth. The maximum abundance of current SAV occurs at the 0.5 meters water depth. As the sea level rises and the sea moves inland, the SAV has restricted opportunities of moving onto land, primarily because it cannot grow on land. Therefore there is the risk of losing a substantial part of SAV that currently exists at the 0.5 meters water depth. One opportunity of conserving the existing SAV lies in the tidal marshes along the coast. The tidal marshes, on account of their biotic similarity with SAV habitat, have the potential for being conservation sites for the SAV to migrate into. There is, however, much uncertainty associated with this possibility of SAV conservation. The first source of uncertainty relates to the ability of the SAV to adopt the 7

8 tidal marshes as their new habitat. The second source of uncertainty surrounds the possibility of current land use changes along the coast eliminating the tidal marshes making them unavailable for conservation purposes. The potential migration of SAV in response to sea level rise has policy implications for resource management in the lower bay area. Under existing policy, the resource manager will continue to restore SAV at current sites. As the habitat conditions decline at these sites with rising sea level, the returns to restoration effort at these sites will be impacted negatively. As the current sites become unsuitable for restoration, they can be opened up to aquaculture. If the bay manager does not anticipate the possibility of change and fails to adapt resource management policies accordingly, it will result in inefficient spatial allocation of SAV conservation and restoration. In addition, there will be the lost aquaculture benefits that will arise out of excluding aquaculture from current restoration sites as per existing policy even when the water depth change makes aquaculture the optimal land use at these sites. Current policy also does not address the possibility of preserving the tidal marshes as future habitat for the SAV. The option of having an alternative site available for SAV conservation provides flexibility to resource managers in terms of where they would chose to conserve the SAV. The flexibility is of some value to the resource manager, as it opens up the opportunity to lowering the costs of obtaining the targeted abundance of SAV. The option of an alternative site therefore also needs to be considered while determining cost effective strategies for SAV restoration. 8

9 3. SPATIAL MODEL & DATA There are two time periods, t = T, T+50 denoting now and fifty years hence respectively. Areas within the entire SAV restoration region of the bay (water area from the coast to the 2 meters depth) having similar water depth are grouped together as sites in the model. Let = -1,-2,-3, -4, -5 be the sites. The negative sign in front of the numbers indicate a site that is currently under water. Let there be an additional site, =0. The site 0 models the coastal strip of land which is not under water in time period T but has the possibility of going under if the sea level rises. Let the water depth at site at time t be indicated by D t. If y unit is the current water depth at site and we consider a x unit rise in sea level, then D y and D = y x. Then, for any x > 0, site = 0 goes under water in T+50 T = T and the water column at the remaining sites will increase by x units. Figure 2 illustrates how the water depth at each site increases by 0.5 meters in response to x = 0.5 meters of sea level rise on a 50 years time horizon The numbers reported within each site represents the relevant water depth within that site at that time period. Thus, corresponding to =0,- 1,-2,-3,-4,-5 and say current water depth given by = 0,0.5,1,1.5,2, 2 +, the water depth D T will be D T +50 = 0.5,1,1.5,2,2.5, The top half of the picture shows the depth details of the spatial layout in time T while the bottom half shows the altered depth details of the same layout at time T+50. The cluster of spots on the 0 th site indicates the presence of tidal marshes in that site. The tidal marshes are potential places for growing SAV in site 0 when it gets submerged in water in time period T+50. 9

10 Figure 2: Diagrammatic representation of the spatial model for SAV migration. As the sea level rises and the water depth increases, the SAV is expected to migrate from site to +1. Let SAV t and HSAV t be the SAV and historic SAV abundance (measured in units of area) present at site at time period t. Then SAV T and SAVT + 50 will be the SAV abundance at site in time T and T+50 respectively. 10

11 Modeling Assumptions Water depth is the only habitat criteria that will change at the sites. None of the other criteria alter between the sites. The areas that come under historical SAV coverage are targeted for restoration. The historical SAV area within each site is not affected by the water depth change at the sites. Consequently, there is no difference in the historical SAV area at each site across time i.e. HSAV = HSAV 50 T T + The shellfish aquaculture suitability areas within each site ( ) are also not affected by sea level rise. The water depth is not a criterion for practicing aquaculture. This implies = A. AT T + 50 Actual or existing SAV abundance at a site alters with changing water depth at the sites i.e. SAV. T SAVT + 50 Only one land use, either SAV restoration (R) or aquaculture (A), can be implemented at a site in any time period. It is possible to switch between water uses instantaneously at each site-there is no lag period involved. At time T, the land use at each site for =-1,-2,-3, -4, -5 is restoration. The current distribution of existing SAV is known. The SAV at site in time period t will depend upon the current water depth at that site, previous SAV presence within that site SAVt 1, and the restoration effort implemented at that site R t. Equation 1 captures this functional relationship, (1) SAV = f D, SAV, R ) t D t ( t t 1 t A t 11

12 R is a binary variable denoting that the land use is restoration site in time t for =1 t R t and otherwise for R t =0. This relationship will be used to proect existing SAV in each of the sites in T+50 time period. Intuitively, one would expect a net loss of SAV abundance for = -4 and -5 as the water depth at these sites will be greater than the depth that can be tolerated by SAV. The SAV abundance in the other sites will depend upon how previous SAV and restoration can contribute to existing SAV abundance at these sites. The positive and negative signs at the bottom of Figure 1 indicate intuitive expectations of gains and losses in SAV abundance at corresponding sites. The (+/0) sign at the bottom of the 0 th band indicate a gain of SAV in this band if the tidal marshes are available and can successfully host the SAV or no gain at all if they are gone. The question marks are for the case where there is no clear intuition of what the SAV abundance will be for that site. Virginia Institute of Marine Science (VIMS) obtained bathymetry information from the Chesapeake Bay Program. The information was then used to create bathymetry bands at incremental depth of 0.5 meters from the coastline all the way to the 2 meters water depth. VIMS also created coverage of current (2001) SAV and historic SAV ( ). The coverage for suitable shellfish aquaculture was obtained from the oyster and hard clam models developed for the VIMS Shallow Water Use Conflict Proect. The Tidal Marsh Inventory data had been completed in 1992 by the Wetlands Research Program at VIMS. The above coverages were unioned together using GIS software ArcInfo. A frequency was run to determine areas of SAV, wetlands, and shellfish aquaculture within each bathymetry bands. The information was then compiled 12

