Chapter Two: Cycles of Matter (pages 32-65)

Size: px
Start display at page:

Download "Chapter Two: Cycles of Matter (pages 32-65)"

Transcription

1 Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique properties. Water is: an excellent carrier of dissolved minerals and other materials. an effective medium for transferring energy. a universal solvent. Water has: has a lower density when it is a solid a relatively high boiling point and melting point. special adhesive and cohesive properties. a high heat capacity. Water is an excellent carrier of dissolved minerals and other materials: As water moves from place to place it carries a variety of other substances. for example: water in the soil may contain nitrogen and phosphorus or toxins like methylmercury. Water is an effective medium for transferring energy: Water vapour that evaporates at the equator rises and moves towards the poles, releasing heat as it expands and cools. Liquid water transfers heat in ocean currents from warm regions to cooler regions. The warm air over the water can moderate the temperature over nearby land. Water is a universal solvent: A water molecule consists of two hydrogen atoms that are covalently bonded to one oxygen atom. The hydrogen end of the molecule has a slightly positive charge and the oxygen end has a slightly negative charge, making water a polar molecule. This polarity allows a water molecule to form hydrogen bonds between the hydrogen of one molecule and the oxygen of a nearby molecule. What to do: Draw a diagram of three water molecules exhibiting hydrogen bonding.

2 Biology 20 Chapter 2.1_keyed Water has a lower density when it is a solid Ice floats on top of liquid water because it is less dense. When water cools, molecules of water slow down and allow for all of the possible hydrogen bonds to form; individual molecules are held at equal distances from each other resulting in a lower density. Water has a high boiling and melting point: Hydrogen bonding explains why water remains liquid over a large temperature range. An individual hydrogen is weak; hydrogen bonds break and re-form frequently. Many hydrogen bonds together are strong; require a large amount of energy to break them. Water will only change phase from a liquid to a solid (boil) when the many hydrogen bonds are broken; therefore, water has a high boiling point. Water will only change phases from a solid to a liquid (melt) when the many hydrogen bonds are broken; therefore, water has a high melting point. Water has special adhesive and cohesive properties Hydrogen bonding causes cohesion, the attraction of water molecules to each other. Cohesion is responsible for surface tension, the reason many insects can walk on water. Adhesion is the attraction of water molecules to the molecules of other substances. Adhesion is responsible for water sticking to the sides of a test tube or a tree s xylem vessels allowing water to move against the pull of gravity. Water has a high specific heat capacity Heat capacity is the amount of heat a substance can absorb or release for a given change in temperature. Water requires a large amount of energy to affect a small amount of change in temperature. Water takes a long time to heat and cool. Bodies of water such as oceans and lakes have a moderating effect on the air temperatures of nearby land. Question 1. Water is a polar molecule, what does this mean? Water has a slightly negative charge at the oxygen end of the molecule and a slightly positive charge at the hydrogen end of the molecule. Question 2. How does water s polarity affect the process of transpiration? Water is adhesive because of the molecules polarity. The water molecules are attracted to the unlike molecules of other substances and thus stick. Water sticks to the sides of the xylem vessels in a plant, allowing a column of water to resist the pull of gravity. The cohesive nature of water (due to the hydrogen bonds) allows the water to move as a continuous column up the plant.

3 Biology 20 Chapter 2.1_keyed The Hydrological Cycle Biogeochemical Cycle: the cyclical route that water or other chemical nutrients take through the biotic and abiotic components of the biosphere. The hydrologic cycle is a cycle of evaporation and condensation that determines the circulation of water through the atmosphere and biosphere. The hydrologic cycle includes the following processes: evaporation condensation precipitation infiltration runoff transpiration storage (in atmosphere, ice and snow, freshwater bodies, and oceans) As water travels through the biotic and abiotic components of the biosphere, it carries much material with it, including chemical nutrients. This links the hydrologic cycle with the biogeochemical cycles, through which nutrients travel. Societal Uses of Water Alberta has rich supplies of fresh water from rivers, lakes, wetlands, and undergrounds sources. Population growth, and increases agricultural and industrial uses has increased the demand for water in the province and on a global scale. Water that cannot be cleaned of toxic chemicals and pathogens is no longer useful. If it is released into the environment, it can cause great harm to the ecosystem.

