Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1

Size: px
Start display at page:

Download "Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1"

Transcription

1 Page 1 The Flux Capacitor 12/2/09 Joshua Jefferies Isaak Samsel Austin Bootin Brian Plaag Team A1-5, EF 152 Sec. A1

2 Page 2 Project Overview The purpose of this project is to transform the mechanical energy of the wind into useable electrical energy. In order to accomplish this, we will employ the principle of Faraday s law of induction, which, in laymen s terms, states that changing magnetic flux induces an electric current. Changing magnetic flux can be achieved by changing a magnetic field, or changing area through which magnetic field lines flow. We will perform the latter. We will design and build an apparatus which will spin a magnetic core within many windings of conductive wire, thus constantly changing flux back and forth from some maximum value to zero. The device will be operated by a wind-powered propeller, and light a light bulb, thus transforming the mechanical energy of the wind into useable electrical energy. A brief history of wind energy The first uses of wind energy, dating back to the first century A.D., were windmills that were used for pumping water. During the Middle Ages windmills were used to churn grain into flour. Charles F. Brush was the first to use a windmill to generate electrical power. The windmill was used to produce 12 kilowatts of electrical power for 20 years. Smaller systems have been used to power some appliances and lighting on farms. These can produce around 1-3 kilowatts of power. In 1931 Russia developed the Balaclava, an industrial wind generator capable of producing over 100kilowatts of power. The largest windmill ever built was the Smith-Putnam machine developed in This generator was capable of producing 1.25 megawatts, but due to its size, one of the blades broke off within several hundred hours of operation. In 1974 the U.S. launched the Federal Wind Energy Program which, until 1981 was considered very successful in research and development of new ideas for wind powered generators. Through

3 Page 3 many billions dollars invested and many years of research wind powered generators today are much more efficient, collectively producing almost 9 Gigawatts of power in the U.S. alone. [1][2][3] Design Process The first thing our group did when designing was brain storm several ideas. We went through several concepts for the structure and operation of the generator and rotor. These included a standing device using gears to transfer the energy to spin the magnets, and two separate props and axes to rotate both the coil and the magnets in opposite directions. Both of these ideas were ultimately discarded to keep it simply and save time. We also went through several ideas to increase efficiency, including attempting to cool it with dry ice to attempt cause the coil material to approach superconductor status. We had problems with the initial wire purchased for the coil, as the insulation was far too thick to be of any use. We debated over what to use for the prop for some time, whether to buy or build one, what to use for blades, and what to use for a hub. Device Description The final device is very simple. A fan spins magnets inside of a coil, which generates the current for the bulb. For the fan, we ultimately decided to use a tight spread of blades, cut out of aluminum cans (Diagram 1). We used a circular plastic sheet for the hub, supported by a wooden washer. We used a brass rod purchased at Hobby Town for the axel, and mounted with metal brackets to a wooden baseboard. The rod was inserted into the coil through rubber bearings, and the Neodymium N52 grade magnets were attached inside (Diagram 2). The coil was 28 gauge thinly insulated generator wire, wound between times.

4 Page 4 Diagram 1 Diagram 2 Efficiency The device is not very efficient. In order to get an accurate calculation of the efficiency of our device, we have to look at the system as a whole. The way in which the device was

5 Page 5 tested involved using an electric fan; the fan is rated for a power input, so calculating efficiency is easy. Since = Where η is the efficiency of the system (percentage), P Output is the actual electrical power generated by our device (in Watts), and P Input is the power going into the fan that generates the wind (again in Watts). We already know the power input of the fan, since the rating is written right on the back of the fan: 180W. To know the power output, we employ a voltmeter and an ammeter. The maximum voltage output was measured at 1.2Volts, and the maximum current was 0.05Amps. Since = Where P is Power (Watts), V is voltage, and I is current (Amps). We calculate the maximum power output to be 0.06W. We then apply our efficiency equation in order to determine the efficiency of the fan-generator system to be %. In other words, it s a good thing efficiency wasn t the goal of the project. Conclusion After the windmill was finally assembled and refined we were successful in lighting up the light bulb. The bulb would flicker due to the fan being off balance, but would stay lit. While completing the windmill project the group learned a great deal about generating electricity from a conductive coil and magnets, such as the great deal of strength the magnets needed to possess and the number of winds the wire needed to create the necessary amount of voltage and current to light the bulb. We also applied aerodynamic concepts to the prop, to harness as much wind energy as possible.

6 Page 6 The main problems we had with completing the project were minimizing the friction of the axel and finding the proper wire to conduct the current. The initial wire proved to be useless, and we were forced to start the coil a second time, which turned out much better. The best way we could have improved the efficiency of the device would have been spending more time on the prop. If we had more time and funding, we could have created a much more efficient way to harvest the wind energy. The final product still turned out well, and worked beyond a doubt.