13 on an Excel spreadsheet that lists the area in square meters within each bathymetry band and the acreage of historic SAV, current SAV, and shellfish aquaculture within the bands. The bathymetry bands, ignoring their precise spatial configuration or shape, are fitted as the rectangular sites in the spatial model. Within each bathymetry band we have acreage data on historic SAV ( HSAV t ), currently (2001) existing SAV ( SAV T ), and shellfish aquaculture ( A t ). Restoring a site or implementing aquaculture land use at a site means using up the entire area available within the site as HSAV t and A t respectively for those land use purposes. Detailed maps of the bathymetry bands and the various coverages within the bands are available upon request 1. We can consider only one scenario of sea level rise (0.5 meters in 50 years of time) because we are restricted to bathymetry information at intervals of 0.5 meters. This might be deemed a higher end figure but technical limitations prevent us from considering any other scenario of sea level rise. 4. LAND USE DECISION In order to understand the spatial implications of climate change for investment in ecological conservation and restoration proects optimal strategies, there is need to first proect what the spatial distribution of the SAV will be under sea level rise. Equation (1) provides direction for predicting the SAV abundance at a site in time T+50 under different scenarios of sea level rise and restoration. The functional relationship is not precisely known. Proection of SAV for site would involve proportionately weighing existing (2001) SAV corresponding to the water depth at that site by the acres of SAV that previously existed at that site and acres that are restored within that site. There is no 1 Correspondence: kug2@psu.edu 13

14 prior information to provide guidance on the choice of the weights. Sensitivity analysis of the weights will be conducted to determine the robustness of the proections. The analysis has been broken down into three distinct parts (1, 2, and 3) that differ from one another in the sites and the restoration opportunities that they consider. Part (1) focuses on what the optimal land use practices are at the current restoration sites ( = -1,-2,-3, -4, -5) under the possibility of sea level rise. To do so, it first has to be determined what the optimal land use (A or R) is at these sites post sea level rise. This raises the question of what the decision rule should be for deciding on optimality of land use. The standard way of doing so would be cost benefit analysis. The challenge of doing cost benefit analysis in context of the case study arose in assigning dollar values to the benefits of SAV. Studies on valuation of SAV are non existent. SAV are non marketable goods and there is no price information for it. Indirect values of SAV can be either obtained from market prices of the resources SAV supports and the services it provides or assessed from contingent valuation studies. The latter would require much time while the former would have its share of controversy. The SAV and shellfish benefits cannot be compared using dollar values owing to the lack of information on SAV values. A decision rule that does not depend on valuation of SAV will have to be applied. The Chesapeake Bay Program and other agencies associated with SAV restoration program appear to take the acres of SAV presence as a measure of the success of the SAV restoration program. It seemed appropriate that the final analysis should use acreage/expected acreage of SAV presence as a numeraire for evaluating the restoration option. In addition, there is a consensus among ecologists and bay managerial authorities 14

15 that the SAV community is very important and therefore SAV restoration is more important than any other water use in the shallow waters. The preference on part of the policy makers for SAV restoration must be reflected in the final analysis. We use Multicriteria Analysis (MCA) as the relevant decision rule. Multicriteria methods revolve around preference of decision makers and make way for simultaneous consideration of multiple conflicting obectives. They are also extremely helpful in methodically combining qualitative and quantitative types of information-the type of information we have in our case study. For its many advantages, we opt to use multicriteria decision analysis for determining the optimal land use at the sites post sea level rise. J Let A denote the finite set of n feasible actions a k ( k = 1,2,3..., n) or alternatives at site. For = -1,-2, -3,-4,-5, A = { R, A}, the set consisting of the two possible land use choices available for the water sites. G is the set of m evaluation criteria g i ( i = 1,2,3,..., m) considered relevant to the decision problem in the case study. For the case study, 5 relevant criteria (m=5) have been established and they are (1) Ecological services like habitat (g1) and water quality (g 2 ), (2) Cost of implementing that alternative (g 3 ), (3) Opportunity cost of excluding aquaculture under each alternative (g 4 ), and (4) the resultant SAV abundance at each site accruing out of the alternative choice for that site (g 5 ). Any land use (say a 1 ) will be rated better than another land use (say a 2 ) according to the i th criterion, if g ( a 1 ) g ( a 2 ). i > i The land use choice decision problem for each site for = -1,-2, -3,-4,-5 can be represented in a tabular form or in a 5 2 P matrix whose typical elements g ( a )( i = 1,2,..,5; k = 1,2) i k represents the evaluation of the k th alternative against the i th 15

16 criterion. The matrix P is the evaluation table for site. g i is a qualitative evaluation criterion measured on a nominal or ordinal scale for i = 1, 2,3 and a quantitative evaluation criterion measured on an interval or ratio scale for i =4 and 5. Qualitative evaluation methods like the regime method will then be used for producing a ranking among the alternatives. Weights will be assigned to the different criteria that reflect prioritization among the criteria by the decision makers. Decision trees combining available strategies and probabilities will be created. The payoff against each strategy will be stated in terms of (i) expected gains or losses in SAV acres, (ii) costs of restoration incurred, and (iii) opportunity cost of aquaculture. The land use choice that performs the best using some decision rule (MCA or expected acreage of SAV per unit cost) will be the optimal current land use choice at any given site under the uncertainty of sea level rise. Part (2) considers the optimal strategies for conserving/restoring SAV under sea level rise, given the availability of an alternate site, =0. If sea level does rise, SAV will vanish from bands =-4, -5 at one end of the restoration region but will be able to grow in the tidal marshes at site =0. Thus there arises the possibility of trading restoration opportunities between these sites. The strategies available to the decision maker under this set up are (a) restore site = -4, -5 but do nothing about protecting site =0, (b) restore = -4, -5 and also protect site =0, and (c) do not restore site = -4, -5 (equal to opening it to aquaculture) but protect site =0. The methodology here involves construction of decision tree and determining the payoffs (expected SAV acreage against the costs of obtaining it) for each strategy. The next step in this analysis would be to either impose a SAV target constraint and look 16

17 for cost effectiveness among the strategies or alternatively impose a budget constraint and look for the strategy that is both feasible and maximizes expected acreage of SAV. In part (3), the obective is to value the option of having an extra site available for growing SAV. If this site was not available, resource managers would have no choice but to restore the extreme sites given by = -4, -5. The possibility of having the other site available for restoration allows the managers the freedom of not restoring the extreme sites. This freedom will exist as long as the tidal marshes at site 0 are available. If due to land uses along the coast, they were to be eliminated, then no SAV can be gained in case of sea level rise. The option of the alternative site has value and resource managers need to evaluate that to know how much is it worth to protect the tidal marshes. In (3) the decision tree in part (2) will be modified by the inclusion of another chance node that represents whether site 0 will be available or not. The aim here is to treat strategies (a) and (b) listed in (2) above as investment choices. Some notion of acreage versus costs will be used to capture the aspect of value of or payoff against the strategies. The difference in value under strategy (a) from the value under strategy (b), if positive, will be the option value of preserving the site. 5. FUTURE PLANS Immediate future plans consist of achieving the empirical part of the analysis. There are data issues and informational gaps that need to be worked around. Long term future plans of the CARA proect for the case study include conducting value of information studies improved forecasts of sea level rise or proection of land uses along the coast. Climate change will also impact the temperature of the waters in which SAV thrive. 17