4 Question 3. Based on the pie chart of water use in Alberta, which sector of water use should be decreased? Justify your response. What to do: watch the YouTube videos and answer the questions below. Question 4. Do you feel as though tap water is safe to drink? Why or why not? Question 5. What message(s) are the bottled water commercials sending to the consumers? Question 6. What is the estimated inflated cost of bottled water compared to tap water? Question 7. On average, how many bottles of water are bought in the US each week? Question 8. What is the percentage of water bottles that end up in the landfill? Question 9. Bottled water sales have begun to drop, what business is on the rise? 4

5 Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks, or both. The cycling of matter through the biotic and abiotic components of the biosphere allows all organisms to obtain nutrients. All biogeochemical cycles involve some substances that are temporarily stored in nutrient reservoirs for various amounts of time, while some substances are moving through the environment between reservoirs. The substances that are involved in biogeochemical cycles are: water carbon oxygen sulfur nitrogen phosphorus Each substance can be considered to be part of its own cycle, while all of the cycles are said to be interconnected. Substances may be part of a rapid cycle or part of a slow cycle depending on the amount of time spent in a reservoir. Nutrient reservoir: A nutrient reservoir is a component in the biosphere in which nutrients temporarily accumulate. Examples include: soil, water and organisms The four nutrient reservoirs are categorized with respect to whether they involve biotic or abiotic components of the ecosystem and whether the nutrients they contain are directly available to living things. Nutrients that are directly available to living things are said to be part of a rapid cycle. Nutrients that are not available to living things are said to be part of a slow cycle. 5

6 What to do: read the information on pages of the text. Summarize the information in the table below. definition Substances cycle between nutrient reservoirs relatively quickly. Rapid Cycle Slow Cycle examples Carbon moves from producer to consumer to decomposer, and back into the atmosphere through rapid cycling. how substances move into and out of nutrient reservoir photosynthesis, cellular respiration, decomposition, excretion definition Substances accumulate and are unavailable to organisms. It can take millions of years for these substances to again become available to organisms. examples Organic carbon in the matter of living organisms is fossilized. The burning of fossil fuels millions of years later puts the carbon into the atmosphere. how substances move into nutrient reservoir fossilization, formation of sediments how substances move out of reservoir erosion, burning of fossil fuels, weathering The Carbon and Oxygen Cycles (pages 43 46) Rapid Cycling of Carbon Plants and animals play an important role in the rapid cycling of oxygen and carbon dioxide. Plants consume much greater amounts of carbon in the process of photosynthesis than plants and animals release in the process of cellular respiration. Much of the carbon in forest reservoirs is released back into the atmosphere as carbon dioxide from forest fires and the breakdown of organic matter by decomposers. Rapid Cycling of Oxygen Plants, animals, and decomposers also play an important role in the cycling or oxygen. Photosynthesis produces oxygen gas, which is needed for cellular respiration. 6

7 The Carbon and Oxygen Cycle The Slow Cycling of Carbon Living organisms also play an important role in the slow cycling of carbon. Organic carbon that is stored in the dead bodies of organisms may enter into a slow cycle if the carbon is not made immediately available by decomposers. Over millions of years, organic material that is not broken down by decomposers may become incorporated into rocks or contribute to petroleum (fossil fuel) deposits. Human activities influence the slow cycling of carbon in a number of ways. The combustion of petroleum deposits quickly releases carbon back into the atmosphere. Since the industrial revolution, levels of carbon dioxide in the atmosphere has increased by about 30%. Question 1. Using the diagram to the right, list the major carbon sinks (reservoirs) on the Earth. Major carbon sinks include: ocean, forests, petroleum deposits, limestone (CaCo 3 ) * note that the slow cycling of carbon is shown in bold against a darker background. 7

8 The Sulfur Cycle (pages 46 48) The sulfur cycle is a biogeochemical cycle that shows how sulfur is converted into different forms as it is transported through the air, water, and soil. All organisms require sulfur as an important component of proteins and vitamins What to do: Read the information of the sulfur cycle on pages of the text. Summarize the information in the table below and answer the questions that follow. Component of the Biosphere Sulfur in the Air Sulfur in the Water Sulfur in the Soil Summary of information: The decomposition of organic matter, volcanic off-gassing, and human activities all release sulfur into the atmosphere. Rain and snow soon return sulfur to Earth s surface via acid deposition. Plants and algae take up sulfur in the water-soluble form of 2 sulfate (SO 4 ). Decomposers quickly return sulfur to the soil or air as hydrogen sulfide (H 2 S). Soil bacteria use sulfur compounds in photosynthesis or cellular respiration, thus playing an essential role as they convert one form of sulfur to another. Some sulfur is taken out of rapid cycling when bacteria convert sulfur to forms that are layered down as sediments, eventually becoming part of rocks. 8