7 Page 7 Bill of Materials NID magnets: $12.98 Copper wire: $18.47 Bracers (stands): $2.18 Scrap wood: $1.00 Busch cans: $0.20 Copper rod: $0.54 TOTAL: $35.37

8 Page 8 References [1] National Renewable Energy Laboratory, available at URL: (Viewed December 1, 2009) [2] TelosNet An Illustrated History of Wind Power Development, available at URL: (Viewed December 1, 2009) [3] Electricity from Windmills, available at URL: (Viewed December 1, 2009)

Windmill Generator Project

Windmill Generator Project Windmill Generator Project November 30, 2009 Nick Jones Michael Potts John Riser Emily Curtis Wrinn Jennifer Young Team 3 EF 152 - B1 Abstract The purpose of this project is to work as team to build a

More information

The Vending Machine. April 23, Olivia Juneau Logan Taylor Chris Hensel Michael Culley. Team 6 Class C1

The Vending Machine. April 23, Olivia Juneau Logan Taylor Chris Hensel Michael Culley. Team 6 Class C1 1 The Vending Machine April 23, 2009 Olivia Juneau Logan Taylor Chris Hensel Michael Culley Team 6 Class C1 2 OVERVIEW The project being conducted is to make a windmill out of household items that will

More information

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009

University of Tennessee EF 152 A 2. The Wind O Nator. Team A 2 7. Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 1 University of Tennessee EF 152 A 2 The Wind O Nator Team A 2 7 Richard Ammons, Rachel Dunlap, Kayla Hughes, and Uchung Whang 12/2/2009 2 Abstract The main objective was to create a generator that was

More information

The Cap'n 4/23/2009. Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill. Team Number D2-3. EF 152 Section D2

The Cap'n 4/23/2009. Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill. Team Number D2-3. EF 152 Section D2 1 The Cap'n 4/23/2009 Andrew Riley, Russell Estes, Stephen Swearingen, George Threagill Team Number D2-3 EF 152 Section D2 2 Overview For the final project in our engineering fundamentals class we were

More information

Windmill Project: The Windthrill. EF152 Section A

Windmill Project: The Windthrill. EF152 Section A Windmill Project: The Windthrill EF15 Section A1 4-3-09 Team 8: Zach Jacob John Greer Trey Coates Boyd Culver Gage Craig 1 -Overview Our project goal was to create a functioning windmill that could light

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

2010 Culver Media, LLC 1

2010 Culver Media, LLC 1 Alternating current Also known as AC power, alternating current is electricity that reverses direction within a circuit. The electricity we use in our homes does this 120 times per second. Appliances Devices

More information

Vertical Axis Wind Turbines

Vertical Axis Wind Turbines Goals ᄏᄏ ᄏᄏ ᄏᄏ Assemble a vertical-axis wind turbine Modify it to change its efficiency Make calculations based on data Background Wind turbines are quickly becoming a major source of electricity in countries

More information

Wind to Hydrogen Earth Sci. Lab

Wind to Hydrogen Earth Sci. Lab Wind to Hydrogen Earth Sci. Lab Name: Class: Date: Earth Sciences Middle School 8 hours Objective To explore wind and hydrogen fuel cell power sources and try to improve the power output of both. Materials

More information

800 Wind Powered Generator

800 Wind Powered Generator 800 Wind Powered Generator Purpose: The Wind Powered Generator is an excellent device for studying wind as a source of energy. The generator will allow students an opportunity to measure the amount of

More information

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work?

Turbine subsystems include: What is wind energy? What is a wind turbine and how does it work? What is wind energy? In reality, wind energy is a converted form of solar energy. The sun's radiation heats different parts of the earth at different rates-most notably during the day and night, but also

More information

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine

Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Analysis Performance of DC Motor as Generator in The Horizontal Axis Wind Turbine Suhardi, a, Faisal Mahmuddin, b Andi Husni Sitepu, c and Muhammad Uswah Pawara, d,* a) Naval Architecture Department, Faculty

More information

Chapter 21 Electric Current & DC Circuits

Chapter 21 Electric Current & DC Circuits Chapter 21 Electric Current & DC Circuits Optional: Ammeters and Voltmeters (21-8) Optional: RC Circuits (21-9) Water U Reservoirs store potential energy in water at high elevation. This energy comes

More information

Guided Reading Chapter 10: Electric Charges and Magnetic Fields

Guided Reading Chapter 10: Electric Charges and Magnetic Fields Name Number Date Guided Reading Chapter 10: Electric Charges and Magnetic Fields Section 10-1: Electricity, Magnetism, and Motion 1. The ability to move an object some distance is called 2. Complete the

More information

Small Wind Electric Systems. A U.S. Consumer s Guide

Small Wind Electric Systems. A U.S. Consumer s Guide A U.S. Consumer s Guide 1 A U.S. Consumer s Guide Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for affordable and reliable sources

More information

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases?