18 Temperature change along with sea level rise can be considered to fully understand the impacts of climate change on SAV restoration. Reference: Leffler, M. (1998). Aquaculture and Restoration. Maryland Marine notes, Education and Outreach from Maryland Sea Grant 16. Lipton, D. (2002). Chesapeake Bay Oyster Economics. Orth, R. J. and K. A. Moore Chesapeake Bay: An Unprecedented Decline in Submerged Aquatic Vegetation. Science. 222:

Commercial Shellfish Aquaculture in the Inland Bays

Commercial Shellfish Aquaculture in the Inland Bays Commercial Shellfish Aquaculture in the Inland Bays What is Aquaculture? Aquaculture: the husbandry or controlled cultivation of aquatic plants and animals Husbandry Controlled Aquatic - application of

More information

Coastal Resource Management Planning

Coastal Resource Management Planning College of William and Mary W&M Publish Reports Spring 2011 Coastal Resource Management Planning Center for Coastal Resources Management, Virginia Institute of Marine Science Follow this and additional

More information

Impacts of Climate Change on Coastal Virginia and Chesapeake Bay:

Impacts of Climate Change on Coastal Virginia and Chesapeake Bay: Impacts of Climate Change on Coastal Virginia and Chesapeake Bay: Ecosystems and living resources J. Emmett Duffy Virginia Institute of Marine Science Virginia Governor s Commission on Climate Change April

More information

Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay

Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay December 2003 Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay E X E C U T I V E S U M M A R Y This document presents a strategy to accelerate

More information

Testimony of Shari T. Wilson, Secretary Maryland Department of the Environment. Before. The Senate Committee on Environment and Public Works

Testimony of Shari T. Wilson, Secretary Maryland Department of the Environment. Before. The Senate Committee on Environment and Public Works Testimony of Shari T. Wilson, Secretary Maryland Department of the Environment Before The Senate Committee on Environment and Public Works The Clean Energy Jobs and American Power Act (S. 1733) Wednesday,

More information

The Tidal Wetlands Act was passed.to preserve and prevent the despoliation and destruction

The Tidal Wetlands Act was passed.to preserve and prevent the despoliation and destruction The Tidal Wetlands Act was passed.to preserve and prevent the despoliation and destruction of wetlands while accommodating necessary economic development in a manner consistent with wetlands preservation.

More information

Climate Change and Chesapeake Bay Habitats

Climate Change and Chesapeake Bay Habitats Climate Change and Chesapeake Bay Habitats Donna Marie Bilkovic Sustainable Fisheries GIT Meeting 4 June 2014 Virginia Institute of Marine Science www.ccrm.vims.edu http://www.chesapeake.org/stac/ Existing

More information

STATE OF THE BAY IN 2012

STATE OF THE BAY IN 2012 9 10 11 STATE OF THE BAY IN 2012 Nitrogen &!Phosphorus Bay-wide nitrogen loads were similar to 2010, but phosphorus loads decreased. These loads are highly elated to river flows and stormwater runoff that

More information

Climate Change and Chesapeake Bay Habitats

Climate Change and Chesapeake Bay Habitats Climate Change and Chesapeake Bay Habitats Donna Marie Bilkovic STAC Chesapeake Bay Forage Base Workshop 12 November 2014 http://www.chesapeake.org/stac/ Virginia Institute of Marine Science www.ccrm.vims.edu

More information

Interstate Shellfish Sanitation Conference ANALYSIS CLASSIFIED SHELLFISH WATERS

Interstate Shellfish Sanitation Conference ANALYSIS CLASSIFIED SHELLFISH WATERS Interstate Shellfish Sanitation Conference ANALYSIS CLASSIFIED SHELLFISH WATERS 1985-2005 September 2006 Amended March 2007 209-2 Dawson Road Columbia, South Carolina 29223 803-788-7559 http://www.issc.org

More information

Prioritizing Climate Change Impacts and Action Strategies

Prioritizing Climate Change Impacts and Action Strategies Prioritizing Climate Change Impacts and Action Strategies Chesapeake Bay Program STAC December 8, 2015 2014 Chesapeake Bay Agreement CLIMATE RESILIENCY GOAL: Increase the resiliency of the Chesapeake Bay

More information

Climate Change & the Chesapeake TS3 workgroup chapter. European MedSeA

Climate Change & the Chesapeake TS3 workgroup chapter. European MedSeA Climate Change & the Chesapeake TS3 workgroup chapter European MedSeA 21 ST CENTURY CLIMATE CHANGE AND SUBMERGED AQUATIC VEGETATION IN THE CHESAPEAKE BAY The 20 th century story: nutrient pollution, eutrophication,

More information

Estuary Habitat Restoration STRATEGY 2012

Estuary Habitat Restoration STRATEGY 2012 Estuary Habitat Restoration STRATEGY 2012 INTRODUCTION The Estuary Restoration Act of 2000 (ERA), as amended, (title I of Pub. L. 106 457) fosters a collaborative and comprehensive process among federal

More information

Fish Habitat Management Strategy Outline

Fish Habitat Management Strategy Outline Fish Habitat Management Strategy Outline Executive Summary 1. CBP Communications team will draft after the other sections are complete. Outcome and Baselines Fish Habitat Outcome: Continually improve effectiveness

More information

The Integrated Guidance Model

The Integrated Guidance Model There are currently a variety of guidelines developed by local and state programs managing shoreline development activities. These include the Virginia Marine Resources Commission guidelines for tidal

More information

Connecting Science and Management for Virginia's Tidal Wetlands

Connecting Science and Management for Virginia's Tidal Wetlands College of William and Mary W&M ScholarWorks Reports Fall 2008 Connecting Science and Management for Virginia's Tidal Wetlands Center for Coastal Resources Management, Virginia Institute of Marine Science