9 The Nitrogen Cycle (pages 48 49) The nitrogen cycle is a biogeochemical cycle that shows how nitrogen is converted into different forms as it is transported through the air, water, and soil. All organisms require nitrogen to make proteins and genetic material (DNA). What to do: Read the information of the nitrogen cycle on pages of the text. Summarize the information in the table below and answer the questions that follow. Component of the Biosphere Nitrogen in the Air Nitrogen in the Water Nitrogen in the Soil Summary of information: Nitrogen gas (N 2 ) makes up 78.1 percent of Earth s atmosphere by volume. Most organisms, however, cannot use atmospheric nitrogen. Nitrogen gas is removed from the atmosphere via nitrogenfixing cyanobacteria, which convert it into a form plants can use ammonium (NH + 4 ). Some types of aquatic bacteria then convert the ammonium into nitrate (NO 3 ), which plants can also use. Other bacteria convert nitrate back into nitrogen gas via denitrification. Nitrogen-fixing soil bacteria live in close association with plants. They convert nitrogen gas into ammonium. Decomposers also break down organic matter to produce ammonium. Soil bacteria then convert the ammonium into nitrite (NO 2 ) and then nitrate. Denitrifying bacteria then convert these compounds back into nitrogen gas. 9

10 The Phosphorus Cycle (pages 49 50) The phosphorus cycle is a biogeochemical cycle that shows how phosphorus is converted into different forms as it is transported through the water and soil. All organisms require phosphorus as a part of cellular DNA and ATP (the energy carrier essential to all cells). What to do: Read the information of the phosphorus cycle on pages of the text. Summarize the information in the table below and answer the questions that follow. Component of the Biosphere Phosphorus in the Air Phosphorus in the Water Phosphorus in the Soil Summary of information: Unlike carbon, nitrogen, and sulfur, phosphorus does not cycle through the atmosphere. Weathering gradually releases phosphorus trapped in rocks and makes it available to organisms. Plants and algae can only use phosphorus in the form of 3 phosphate (PO 4 ). Phosphorus is scarce in the environment. This keeps the growth of producers in balance, but it can also limit the growth of crops. The growth of algae in aquatic ecosystems is limited by the amount of available nutrients. Because it is scarce in the environment, excess phosphorus in aquatic ecosystems can result in algal overgrowth, known as an algal bloom. 10

11 Question 2. Human activities can greatly affect many of the biogeochemical cycles. The increase in phosphates due to agricultural run-off can be a major problem for near-by aquatic environments. Use the phrases below and re-order to show how an increase in the amount of phosphorus in the environment can cause ecosystem damage. Algal bloom and overgrowth occurs Decomposer population grows quickly, depleting oxygen Excess phosphorus enters the aquatic system Fish and other organisms requiring oxygen die Plants below the surface can no longer photosynthesize and die Sunlight cannot penetrate below the surface 11

12 Chapter Two: Cycles of Matter (pages 32-65) 2.3 The Balance of the Matter and Energy Exchange (pages 53 61) The Earth is a closed system in relation to matter and an open system in relation to energy. There is a constant input of energy into the biosphere and a constant output of radiant energy (heat) to space. The amount of sunlight that is received by an ecosystem affects the amount and the type of productivity of an ecosystem. Productivity: the rate at which an ecosystem s producers capture and store energy within organic compounds over a certain length of time. Commonly measured in terms of energy per area, per year; (J/m 2 /a) Productivity is the rate at which organisms produce new biomass. Productivity can also be expressed in terms of biomass of vegetation added to an ecosystem per year; (g/m 2 /a). Productivity varies among ecosystems; the rate of productivity depends on many variables: number of producers present in the ecosystem the amount of light and heat available (solar radiation) the amount of rainfall the system receives the amount of available nutrients Question 1. Explain how increased amounts of sunlight can have both positive and negative effects on productivity. Increased amounts of sunlight allows for more photosynthesis, and thus more productivity, as long as sufficient water is available. Too much ultraviolet radiation, however, can inhibit photosynthesis and limit the growth of plants. Question 2. What are two major factors (other than available nutrients) that can limit productivity? Other than nutrients, the two major factors that limit productivity are sunlight and water. The Gaia Hypothesis Organisms must maintain an internal balance to remain healthy (homeostasis). Proposed in 1979, by James Lovelock, the Gaia hypothesis considers homeostasis on a global level. The biosphere needs a constant input of energy and cycling of nutrients to maintain its internal balance. The Gaia hypothesis states: the entire range of living matter on Earth from whales to viruses and from oaks to algae could be regarded as constituting a single living entity capable of maintaining Earth s atmosphere to suit its overall needs and endowed with faculties and powers far beyond those of its constitute parts. Question 3. State the Gaia hypothesis in your own words. Earth is a single living organism 12