What are the 3 ways in which energy can travel? Explain what. conduction is. Does conduction happen best in solids, liquids or gases? What are the 3 ways in which energy can travel? Explain what conduction is What type of materials are good conductors and what type of materials are bad conductors (good insulators)? Does conduction happen

More information

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING

DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING DESIGN OF EXPERIMENTAL SETUP OF 1KW WIND TURBINE BLADE TESTING Chanchal Narkhede 1, Nilesh Nikale 2, Sushant Howal 3 Raviraj Mulaje 4, Prof.S.R.Sandanshiv 5 1,2,3 Mech, G.S.Moze College of Engineering,

More information

TEACHING WIND ENERGY SYSTEMS. Jim Bandy Tarrant County College

TEACHING WIND ENERGY SYSTEMS. Jim Bandy Tarrant County College TEACHING WIND ENERGY SYSTEMS Jim Bandy Tarrant County College INTRODUCTION Agriculture Always Required Energy Inputs Draft Animals and Then Fuels Energy to Manufacture Farm Equipment Self Reliance Minimized

More information

Group Size ( Divide the class into teams of four or five students each. )

Group Size ( Divide the class into teams of four or five students each. ) Subject Area(s) Science & technology Associated Unit Engineering Associated Lesson wind lesson Activity Title wind turbines Grade Level 6 (5-7) Activity Dependency wind lesson Time Required 2 hour periods

More information

Wind Energy Product Development Our Phone : (866) Acert Proprietary

Wind Energy Product Development Our Phone : (866) Acert Proprietary Wind Energy Product Development Our Phone : (866)-225-1071 Acert Proprietary Prepared: By Mayier Kahn PhD. Wind Energy Project Development Turbine, & Supply Chain Impacts Induced Impacts Blades, towers,

More information

LESSON: Engineering Better Blades GRADE: 4 SUMMARY:

LESSON: Engineering Better Blades GRADE: 4 SUMMARY: LESSON: GRADE: 4 SUMMARY: Working in groups, students will design mini wind turbine blades from recycled materials, and measure the energy generated. After each trial, they will refine their design and

More information

Energy from Wind Turbines. An Activity Guide for Grade 4-6 Teachers

Energy from Wind Turbines. An Activity Guide for Grade 4-6 Teachers Energy from Wind Turbines An Activity Guide for Grade 4-6 Teachers Table of Contents Introduction... 3 Curriculum Links from Revised 2007/2008 Ontario Curriculum... 3 Theory & Background Information (for

More information

KEYWORDS: alternative energy waves ocean currents electricity

KEYWORDS: alternative energy waves ocean currents electricity UNC Coastal Studies Institute 1 TITLE: Ocean Energy and Education KEYWORDS: alternative energy waves ocean currents electricity Waves are a potential energy source for the future. ABSTRACT: As the population

More information

Renewable vs. Non-Renewable Energy

Renewable vs. Non-Renewable Energy Renewable vs. Non-Renewable Energy In today s society, we are heavily reliant on electrical energy to complete a lot of the work that we do. It seems to be the most functional form of energy and the most

More information

VSS S U B M E R S I B L E S E W A G E P U M P S

VSS S U B M E R S I B L E S E W A G E P U M P S 7 2 9 8 / 2 3 HP % % 64% 7 5 HP HP 5 HP % % C u r v e P a g e V S S - 4 5 R P M M O D E L : V S S - 4 E I M P E L L E R : V S A - 4 C - 2-5 A l s o a p p l i e s t o V S S - 5 E & V S S - 6 E 7 7 65 55

More information

ELECTRICAL RESISTIVITY AS A FUNCTION OF TEMPERATURE

ELECTRICAL RESISTIVITY AS A FUNCTION OF TEMPERATURE ELECTRICAL RESISTIVITY AS A FUNCTION OF TEMPERATURE Introduction The ability of materials to conduct electric charge gives us the means to invent an amazing array of electrical and electronic devices,

More information

Problem statement, Standards, Data and Technology

Problem statement, Standards, Data and Technology 1 Lesson Plan Title: Go Like The Wind Building Wind Turbine Challenge Lab Teacher Name: Matt Brian Subject: Environmental Science School: East Noble High School Grade Level: 10 th 12 th Grade Problem statement,

More information

When you turn your lights on at home, where does that electricity come from?