More information

U.S. Army Corps of Engineers Mobile District

U.S. Army Corps of Engineers Mobile District U.S. Army Corps of Engineers Mobile District General Permit for Living Shorelines in Alabama Sandy P. Gibson Regulatory Specialist, Coastal Alabama Regulatory Division, Mobile District US Army Corps of

More information

Black Duck Logic Table and Work Plan ( ) Factor Current Efforts Gap Actions (critical actions in bold) Expected Response and Application

Black Duck Logic Table and Work Plan ( ) Factor Current Efforts Gap Actions (critical actions in bold) Expected Response and Application Black Duck Logic Table and Work Plan (2018-2020) Long-term Target: (the metric for success of Outcome): By 2025, restore, enhance, and preserve wetland habitats that support a wintering population of 100,000

More information

WHITE PAPER INTEGRATED ECOSYSTEM ASSESSMENTS

WHITE PAPER INTEGRATED ECOSYSTEM ASSESSMENTS WHITE PAPER INTEGRATED ECOSYSTEM ASSESSMENTS Background The NOAA 2005-2010 Strategic Plan highlights the importance of incorporating ecosystem principles in resource management. Specifically, a critical

More information

Sustainable Fisheries GIT: Fish Habitat

Sustainable Fisheries GIT: Fish Habitat Quarterly Progress Meeting - May 2017 Chesapeake Bay Program Science. Restoration Partnership. Sustainable Fisheries GIT: Fish Habitat Bruce Vogt, NOAA and Sustainable Fisheries GIT Coordinator Gina Hunt,

More information

Linking Ecosystem Indicators to Ecosystem Services

Linking Ecosystem Indicators to Ecosystem Services Linking Ecosystem Indicators to Ecosystem Services Christine Davis* G. Van Houtven, C. Mansfield, M. Cutrofello, and M. O Neil *Health and Environmental Impacts Division, OAQPS U.S. Environmental Protection

More information

Gulf of Mexico Alliance Supplemental PIT Project Funding Opportunity

Gulf of Mexico Alliance Supplemental PIT Project Funding Opportunity Gulf of Mexico Alliance Supplemental PIT Project Funding Opportunity PIT: Ecosystems Integration and Assessment Coordinator: Cristina Carollo, Harte Research Institute State Lead: Larry McKinney, Harte

More information

Living Shorelines. In this issue... What is a living shoreline?

Living Shorelines. In this issue... What is a living shoreline? In this issue... We focus on an approach to shoreline management known as living shoreline designs. These strategies for managing erosion while preserving ecological services are increasingly viewed as

More information

Can harmful algal bloom mitigation make the problem worse?

Can harmful algal bloom mitigation make the problem worse? Can harmful algal bloom mitigation make the problem worse? David M. Kidwell and Susan Baker National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Outline Background

More information

Use of Guidance to Preserve and Protect Wetlands

Use of Guidance to Preserve and Protect Wetlands Fall 2013, Vol. 8, No. 2 T Use of Guidance to Preserve and Protect Wetlands he Virginia Tidal Wetlands Program turned 40 in 2012 as the original Tidal Wetlands Act legislation was passed in 1972. Since

More information

How global warming and climate change may be accelerating losses of Chesapeake Bay seagrasses.

How global warming and climate change may be accelerating losses of Chesapeake Bay seagrasses. How global warming and climate change may be accelerating losses of Chesapeake Bay seagrasses. Dr. Ken Moore The Virginia Institute of Marine Science School of Marine Science College of William and Mary

More information

Evaluation of the Effectiveness of SAV Restoration Approaches in the Chesapeake Bay

Evaluation of the Effectiveness of SAV Restoration Approaches in the Chesapeake Bay Evaluation of the Effectiveness of SAV Restoration Approaches in the Chesapeake Bay Response to a program review requested of STAC by the SAV Workgroup Lee Karrh 3/27/2012 Brief Background On Review Baywide

More information

Chapter 3. Evaluating Trade-Offs: Benefit Cost Analysis and Other Decision- Making Metrics

Chapter 3. Evaluating Trade-Offs: Benefit Cost Analysis and Other Decision- Making Metrics Chapter 3 Evaluating Trade-Offs: Benefit Cost Analysis and Other Decision- Making Metrics Chapter 3 Evaluating Trade-Offs: Benefit Cost Analysis and Other Decision-Making Metrics Introduction Normative

More information

Phase III Watershed Implementation Plans

Phase III Watershed Implementation Plans Phase III Watershed Implementation Plans Including programmatic outcomes in your planning to provide co-benefits for your community and reduce pollution Rachel Felver Chesapeake Bay Program Director of

More information

Section Submerged Aquatic Vegetation and Aquatic Habitats of Particular Concern

Section Submerged Aquatic Vegetation and Aquatic Habitats of Particular Concern Section 300.18 Submerged Aquatic Vegetation and Aquatic Habitats of Particular Concern A. Definitions 1. Submerged Aquatic Vegetation (SAV) refers to rooted, vascular, flowering plants that, except for

More information

Protect, Accommodate, or Retreat? Integrating Adaptation Strategies and Ecosystem Services into the Cape Cod Coastal Planner

Protect, Accommodate, or Retreat? Integrating Adaptation Strategies and Ecosystem Services into the Cape Cod Coastal Planner Protect, Accommodate, or Retreat? Integrating Adaptation Strategies and Ecosystem Services into the Cape Cod Coastal Planner Jennifer Clinton Cape Cod Commission April Wobst Association to Preserve Cape

More information

Functions and values of water. Cor de Jong WaterLand International, Wageningen

Functions and values of water. Cor de Jong WaterLand International, Wageningen Functions and values of water Cor de Jong WaterLand International, Wageningen Water In this presentation water means: water in the landscape water as an integral part of nature water as a complex of ecosystems

More information

Request for a Proposal The Bolsa Chica Lowlands Restoration Project: Sustainability Alternatives Study January 2019

Request for a Proposal The Bolsa Chica Lowlands Restoration Project: Sustainability Alternatives Study January 2019 Request for a Proposal The Bolsa Chica Lowlands Restoration Project: Sustainability Alternatives Study January 2019 Introduction The Bolsa Chica Land Trust (BCLT) has applied for and been selected to receive

More information

Models for the assessment of sustainability and risk in fish and shellfish aquaculture

Models for the assessment of sustainability and risk in fish and shellfish aquaculture Models for the assessment of sustainability and risk in fish and shellfish aquaculture TABLE OF CONTENTS LONGLINE ENVIRONMENT CONTEXT & EXPERIENCE FISH FARMING: CREATING A SUSTAINABLE INDUSTRY ACCESS MARKETS