13 Human Activities and the Natural Balance Dead zones are regions or lakes or oceans in which aquatic life has suffocated due to algal blooms. Dead zones can occur seasonally in response to the turn-over of nutrientrich waters in warmer temperatures. Human activities often account the occurrence of dead zones. Nutrients can leach from soil into rivers by rain. Sewage discharged into large bodies of water contain high levels of phosphorus and nitrogen, promoting algal blooms Surface run-off from livestock operations carries nutrient rich wastes into water ways. Surface run-off from fertilized agricultural land and residential lawns can enter rivers and oceans. Question 4. How can an increase in available nutrients cause a dead zone to form in deep waters? Trace the steps involved from an increase in nutrients to the decrease in aquatic biodiversity. increase in nutrients such as phosphorus and nitrogen thick mat of algae forms at surface of water sunlight cannot penetrate to water below surface photosynthetic plants below the surface die decomposer populations flourish below the surface decomposers consume most of the O 2 dissolved in the water There is no longer enough O 2 left in the water to support life Question 5. Wetlands are often called the kidneys of the environment. Based on your knowledge of human physiology, what do the kidneys do? How do you think this relates to the discussion of excess nutrients in the water ways? The kidney filters harmful substances out of the bloodstream, ensuring that concentrations of these substances stay within safe limits. Solutions to environmental problems are often discovered in the biosphere itself. Because wetlands (marshes, swamps and bogs) are permanently saturated with water, they act as large filters. 13

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter Chapter 2 Chapter 2 Cycles of Matter 2.1 The Role of Water in Cycles of Matter 2.2 Biogeochemical Cycles 2.3 the Balance of the Matter and Energy Exchange 2.1 The Role of Water in Cycles of Matter In this

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

The water cycle describes the continuous movement of water on, above and below the surface

The water cycle describes the continuous movement of water on, above and below the surface Nitrogen and carbon cycles Water cycle The water cycle describes the continuous movement of water on, above and below the surface It is driven by radiation, convection and advection. It includes solid,

More information

13.5. Cycling of Matter. Water cycles through the environment.

13.5. Cycling of Matter. Water cycles through the environment. 13.5 Cycling of Matter VOCABULARY hydrologic cycle biogeochemical cycle nitrogen fixation KEY CONCEPT Matter cycles in and out of an ecosystem. Main Ideas Water cycles through the environment. Elements

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

Earth Systems and Interactions

Earth Systems and Interactions CHAPTER The Earth System Earth Systems and Interactions What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 The Carbon Cycle The carbon cycle is the movement of carbon from the nonliving environment into living things and back Carbon is the

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles Biogeochemical Cycles refers to the cycling of materials between living things and the environment. Text Pages 50 51, 62 69 1 The Oxygen Cycle the movement of oxygen between the atmosphere

More information

EQ: How are nutrients recycled throughout the environment?