When you turn your lights on at home, where does that electricity come from? The Electric Grid When you turn your lights on at home, where does that electricity come from? Power Plants Electric Generation: https://www.youtube.com/watch?v=20vb6hllqsg Remember the Law of Conservation

More information

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics

Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics Off-Shore Wind Blue Ribbon Panel Energy and Wind Systems 101 The Basics 1 This Report is a summary of the general energy generation information and general information on wind energy systems. For more

More information

Aluminum Siding - includes aluminum siding (free of insulation), downspouts, gutters, trimming, and empty wire conduit.

Aluminum Siding - includes aluminum siding (free of insulation), downspouts, gutters, trimming, and empty wire conduit. *The following information is only to be used as a guide. Final decision of material type will be made by qualified Berks Container Recovery employees. If you have a material that you would like to recycle

More information

Basic Electrical Theory by: Brian H. Hurd. Work

Basic Electrical Theory by: Brian H. Hurd. Work Basic Electrical Theory by: Brian H. Hurd Work Work is the transfer of energy from one form to another. Electricity is one form of energy that results from a transfer of energy from any of several other

More information

Aluminum Siding - includes aluminum siding (free of insulation), downspouts, gutters, trimming, and empty wire conduit.

Aluminum Siding - includes aluminum siding (free of insulation), downspouts, gutters, trimming, and empty wire conduit. *The following information is only to be used as a guide. Final decision of material type will be made by qualified Berks Container Recovery employees. If you have a material that you would like to recycle

More information

Chapter 11: Energy Flow and Power

Chapter 11: Energy Flow and Power Chapter 11: Energy Flow and Power 11.1 Efficiency 11.2 Energy and Power 11.3 Energy Flow in Systems Chapter 11 Objectives Give an example of a process and the efficiency of a process. Calculate the efficiency

More information

STUDENT NAME. Science Grade 4. Read each question and choose the best answer. Be sure to mark all of your answers.

STUDENT NAME. Science Grade 4. Read each question and choose the best answer. Be sure to mark all of your answers. FORMATIVE MINI ASSESSMENTS Third Grading Period 2010-11 March 21-24 STUDENT NAME DATE Science Grade 4 Read each question and choose the best answer. Be sure to mark all of your answers. 1 In the circuit

More information

Hot Water 24/7. Wind Power. from. OJ Birkestrand Pat. Pend. A PRAC TICAL REALITY. (800) OJB-CORP!

Hot Water 24/7. Wind Power. from. OJ Birkestrand Pat. Pend. A PRAC TICAL REALITY. (800) OJB-CORP! Hot Water 24/7 from Wind Power A PRAC TICAL REALITY OJ Birkestrand Pat. Pend. ojbirkestrand@rabbittool.com (800) OJB-CORP! OVERVIEW! 12 bladed upwind, directdrive, non-furling HAWT! Natural Sunflower look!

More information

ENGR 1181 Lab 7: Wind Turbine

ENGR 1181 Lab 7: Wind Turbine ENGR 1181 Lab 7: Wind Turbine - Preparation Material (Lab 7A) - Lab Procedure (Lab 7A) - Preparation Material (Lab 7B) - Lab Procedure (Lab 7B) - Report Guidelines (Combined) 1 Preparation Material 7A

More information

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives.

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives. MacGyver Windmill Class Pack Activity Guide Materials for 15 Windmills or 15 45 Students Grades 5 8, 9 12 (Extension Activity) Concepts Energy and Transformations Forces and Motion Engineering, Art, and

More information

An electro-magnetic pump and heating transformer for high temperature liquid metals

An electro-magnetic pump and heating transformer for high temperature liquid metals Ames Laboratory ISC Technical Reports Ames Laboratory 12-6-1954 An electro-magnetic pump and heating transformer for high temperature liquid metals G. R. Winders Iowa State College R. W. Fisher Iowa State

More information

Problem statement, Standards, Data and Technology

Problem statement, Standards, Data and Technology 1 Lesson Plan Title: Wind Turbine Design Challenge Teacher Name: Hwa Tsu Subject: IB Physics SL Grade Level: 11 Problem statement, Standards, Data and Technology Asking questions and defining problems

More information

Electricity generation by using high velocity wind produced due to motion of vehicle.