More information

ACKNOWLEDGEMENTS. Sincerely, Executive Director and Staff. Rockingham Planning Commission. 156 Water Street Exeter, NH (603)

ACKNOWLEDGEMENTS. Sincerely, Executive Director and Staff. Rockingham Planning Commission. 156 Water Street Exeter, NH (603) ACKNOWLEDGEMENTS The gratefully acknowledges the participation of coastal New Hampshire municipalities in the preparation of this report: City of Portsmouth Town of New Castle Town of Rye Town of North

More information

Ocean Energy Specialisation 2014 OER 1 and EPE 1&2 assignments

Ocean Energy Specialisation 2014 OER 1 and EPE 1&2 assignments Ocean Energy Specialisation 0 OER and EPE & assignments The following text describes the assignments for the OER and EPE & modules. The assignment intends to provide the students with an opportunity to

More information

Elkhorn Slough Researchers Link Salt Marsh Dieback to Algal Blooms Generated by Increased Nutrients

Elkhorn Slough Researchers Link Salt Marsh Dieback to Algal Blooms Generated by Increased Nutrients MEDIA RELEASE For immediate release: June 5, 2017 For more information: Lorili Toth, Director of Development & Communications Elkhorn Slough Foundation Email: Lorili@elkhornslough.org phone: 831.728.5939

More information

Fish Habitat Outcome Management Strategy , v.1

Fish Habitat Outcome Management Strategy , v.1 Management Strategy 2015 2025, v.1 I. Introduction Fish and shellfish in the Chesapeake Bay and its watershed rely on a variety of important habitats throughout the watershed. These habitats, which are

More information

Center for Nutrient Solutions (CNS) Nutrient Solution Scenarios Concept Paper September 5, 2014 Draft

Center for Nutrient Solutions (CNS) Nutrient Solution Scenarios Concept Paper September 5, 2014 Draft I. Introduction Center for Nutrient Solutions (CNS) Nutrient Solution Scenarios Concept Paper September 5, 2014 Draft A key goal of the CNS is to develop and test tools for evaluating tactics and strategies

More information

Ocean Carbon Changes in the open and coastal ocean

Ocean Carbon Changes in the open and coastal ocean Ocean Carbon Changes in the open and coastal ocean I Mangrove: Joe Bunni Geographical scope/benefitting country(ies): Duration (in months): Name and unit of project officer Partner(s) institutions: Total

More information

Critical Lands and Waters Identification Project (CLIP) Version 2.0. Executive Summary

Critical Lands and Waters Identification Project (CLIP) Version 2.0. Executive Summary Critical Lands and Waters Identification Project (CLIP) Version 2.0 Jon Oetting Florida Natural Areas Inventory, Florida State University Tom Hoctor Center for Landscape Conservation Planning, University

More information

Integrating Water Quality and Natural Filters into Maryland s Marine Spatial Planning Efforts

Integrating Water Quality and Natural Filters into Maryland s Marine Spatial Planning Efforts Integrating Water Quality and Natural Filters into Maryland s Marine Spatial Planning Efforts Nicole Carlozo NOAA Coastal Management Fellow July 31, 2014 Watershed-scale restoration targeting helps direct

More information

Encinitas-Solana Beach Coastal Storm Damage Reduction Project. San Diego County, California. Appendix M. Mitigation Strategy

Encinitas-Solana Beach Coastal Storm Damage Reduction Project. San Diego County, California. Appendix M. Mitigation Strategy 0 Encinitas-Solana Beach Coastal Storm Damage Reduction Project San Diego County, California Appendix M Mitigation Strategy U.S. Army Corps of Engineers Los Angeles District 0 December 0 0 0 This page

More information

Protecting and Restoring Habitat (Fact Sheet)

Protecting and Restoring Habitat (Fact Sheet) University of Southern Maine USM Digital Commons Publications Casco Bay Estuary Partnership (CBEP) 2014 Protecting and Restoring Habitat (Fact Sheet) Casco Bay Estuary Partnership Follow this and additional

More information

Harte Research Institute for Gulf of Mexico Studies

Harte Research Institute for Gulf of Mexico Studies Harte Research Institute for Gulf of Mexico Studies Gulf of Mexico Ecosystem Services Workshop David W. Yoskowitz, Cristina Carollo, and Carlota Santos Harte Research Institute for Gulf of Mexico Studies

More information

Climate Change Impacts of Most Concern for CB Agreement Goal & Outcome Attainment

Climate Change Impacts of Most Concern for CB Agreement Goal & Outcome Attainment Climate Change Impacts of Most Concern for CB Agreement Goal & Outcome Attainment Zoë P. Johnson, Climate Change Coordinator Chesapeake Bay Program STAC Workshop March 7-8, 2016 Climate Change: Real Consequences

More information

Riparian Forest Buffer Restoration Targeting

Riparian Forest Buffer Restoration Targeting Riparian Forest Buffer Restoration Targeting for the York River Watershed By Anne Newsom, Carl Hershner, and Dan Schatt Introduction A little over three hundred years ago, more than ninety-five percent

More information

South Atlantic Regional Plan

South Atlantic Regional Plan South Atlantic Regional Plan Merryl Alber Christine Laporte Georgia Coastal Research Council Dept. of Marine Sciences Univ. of Georgia National Estuarine Eutrophication Assessment (1999) Numeric Change

More information

CBP Climate Resiliency Workgroup. June 20, 2016

CBP Climate Resiliency Workgroup. June 20, 2016 2017 Midpoint Assessment Management Needs: Estimated Influence of 2025 and 2050 Sea Level Rise and Tidal Marsh Loss on Chesapeake Bay Water Quality Standards CBP Climate Resiliency Workgroup June 20, 2016

More information

What factors affect life in aquatic ecosystems?

What factors affect life in aquatic ecosystems? Aquatic Ecosystems: Notes Outline Today s Objective: Students will explain that different types of organisms exist within aquatic systems due to chemistry, geography, light, depth, salinity, and/or temperature.