EQ: How are nutrients recycled throughout the environment? EQ: How are nutrients recycled throughout the environment? Biogeochemical Cycles Recall that matter is neither created nor destroyed; but it can transform and be passed on. Biogeochemical cycles: how water,

More information

BIOGEOCHEMICAL CYCLES 3-3

BIOGEOCHEMICAL CYCLES 3-3 http://www.animationlibrary.com/search/?keywords=recycle BIOGEOCHEMICAL CYCLES 3-3 See a video clip about CYCLES IN NATURE - Chap 3 http://mff.dsisd.net/environment/cycles.htm ENERGY & MATTER Energy is

More information

How Ecosystems Work Section 2

How Ecosystems Work Section 2 Objectives List the three stages of the carbon cycle. Describe where fossil fuels are located. Identify one way that humans are affecting the carbon cycle. List the tree stages of the nitrogen cycle. Describe

More information

Ecosystems Full of Matter, Energy, and Entropy

Ecosystems Full of Matter, Energy, and Entropy Living Environment Ecosystems Ecosystems Full of Matter, Energy, and Entropy 2017-07-18 www.njctl.org Table of Contents: Ecosystems Full of Matter, Energy, and Entropy Click on a topic to go to that section

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment.

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Explain how human impact is affecting biogeochemical cycles

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems CARBON CYCLE A. Carbon Facts: Carbon is found in all living matter. Places that carbon is found are called stores or sinks Short-term Stores Long-term Stores - living

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Section 2: The Cycling of Materials

Section 2: The Cycling of Materials Section 2: The Cycling of Materials Preview Bellringer Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles SB4b. Explain the flow of matter and energy through ecosystems by explaining the need for cycling of major nutrients (C, O, H, N, P). Biogeochemical Cycles describe the flow of essential

More information

Biogeochemical Cycles: Ecosystem Recycling

Biogeochemical Cycles: Ecosystem Recycling Biogeochemical Cycles: Ecosystem Recycling Energy and chemical compounds flow through the ecosystem WATER NITROGEN CARBON PHOSPHORUS are RECYCLED!!! They move through a BIOGEOCHEMICAL CYCLE: They move

More information

Ecology Part 2. Living Environment

Ecology Part 2. Living Environment Ecology Part 2 Living Environment Recycling in the Biosphere Matter is recycled within and between ecosystems Elements, chemical compounds, and other forms of matter are passed from one organism to another

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16 NOTEBOOK Table of Contents: 9. Properties of Water 9/20/16 10. Water & Carbon Cycles 9/20/16 NOTEBOOK Assignment Page(s): Agenda: Tuesday, September 20, 2016 Properties of Water Water & Carbon Cycles 1.

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work?

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work? Nutrient Cycles in Ecosystems Textbook pages 68 91 Section 2. 2 Summary Before You Read Like other organisms, your body relies on nutrients to stay healthy. Based on your current understanding, create

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Composition of Living Organisms All organisms are composed of matter, and although

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

Nitrogen cycle Important steps

Nitrogen cycle Important steps Nitrogen cycle Nitrogen cycle Important steps Stage1 Entry and Accumulation Ammonia is introduced into the water via tropical fish waste, uneaten food, and decomposition. These will break down into ammonia

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

BC Science Nutrient Cycles in Ecosystems

BC Science Nutrient Cycles in Ecosystems BC Science 10 2.2 Nutrient Cycles in Ecosystems Notes Nutrients are chemicals required for growth and other life processes. Nutrients move through the biosphere in nutrient cycles (n.c), or exchanges.

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Ecosystems: What Are They and How Do They Work? Chapter 3

Ecosystems: What Are They and How Do They Work? Chapter 3 Ecosystems: What Are They and How Do They Work? Chapter 3 Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface Contain about 50% of the world s known plant

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecologists study environments at different levels of organization. Ecology is the study of the interactions

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

SNC1D BIOLOGY 9/24/2013. SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems

SNC1D BIOLOGY 9/24/2013. SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems SNC1D BIOLOGY SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems Energy flows through ecosystems when organisms consume other organisms. Unlike energy, which

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession DO NOW: -GRAB PAPERS FOR TODAY -GET A HIGHLIGHTER -UPDATE HW FOR TONIGHT COMPLETE AQUATIC ECOLOGY PACKET (INCLUDES VIDEO) -BEGIN READING THROUGH THE LECTURE TERRESTRIAL ECOLOGY PART DUEX Biogeochemical

More information

Biogeochemical Cycles. {Living World

Biogeochemical Cycles. {Living World Biogeochemical Cycles {Living World What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth s life. Earth's Spheres Atmosphere layer of air that surrounds the Earth

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Ecosystem ecology ECOSYSTEM ECOLOGY. Thermodynamics. Energy moves through ecosystems. Energy 11/25/2017