Electricity generation by using high velocity wind produced due to motion of vehicle. Electricity generation by using high velocity wind produced due to motion of vehicle. Vaibhav Rangrao Kumbhar 1, Pushkar Rajendra Bahirat 2, Atharva Chandrashekhar Kale 3, Sagar Vitthal Garad 4 1,2,4Scholar,

More information

More Effi cient Rooftop Ventilation Wind Generators with Topping Vertical Blades

More Effi cient Rooftop Ventilation Wind Generators with Topping Vertical Blades Original More Effi cient Rooftop Ventilation Wind Generators with Topping Vertical Blades Chonlatee Photong 1, Prompong Munmee 1, Adirek Wanthong 1 Received: 30 December 2015; Accepted: 24 April 2016 Abstract

More information

Frequently Asked Questions Sustainable Energy

Frequently Asked Questions Sustainable Energy Frequently Asked Questions Sustainable Energy November 2011 This Q&A introduces readers to the concept of sustainable energy and how copper could contribute. This document is not a press release or an

More information

TRADE OF HEAVY VEHICLE MECHANIC

TRADE OF HEAVY VEHICLE MECHANIC TRADE OF HEAVY VEHICLE MECHANIC PHASE 2 Module 2 Basic Electricity/Batteries UNIT: 1 Table of Contents 1.0 Learning Outcome... 1 1.1 Key Learning Points... 1 2.0... 2 2.1 What is... 2 2.2 Classification

More information

Section Pot Cores Low Level Applications

Section Pot Cores Low Level Applications The information contained in this section is primarily concerned with the design of linear inductors for high frequency LC tuned circuits using ferrite pot cores. Magnetics has arranged the data in this

More information

Lesson Four THE POWER OF THE WIND. Lesson 4 TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION. Grade level appropriateness: Grades 6-8

Lesson Four THE POWER OF THE WIND. Lesson 4 TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION. Grade level appropriateness: Grades 6-8 Lesson Four Lesson 4 THE POWER OF THE WIND TEP BRIGHT STUDENTS: THE CONSERVATION GENERATION Grade level appropriateness: Grades 6-8 Lesson Length: 1 ½ full class periods (~90 minutes) Additional documents:

More information

.2 Section Waste Management and Disposal..4 Section Vibration Isolation and Seismic Control Measures.

.2 Section Waste Management and Disposal..4 Section Vibration Isolation and Seismic Control Measures. Issued 2005/05/16 Section 15641 Cooling Towers Induced Draft Crossflow Page 1 of 5 PART 1 GENERAL 1.1 RELATED SECTIONS.1 Section 01330 Submittal Procedures..2 Section 01355 Waste Management and Disposal..3

More information

Energy and the Environment

Energy and the Environment Robert A. Ristinen Jack J. Kraushaar Energy and the Environment Second Edition Chapter 3: Heat Engines Copyright 2006 by John Wiley & Sons, Inc. Heat Engines Heat Engines- Possibility of easing human labor

More information

Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System

Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System Power Generation on Highway by using Vertical Axis Wind Turbine & Solar System Prof. Sachin Y. Sayais 1, Govind P. Salunkhe 2, Pankaj G. Patil 3, Mujahid F. Khatik 1Assistant Professor, Dept. of Electrical

More information

Current, potential difference and resistance

Current, potential difference and resistance Current, Potential difference and resistance Question Paper1 Level GCSE (9-1) Subject Physics Exam Board AQA Topic 4.2 Electricity Sub-Topic Current, potential difference and resistance Difficulty Level

More information

ENGR 1181 Lab 7: Wind Turbine

ENGR 1181 Lab 7: Wind Turbine ENGR 1181 Lab 7: Wind Turbine - Preparation Material (Lab 7A) - Lab Procedure (Lab 7A) - Preparation Material (Lab 7B) - Lab Procedure (Lab 7B) - Report Guidelines (Combined) 1 Preparation Material 7A

More information

Page 2. Q1.Energy resources can be renewable or non-renewable. Coal is a non-renewable energy resource. Name two other non-renewable energy resources.

Page 2. Q1.Energy resources can be renewable or non-renewable. Coal is a non-renewable energy resource. Name two other non-renewable energy resources. Q1.Energy resources can be renewable or non-renewable. (a) Coal is a non-renewable energy resource. Name two other non-renewable energy resources. 1.. 2.. (b) Wind turbines are used to generate electricity.

More information

Single-Phase Meter Installation

Single-Phase Meter Installation Single-Phase Meter Installation S T U D E N T M A N U A L March 31, 2005 2 STUDENT TRAINING MANUAL Prerequisites: None Objectives: From memory, you will be able to explain single-phase meter test procedures,

More information

Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria

Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria International Journal of Engineering and Technology Volume 3 No. 2, February, 2013 Modeling of a Vertical Axis Wind Turbine with Permanent Magnet Synchronous Generator for Nigeria B.O.Omijeh, C. S. Nmom,

More information

Windmill Challenge STEM Module VCS April 24, 2012

Windmill Challenge STEM Module VCS April 24, 2012 Windmill Challenge Teacher Notes Volusia County STEM-Extension Lesson Using the 5E Model Windmill Challenge Objective: Students will use background knowledge of energy to create a windmill and compete

More information

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine

Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine Enhancement of the Efficiency of Windmill Using Helical Designed Savonius Turbine M. Ganesh Karthikeyan 1, Shanmugasundaram K 2, Shree Bubesh Kumaar S 3, Siddhath K 4, Srinath B 5 Assistant Professor,

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Becoming Energy Conscious... 5 Activity 2 Solar Cooking... 14 Activity 3 Solar Transportation........................................