More information

RECOMMENDATIONS TO THE NORTH CAROLINA LEGISLATIVE COMMISSION ON GLOBAL CLIMATE CHANGE (NC LCGCC)

RECOMMENDATIONS TO THE NORTH CAROLINA LEGISLATIVE COMMISSION ON GLOBAL CLIMATE CHANGE (NC LCGCC) RECOMMENDATIONS TO THE NORTH CAROLINA LEGISLATIVE COMMISSION ON GLOBAL CLIMATE CHANGE (NC LCGCC) INTRODUCTION Stanley R. Riggs Department of Geological Sciences East Carolina University Greenville, NC

More information

Achieving Management and Conservation Goals through the Application of Ecosystem-based Management on the Central Coast of California

Achieving Management and Conservation Goals through the Application of Ecosystem-based Management on the Central Coast of California Achieving Management and Conservation Goals through the Application of Ecosystem-based Management on the Central Coast of California WE CANNOT ADOPT THE WAY OF LIVING THAT WAS SATISFACTORY A HUNDRED YEARS

More information

Overview of Ecosystem Services Quantification and Valuation Approaches

Overview of Ecosystem Services Quantification and Valuation Approaches Gretchen Greene, Ph.D. and Mark Rockel, Ph.D. Senior Natural Resource Economists, ENVIRON Overview of Ecosystem Services Quantification and Valuation Approaches Overview of Ecosystem Services Quantification

More information

Gulf Coast Ecosystem Restoration Task Force

Gulf Coast Ecosystem Restoration Task Force Gulf Coast Ecosystem Restoration Task Force The Gulf of Mexico Regional Ecosystem Restoration Strategy The Consortium for Ocean Leadership Public Policy Forum The Capitol March 7, 2012 1 An Unprecedented

More information

GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2009 H 1 HOUSE BILL 1808*

GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 2009 H 1 HOUSE BILL 1808* GENERAL ASSEMBLY OF NORTH CAROLINA SESSION 00 H 1 HOUSE BILL 0* Short Title: NC Climate Change Adaptation Strategy. (Public) Sponsors: Representatives Harrison, Underhill, Wilkins (Primary Sponsors); M.

More information

CHESAPEAKE BAY COMPREHENSIVE WATER RESOURCES AND RESTORATION PLAN - UPDATE. Update to Chesapeake Bay Program STAR January 25, 2018

CHESAPEAKE BAY COMPREHENSIVE WATER RESOURCES AND RESTORATION PLAN - UPDATE. Update to Chesapeake Bay Program STAR January 25, 2018 CHESAPEAKE BAY COMPREHENSIVE WATER RESOURCES AND RESTORATION 255 255 255 237 237 237 0 0 0 217 217 217 163 163 163 200 200 200 PLAN - UPDATE 131 132 122 239 65 53 80 119 27 110 135 120 252 174.59 112 92

More information

Lesson Overview 4.5 Aquatic Ecosystems

Lesson Overview 4.5 Aquatic Ecosystems Lesson Overview 4.5 Conditions Underwater What factors affect life in aquatic ecosystems? Aquatic organisms are affected primarily by the water s depth, temperature, flow, and amount of dissolved nutrients.

More information

Best Practices for Climate Change Adaptation: Spotlight on Michigan Coastal Wetlands S E P T E M B E R

Best Practices for Climate Change Adaptation: Spotlight on Michigan Coastal Wetlands S E P T E M B E R Best Practices for Climate Change Adaptation: Spotlight on Michigan Coastal Wetlands S E P T E M B E R 2 0 1 4 GREAT LAKES COMMISSION & NATIONAL WILDLIFE F EDERATION WEBINAR OUTLINE Building the Best Practices

More information

Beverly. Produced in This report and associated map provide information about important sites for biodiversity conservation in your area.

Beverly. Produced in This report and associated map provide information about important sites for biodiversity conservation in your area. CONSERVING THE BIODIVERSITY OF MASSACHUSETTS IN A CHANGING WORLD Beverly Produced in 2012 This report and associated map provide information about important sites for biodiversity conservation in your

More information

Management Modeling of Suspended Solids and Living Resource Interactions

Management Modeling of Suspended Solids and Living Resource Interactions Management Modeling of Suspended Solids and Living Resource Interactions Carl Cerco 1, Mark Noel 1, Sung-Chan Kim 2 1 Environmental Laboratory, US Army ERDC, Vicksburg MS, USA 2 Coastal and Hydraulics

More information

6 TH. Most of the Earth Is Covered with Water (2) Most Aquatic Species Live in Top, Middle, or Bottom Layers of Water (1)

6 TH. Most of the Earth Is Covered with Water (2) Most Aquatic Species Live in Top, Middle, or Bottom Layers of Water (1) A Healthy Coral Reef in the Red Sea MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Chapter 8 Aquatic Biodiversity Fig. 8 1, p. 168 Most of the Earth Is Covered with Water (2) Aquatic life zones Saltwater life

More information

Fact Sheet. Chesapeake Bay Water Quality

Fact Sheet. Chesapeake Bay Water Quality Fact Sheet Chesapeake Bay Water Quality Water quality is a critical measure of the Chesapeake Bay s health. For the Bay to be healthy and productive, the water must be safe for people and must support

More information

Chesapeake Bay Report Card 2016

Chesapeake Bay Report Card 2016 hesapeake Bay Report ard 216 University of Maryland enter for Environmental Science Fun for you and your family Stewardship is defined as the responsible oversight and protection of something considered

More information

MANAGEMENT OF WATERFRONT PROPERTIES FOR HOMEOWNERS

MANAGEMENT OF WATERFRONT PROPERTIES FOR HOMEOWNERS Prince William County Watershed Management MANAGEMENT OF WATERFRONT PROPERTIES FOR HOMEOWNERS Living along the shoreline brings many rewards for the property owner: a great view, a closeness to nature

More information

TARGETING WATERSHEDS FOR RESTORATION ACTIVITIES IN THE CHESAPEAKE BAY WATERSHED. Technical Documentation October 4, 2002

TARGETING WATERSHEDS FOR RESTORATION ACTIVITIES IN THE CHESAPEAKE BAY WATERSHED. Technical Documentation October 4, 2002 TARGETING WATERSHEDS FOR RESTORATION ACTIVITIES IN THE CHESAPEAKE BAY WATERSHED Technical Documentation October 4, 2002 Acknowledgements and Disclaimer This project was funded by the Chesapeake Bay Foundation,

More information

Chesapeake Bay Water Quality Restoration:

Chesapeake Bay Water Quality Restoration: Chesapeake Bay Water Quality Restoration: The Transition to a Regulatory Approach Building on Decades of Cooperative Partnership Rich Batiuk Assoc. Director for Science Chesapeake Bay Program Office U.S.