More information

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution

GE Power & Water Renewable Energy. Introducing GE s 2.75 MW Wind Turbines Increased customer value through product evolution GE Power & Water Renewable Energy Introducing GE s 2.75 MW Wind Turbines 2.75-100 2.75-103 Increased customer value through product evolution Introducing GE s 2.75-100 and 2.75-103 Product evolution. It

More information

of iron. The bug has a magnet attached to its bottom. The magnet in the bug sticks to the door.

of iron. The bug has a magnet attached to its bottom. The magnet in the bug sticks to the door. reflect Look at this picture. The bug sticks to the refrigerator door. Why does the bug stick to the door? We know it s not a real bug, so something else must be making the bug stick there. Magnets stick

More information

2/17/2017. Energy Accounting & Education. Topics (Electricity) Creating Electricity

2/17/2017. Energy Accounting & Education. Topics (Electricity) Creating Electricity Energy Accounting & Education Energy Managers Kermit King School District of La Crosse John Daily School District of Holmen 1 Topics (Electricity) Creating electricity Defining degree days Customer charges

More information

Galvanic and Stray Current Corrosion

Galvanic and Stray Current Corrosion Chapter 5 Galvanic and Stray Current Corrosion MElec-Ch5-1 Overview Galvanic Corrosion Understanding Galvanic Corrosion Controlling Galvanic Corrosion Stray Current Corrosion Understanding Stray Current

More information

Range of utilization. Envelope

Range of utilization. Envelope Kaplan Turbines Development Based on the principles of a Francis Turbine the Kaplan Turbine was developed by the Austrian engineer Victor Kaplan towards the beginning of the 20th century. Due to its adjustable

More information

WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION

WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION 1 S.A.Patil, 2 M.L.wagh, 3 S.G.Gavali 1 Lecturer in Mechanical Engineering Department GGSP, Nashik(India) 2,3 Third year Diploma in

More information

Wind Power. Yale University Science Olympiad January 21, You may not open this exam until given permission by your proctors.

Wind Power. Yale University Science Olympiad January 21, You may not open this exam until given permission by your proctors. Yale University Science Olympiad January 21, 2017 Wind Power You may not open this exam until given permission by your proctors. DO NOT WRITE ON THIS EXAM Report all answers on the provided answer booklet.

More information

Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater.

Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. (i) Before starting the experiment, the student drew Graph A. Graph A shows how the student expected

More information

Accreditation Audit Checklist (Version 3.0)

Accreditation Audit Checklist (Version 3.0) Accreditation Audit Checklist (Version 3.0) (Based on EASA Std. AR100-2015 and applies for all audits completed after April 1, 2018) Scope The EASA Accreditation Program applies only to three-phase, squirrel-cage

More information

Profile No.: 4 NIC Code: ELECTRICAL CABLES (SINGLE AND MULTICORE)

Profile No.: 4 NIC Code: ELECTRICAL CABLES (SINGLE AND MULTICORE) Profile No.: 4 NIC Code: 27320 ELECTRICAL CABLES (SINGLE AND MULTICORE) 1. INTRODUCTION: Electrical Cables and wires are used for power distribution in electrical systems in housing sector as well as in

More information

Design and Construction of a Mini Hydro Turbine Model

Design and Construction of a Mini Hydro Turbine Model American Journal of Modern Energy 2018; 4(1): 1-6 http://www.sciencepublishinggroup.com/j/ajme doi: 10.11648/j.ajme.20180401.11 ISSN: 2575-3908 (Print); ISSN: 2575-3797 (Online) Design and Construction

More information

Q.1 Attempt any Ten of the following 20 Marks. a) Define electrical supply system and state is types. (Definition: 1 Mark & Types: 1 Mark)

Q.1 Attempt any Ten of the following 20 Marks. a) Define electrical supply system and state is types. (Definition: 1 Mark & Types: 1 Mark) Subject Code: 17404 Model Answer Page No: 1 of 27 Important Instruction to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The

More information

Electricity SEVERAL COMMON ELEMENTS

Electricity SEVERAL COMMON ELEMENTS Electricity ELECTRICITY: THE MYSTERIOUS FORCE What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms.

More information

Infrastructure Case Study

Infrastructure Case Study Infrastructure Case Study Agenda Alliant Energy Portfolio Mix Wind Generation Across the United States Wind Turbine Generator (WTG) Operation Overview of Balance of Plant (BOP) Equipment Wind Development

More information

KNIVES. giving you the EDGE, to stay AHEAD. TUBE & METAL FORMING

KNIVES. giving you the EDGE, to stay AHEAD. TUBE & METAL FORMING KNIVES giving you the EDGE, to stay AHEAD. TUBE & METAL FORMING ATLAS has comprehensive in-house designing facility to design new products according to customer s specific requirements with complete satisfaction

More information

Big Idea 6. Day 1. Weekly Question How do windmills make electricity?

Big Idea 6. Day 1. Weekly Question How do windmills make electricity? 1 The universe runs on many types of energy. Mechanical energy is the energy of a movable object. Thermal energy is internal energy produced by the vibrations of a substance s molecules. Chemical energy

More information

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ...

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ... Q1. Power stations are usually not very efficient. A lot of energy is wasted as thermal energy. The diagrams show the percentage of energy transferred by two coal-burning power stations. (a) (b) Write

More information

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while

Problem Statement. Design and construct a small wind turbine to produce as much power as possible while Problem Statement Design and construct a small wind turbine to produce as much power as possible while still maintaining efficiency. One must be able to measure the output of the turbine, the design must

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farm Energy Efficiency Principles Tom Manning,

More information

Report on Industrial Visit To

Report on Industrial Visit To Report on Industrial Visit To SATHANUR HYDRO POWER PLANT, SATHANUR (15/09/2017) Dept. of EEE, Adhi College of Engineering and Technology, No. 6 Munu Adhi Nagar, Sankarapuram, Walajabad, Kanchipuram- 631605

More information

Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art

Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art 2017 2nd International Conference on New Energy and Renewable Resources (ICNERR 2017) ISBN: 978-1-60595-470-7 Wind Turbine Doubly-Fed Asynchronous Machine Diagnosis Defects State of the Art Fatima El Hammouchi,

More information

Name: New Document 1. Class: Date: 87 minutes. Time: 87 marks. Marks: Comments:

Name: New Document 1. Class: Date: 87 minutes. Time: 87 marks. Marks: Comments: New Document Name: Class: Date: Time: 87 minutes Marks: 87 marks Comments: Q. Figure shows a radio. The radio can be powered by connecting the two-core cable to the mains electricity supply. (a) (i) What

More information

Climate Change - Teacher Resource

Climate Change - Teacher Resource Climate Change - Teacher Resource Harnessing energy from wind and water This is a follow-up resource with some simple activites you might like to run with the students after their visit to Lab in a Lorry.

More information

IMTE AG Power Consulting Engineers

IMTE AG Power Consulting Engineers REMOTE AREA POWER SUPPLY Generally in many countries worldwide, most electricity is supplied by utilities or private IPPs from large central located power plants, via power supply networks called grids.

More information

GRADE 9: Physical processes 2. UNIT 9P.2 12 hours. Electricity and energy. Resources. About this unit. Previous learning.

GRADE 9: Physical processes 2. UNIT 9P.2 12 hours. Electricity and energy. Resources. About this unit. Previous learning. GRADE 9: Physical processes 2 Electricity and energy UNIT 9P.2 12 hours About this unit This unit is the second of four units on physical processes for Grade 3. It builds on work done on electricity in

More information

A Problem Based Learning Experience in a Post-Apocalyptic. 6 th grade

A Problem Based Learning Experience in a Post-Apocalyptic. 6 th grade A Problem Based Learning Experience in a Post-Apocalyptic world 6 th grade To audio recording. Grade Level: 6th grade SC Stds: Energy, Technology 6-1.4 Use a technological design process to plan and produce

More information

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department

APPENDIX B: Example Lab Preparation Guide and Manual. The University of Texas at Austin. Mechanical Engineering Department APPENDIX B: Example Lab Preparation Guide and Manual ME 130L 17905 17990 The University of Texas at Austin Mechanical Engineering Department Spring 12 Dr. Hidrovo Lab #4 Preparation Guide - Dimensional

More information

Participation in the sale of Energy Efficient Appliances

Participation in the sale of Energy Efficient Appliances Nepal Electricity Authority (A Government of Nepal Undertaking) Invitation of Proposals for Participation in the sale of Energy Efficient Appliances Issued by: Nepal Electricity Authority Energy Efficiency

More information

RE-E - Wind & Solar Power - Renewable Energy

RE-E - Wind & Solar Power - Renewable Energy IDC Technologies - Books - 1031 Wellington Street West Perth WA 6005 Phone: +61 8 9321 1702 - Email: books@idconline.com RE-E - Wind & Solar Power - Renewable Energy Price: $65.95 Ex Tax: $59.95 Short