More information

SAV Monitoring Program

SAV Monitoring Program SAV Monitoring Program ~Sustainability and funding challenges~ J. Brooke Landry STAR 5.26.16 Are there any fatal flaws regarding the SAV Management Strategy and Twoyear work plan? SAV Monitoring Program

More information

Partnership for Gulf Coast Land Conservation Annual Meeting August 21, 2012

Partnership for Gulf Coast Land Conservation Annual Meeting August 21, 2012 Gulf Landscape Conservation Cooperatives NOAA Office of Ocean & Coastal Resource Management NOAA Southern Region Climate Services Partnership for Gulf Coast Land Conservation Annual Meeting August 21,

More information

TEXAS COASTAL PROTECTION PLANNING INITIATIVES

TEXAS COASTAL PROTECTION PLANNING INITIATIVES TEXAS COASTAL PROTECTION PLANNING INITIATIVES Ray Newby, P.G. Coastal Resources Program Texas General Land Office GICA Annual Seminar New Orleans, Louisiana July 27, 2017 THE TEXAS GENERAL LAND OFFICE

More information

Coastal Wetlands. About Coastal Wetlands. Contact Us. Water: Wetlands. You are here: Water Our Waters Wetlands Coastal Wetlands

Coastal Wetlands. About Coastal Wetlands. Contact Us. Water: Wetlands. You are here: Water Our Waters Wetlands Coastal Wetlands Contact Us Water: Wetlands You are here: Water Our Waters Wetlands Coastal Wetlands Coastal Wetlands About Coastal Wetlands Coastal Wetlands Initiative Managing Stressors Tools & Links About Coastal Wetlands

More information

Discuss. With the members of your table, discuss these two questions and come up with a list:

Discuss. With the members of your table, discuss these two questions and come up with a list: WETLANDS Discuss With the members of your table, discuss these two questions and come up with a list: 1) There are 3 defining qualities that makes a piece of land a wetland. Name the 3 qualities that would

More information

Chesapeake Bay Sentinel Site Cooperative

Chesapeake Bay Sentinel Site Cooperative Chesapeake Bay Sentinel Site Cooperative December 7, 2012 Sean Corson Deputy Director NOAA Chesapeake Bay Office sean.corson@noaa.gov NOAA NOS Sentinel Site Program Chesapeake Bay Sentinel Site Cooperative:

More information

NEW JERSEY BACK BAYS COASTAL STORM RISK MANAGEMENT INTERIM FEASIBILITY STUDY AND ENVIRONMENTAL SCOPING DOCUMENT. Executive Summary 1 March 2019

NEW JERSEY BACK BAYS COASTAL STORM RISK MANAGEMENT INTERIM FEASIBILITY STUDY AND ENVIRONMENTAL SCOPING DOCUMENT. Executive Summary 1 March 2019 NEW JERSEY BACK BAYS COASTAL STORM RISK MANAGEMENT INTERIM FEASIBILITY STUDY AND ENVIRONMENTAL SCOPING DOCUMENT Executive Summary 1 March 2019 Document Overview This U.S. Army Corps of Engineers (USACE)

More information

Protecting & Restoring Local Waters and the Chesapeake Bay

Protecting & Restoring Local Waters and the Chesapeake Bay Protecting & Restoring Local Waters and the Chesapeake Bay Restore America s Estuaries National Conference Gregory Barranco Chesapeake Bay Program Office November 2010 The Chesapeake Bay and Watershed

More information

INTERIOR S PLAN FOR A COORDINATED, SCIENCE-BASED RESPONSE TO CLIMATE CHANGE IMPACTS ON OUR LAND, WATER, and WILDLIFE RESOURCES

INTERIOR S PLAN FOR A COORDINATED, SCIENCE-BASED RESPONSE TO CLIMATE CHANGE IMPACTS ON OUR LAND, WATER, and WILDLIFE RESOURCES U.S. Department of the Interior INTERIOR S PLAN FOR A COORDINATED, SCIENCE-BASED RESPONSE TO CLIMATE CHANGE IMPACTS ON OUR LAND, WATER, and WILDLIFE RESOURCES SUMMARY Climate change is driving rapid and

More information

New York Sea Grant Strategic Plan

New York Sea Grant Strategic Plan New York Sea Grant Strategic Plan 2014-2017 Technical Focus Areas for Assisting Stakeholders Our Vision Coastal decision-making will be influenced by science-based information and educated stakeholders.

More information

Board of Governors Meeting

Board of Governors Meeting New York Sea Grant Board of Governors Meeting 30 April 2013 New York Sea Grant Strategic Plan 2014-2017 Technical Focus Areas for Assisting Stakeholders Our Vision Coastal decision-making will be influenced

More information

Valuing New Jersey s Natural Capital:

Valuing New Jersey s Natural Capital: Valuing New Jersey s Natural Capital: An Assessment of the Economic Value of the State s Natural Resources April 2007 State of New Jersey New Jersey Department of Environmental Protection Jon S. Corzine,

More information

Freshwater ecosystems

Freshwater ecosystems Aquatic Ecosystems Aquatic Ecosystems The types of organisms in an aquatic ecosystem are determined by the water s salinity. Salinity - Amount of salt in the water. Freshwater ecosystems do not have any

More information

Integrated Coastal Zone Management Project Republic of India

Integrated Coastal Zone Management Project Republic of India Integrated Coastal Zone Management Project Republic of India Restoration and conservation of mangroves, coral reefs transplantation along the coastline of Gujarat and Orissa regions Abstract The ICZM project

More information

Redesign of Chesapeake Bay Program indicator structure and communication strategy: Goals, rationale and Products

Redesign of Chesapeake Bay Program indicator structure and communication strategy: Goals, rationale and Products Redesign of Chesapeake Bay Program indicator structure and communication strategy: Goals, rationale and Products Indicator Redesign Taskforce draft briefing paper Ben Longstaff EcoCheck (NOAA-UMCES Partnership)

More information

SEA LEVEL RISE AND CLIMATE CHANGE AT THE COASTAL BOUNDARY: OBSERVATIONS, PROJECTIONS, AND ISSUES OF CONCERN FOR RESOURCE MANAGEMENT

SEA LEVEL RISE AND CLIMATE CHANGE AT THE COASTAL BOUNDARY: OBSERVATIONS, PROJECTIONS, AND ISSUES OF CONCERN FOR RESOURCE MANAGEMENT SEA LEVEL RISE AND CLIMATE CHANGE AT THE COASTAL BOUNDARY: OBSERVATIONS, PROJECTIONS, AND ISSUES OF CONCERN FOR RESOURCE MANAGEMENT Frank Marshall, CLF Erik Stabenau, ENP Greater Everglades Ecosystem Restoration

More information

U.S. Senate Committee on Environment and Public Works. Hearing on The Impacts of Global Warming on the Chesapeake Bay. September 26, 2007