More information

Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03

Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03 Harnessing Wind Energy with Recyclable Materials By Katherine Carroll, Margo Dufek, Leanne Willey, and Andrew McCarthy Team 03 Final Project Report Document Submitted towards partial fulfillment of the

More information

M1. (a) (i) transferred to the surroundings by heating reference to sound negates mark 1

M1. (a) (i) transferred to the surroundings by heating reference to sound negates mark 1 M. (a) (i) 50 transferred to the surroundings by heating reference to sound negates mark (iii) 0.75 450 / 600 gains mark accept 75% for marks maximum of mark awarded if a unit is given (iv) 0 (s) correct

More information

Electricity. Grades 4-6. Written by Pat Urie Illustrated by Ric Ward. ISBN X Copyright 2000 Revised January 2006

Electricity. Grades 4-6. Written by Pat Urie Illustrated by Ric Ward. ISBN X Copyright 2000 Revised January 2006 Grades 4-6 Written by Pat Urie Illustrated by Ric Ward ISBN 1-55035-650-X Copyright 2000 Revised January 2006 All Rights Reserved * Printed in Canada Permission to Reproduce Permission is granted to the

More information

Question # 1: Write true or false with correcting the wrong statement

Question # 1: Write true or false with correcting the wrong statement Answer all the following questions. Number of questions: 4 Illustrate your answers with sketches when necessary. The exam consists of three pages. Total mark: 210 marks Question # 1: Write true or false

More information

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS THE SCIENCE BEHIND ENERGY TRANSFORMATIONS Q1 GENERATING ELECTRICITY AT A POWER PLANT Unit Essential Question: How are Earth s energy resources used to generate electricity What are the advantages and disadvantages

More information

Quadcopter Design and Dynamics.

Quadcopter Design and Dynamics. Lecture 2: Quadcopter Design and Dynamics Lecture 2 Page: 1 Quadcopter Design and Dynamics colintan@nus.edu.sg Lecture 2: Quadcopter Design and Dynamics Page: 2 Objectives of this Lecture The objectives

More information

7.9.6 Magnetic Poles. 85 minutes. 117 marks. Page 1 of 37

7.9.6 Magnetic Poles. 85 minutes. 117 marks. Page 1 of 37 7.9.6 Magnetic Poles 85 minutes 117 marks Page 1 of 37 Q1. The diagram shows an electromagnet used in a door lock. (a) The push switch is closed and the door unlocks. Explain in detail how this happens.

More information

The Model T Takes Off

The Model T Takes Off UNIT 5 WEEK 3 Read the article The Model T Takes Off before answering Numbers 1 through 5. The Model T Takes Off The invention of the automobile in the late 19th century was one of the greatest technological

More information

Section 2: Sources of Energy

Section 2: Sources of Energy Section 2: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources.natural resources are either renewable or nonrenewable.

More information

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology

Energy Education. Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology Energy Education Intermediate Phase (Grade 4-6) (CAPS) Educator Guide Natural Science and Technology 1 Energy Education Energy Education The demand for electricity is growing. An alternative to building

More information

Construction of a Low Temperature Heat Exchanger Cell

Construction of a Low Temperature Heat Exchanger Cell Construction of a Low Temperature Heat Exchanger Cell Jason R. Kim a b, Kevin Kless b, Vladimir Shvarts b a) University of Northern Colorado, Greeley, CO b) University of Florida, Gainesville, FL Sinters

More information

2 3 4 Distance from centre of reactor (m)

2 3 4 Distance from centre of reactor (m) ONE OPTIMISED NETWORK EQUIPMENT 12 January 2016 c 0MPRMF-4 Magnetic fields and air core reactors 1 Introduction Air core reactors are commonly used as shunt reactors, fault current limiting reactors, tuning

More information

The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity

The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity Available online at www.sciencedirect.com Procedia Engineering 3 (0) 994 999 I-SEEC0 The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity S. Jugsujinda a*,

More information

ECE 333 GREEN ELECTRIC ENERGY. 6. Limits on Conversion of Wind Into Electricity

ECE 333 GREEN ELECTRIC ENERGY. 6. Limits on Conversion of Wind Into Electricity ECE 333 GREEN ELECTRIC ENERGY 6. Limits on Conversion of Wind Into Electricity George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana Champaign ECE 333 2002 2017

More information

Copper: Essential to Sustainable Energy

Copper: Essential to Sustainable Energy Copper: Essential to Sustainable Energy Copper is an integral part of sustainable energy initiatives because of its reliability, efficiency and performance. Its superior electrical and thermal conductivities

More information