U.S. Senate Committee on Environment and Public Works. Hearing on The Impacts of Global Warming on the Chesapeake Bay. September 26, 2007 U.S. Senate Committee on Environment and Public Works Hearing on The Impacts of Global Warming on the Chesapeake Bay September 26, 2007 Testimony of Dr. Christopher R. Pyke 1 Member, Scientific and Technical

More information

Theme: Climate action, agriculture waste management and pollution-free oceans

Theme: Climate action, agriculture waste management and pollution-free oceans Theme: Climate action, agriculture waste management and pollution-free oceans Ensuring healthy and productive waters The world s oceans and coasts support the livelihoods of billions of people around the

More information

U.S. Army Corps of Engineers New Jersey Back Bays Flood Risk Management Planning Workshop. Background Reading/Pre Workshop Activity

U.S. Army Corps of Engineers New Jersey Back Bays Flood Risk Management Planning Workshop. Background Reading/Pre Workshop Activity U.S. Army Corps of Engineers New Jersey Back Bays Flood Risk Management Planning Workshop Background Reading/Pre Workshop Activity Introduction The U.S. Army Corps of Engineers (USACE), the USACE National

More information

Shallow Water Dredging

Shallow Water Dredging College of William and Mary W&M ScholarWorks Reports Winter 2010 Shallow Water Dredging Center for Coastal Resources Management, Virginia Institute of Marine Science Follow this and additional works at:

More information

Climate Change, Human Activities, and the State of New Jersey. Michael J. Kennish Institute of Marine and Coastal Sciences Rutgers University

Climate Change, Human Activities, and the State of New Jersey. Michael J. Kennish Institute of Marine and Coastal Sciences Rutgers University Climate Change, Human Activities, and the State of New Jersey Michael J. Kennish Institute of Marine and Coastal Sciences Rutgers University New Jersey Climate and Environmental Change Conclusions from

More information

Healthy oceans new key to combating climate change

Healthy oceans new key to combating climate change Healthy oceans new key to combating climate change Action needed to maintain and restore 'blue carbon' sinks warn three UN agencies An ecosystem approach to management of ocean areas can enhance their

More information

Long Island s. Environmental Issues. Environmental Issues. Environmental Setting. Environmental Setting. Suburbia and the Environment

Long Island s. Environmental Issues. Environmental Issues. Environmental Setting. Environmental Setting. Suburbia and the Environment Environmental Issues Long Island s Environmental Issues Copyright 2011 AFG 1 agricultural land air pollution aquifers automobile barrier islands biozones fisheries groundwater recharge invasive species

More information

Chapter 2 Valuing the Environment: Concepts

Chapter 2 Valuing the Environment: Concepts Chapter 2 Valuing the Environment: Concepts Chapter 2 provides an overview of basic microeconomics as it applies to natural resource and environmental economics. The chapter includes much of the basic

More information

A Guide to Shoreline Management Planning For Virginia s Coastal Localities

A Guide to Shoreline Management Planning For Virginia s Coastal Localities A Guide to Shoreline Management Planning For Virginia s Coastal Localities Introduction People who live along Virginia s shore enjoy a natural connection to the water. When erosion threatens their property,

More information

Preparing New Jersey for Climate Change

Preparing New Jersey for Climate Change Photo: Jane Thomas, UMCES Preparing New Jersey for Climate Change Adaptation for Watersheds, Rivers and Coasts Zoë Johnson, Office for a Sustainable Future Global Climate Change: Real Consequences Chesapeake

More information

Guidelines for a Mangrove Management Plan Cayman Islands, BWI. M. L. Anderson

Guidelines for a Mangrove Management Plan Cayman Islands, BWI. M. L. Anderson Guidelines for a Mangrove Management Plan Cayman Islands, BWI M. L. Anderson Knowledge of mangrove ecosystems: and how they react to external influences such as changes in the water table, changes in salinities

More information

Chesapeake Bay TMDL 2017 Mid-Point Assessment

Chesapeake Bay TMDL 2017 Mid-Point Assessment Chesapeake Bay TMDL 2017 Mid-Point Assessment Guiding Principles and Options for Addressing Climate Change Considerations in the Jurisdictions Phase III Watershed Implementation Plans CBP Climate Resiliency

More information

CALIFORNIA OCEAN PROTECTION COUNCIL. Staff Recommendation June 14, San Francisco Bay Hydrodynamic and Sediment Transport Modeling

CALIFORNIA OCEAN PROTECTION COUNCIL. Staff Recommendation June 14, San Francisco Bay Hydrodynamic and Sediment Transport Modeling CALIFORNIA OCEAN PROTECTION COUNCIL Staff Recommendation June 14, 2007 San Francisco Bay Hydrodynamic and Sediment Transport Modeling Developed By: Abe Doherty RECOMMENDED ACTION: Consideration of the

More information

SHELLFISH AQUACULTURE-EELGRASS INTERACTIONS: EXTRAPOLATING TO THE ESTUARINE LANDSCAPE SCALE

SHELLFISH AQUACULTURE-EELGRASS INTERACTIONS: EXTRAPOLATING TO THE ESTUARINE LANDSCAPE SCALE SHELLFISH AQUACULTURE-EELGRASS INTERACTIONS: EXTRAPOLATING TO THE ESTUARINE LANDSCAPE SCALE Brett Dumbauld*, Lee McCoy - USDA Agricultural Research Service, Hatfield Marine Science Center, Newport, OR

More information

THE CARBON CRISIS: IT S NOW OR NEVER TO SAVE CORAL REEFS

THE CARBON CRISIS: IT S NOW OR NEVER TO SAVE CORAL REEFS MEDIA Q&As December 14, 2007 THE CARBON CRISIS: IT S NOW OR NEVER TO SAVE CORAL REEFS Q. The negative impact of climate change on coral reefs is not new. What does this paper tell us that we didn t already

More information

Adapting to Climate Change in the Delaware Estuary

Adapting to Climate Change in the Delaware Estuary Adapting to Climate Change in the Delaware Estuary Danielle Kreeger Partnership for the Delaware Estuary Drexel University August 1, 2012 2007 2010 2012 2013 2011 Recognize Problem Track Change Assess

More information

Coral Reefs. 1 of 5. An Ocean of Trouble

Coral Reefs. 1 of 5. An Ocean of Trouble This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Article Coral Reefs An Ocean of

More information

Goals and Objectives from New York Sea Grant s Strategic Plan:

Goals and Objectives from New York Sea Grant s Strategic Plan: Goals and Objectives from New York Sea Grant s Strategic Plan: 2000-2005 Appropriate topics for research under NYSG s Core Research Program will address one or more of the specific objectives listed under

More information