Ecosystem ecology ECOSYSTEM ECOLOGY. Thermodynamics. Energy moves through ecosystems. Energy 11/25/2017 ECOSYSTEM ECOLOGY Ecosystem ecology Chapter 55 Study of biological communities and abiotic environment Thermodynamics First Law of Thermodynamics - Energy is neither created nor destroyed Second Law of

More information

Central Case: The Gulf of Mexico s Dead Zone

Central Case: The Gulf of Mexico s Dead Zone Central Case: The Gulf of Mexico s Dead Zone The Gulf of Mexico brings in a billion pounds/year of shrimp, fish, and shellfish Gulf dead zone = a region of water so depleted of oxygen that marine organisms

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

LEARNING OUTCOME B1. Biomes. Biomes. Factors Creating Biomes 26/10/2011. Section Biomes. Factors Creating Biomes

LEARNING OUTCOME B1. Biomes. Biomes. Factors Creating Biomes 26/10/2011. Section Biomes. Factors Creating Biomes Section 1.1 - Biomes LEARNING OUTCOME B1 Key Terms abiotic adaptation biome biotic climate climatograph Science 10 Biology Biomes Biomes are the largest division of the largest division of the biosphere.

More information

NUTRIENT CYCLES REVIEW

NUTRIENT CYCLES REVIEW 52 Name A.P. Environmental Science Date Mr. Romano NUTRIENT CYCLES REVIEW 1. Which of the following chain of events would occur as a result of land clearing/deforestation? (vocabulary check: efflux means

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships Ecologists study environments at different

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

THE CYCLING OF NUTRIENTS

THE CYCLING OF NUTRIENTS Unit 4 THE CYCLING OF NUTRIENTS LEARNING OBJECTIVES 1. Recognize the need for the recycling of the earth s chemicals and the consequences if this is not done. 2. Learn the difference between a global cycle

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels.

Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels. ECOLOGICAL TERMS Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels. Autotroph an organism that produces its own

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

Lesson 1.2 Recycling Matter

Lesson 1.2 Recycling Matter Lesson 1.2 Recycling Matter Lesson Objectives Define biogeochemical cycles. Describe the water cycle and its processes. Give an overview of the carbon cycle. Outline the steps of the nitrogen cycle. Lesson

More information

Bell Ringer AP Practice

Bell Ringer AP Practice Bell Ringer AP Practice 1) Reasons that the population size of an exotic species often grows rapidly when the species is introduced in a new environment include which of the following? i. The exotic species

More information

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology?

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology? Lesson Overview 3.1 What Is Ecology? Studying Our Living Planet The biosphere consists of all life on Earth and all parts of the Earth in which life exists, including land, water, and the atmosphere. The

More information

Section 2: The Cycling of Matter

Section 2: The Cycling of Matter Section 2: The Cycling of Matter Preview Classroom Catalyst Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work?

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work? LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 3 Ecosystems: What Are They and How Do They Work? Cengage Cengage Learning Learning 2015 2015 Core Case Study: Tropical Rain Forests Are

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Section 3 1 What Is Ecology? (pages 63 65)

Section 3 1 What Is Ecology? (pages 63 65) Chapter 3 The Biosphere Section 3 1 What Is Ecology? (pages 63 65) This section identifies the different levels of organization that ecologists study. It also describes methods used to study ecology. Interactions

More information

Interest Grabber. Levels Within Levels

Interest Grabber. Levels Within Levels Interest Grabber Section 3-1 Levels Within Levels An ecosystem is a collection of all the organisms that live in a particular place, together with their nonliving, or physical, environment. Within an ecosystem,

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Chapter 3 Reading/Homework Quiz

Chapter 3 Reading/Homework Quiz Name Chapter 3 Reading/Homework Quiz Date APES 1. Scientists estimate that tropical rain forests contain up to half of the earth s land plants and animal species. What percentage of the world s land surface

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from?

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from? Nutrient Cycles & how Humans impact nutrient cycling Accel Bio Where do energy & nutrients come from? What are nutrients? What else do organisms need to survive and grow? Organisms need, Energy, water

More information

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date Chapter 3 Summary The Biosphere 3 1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment. Earth s organisms live in the biosphere.

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

Biogeochemical Cycles. Nutrient cycling at its finest!

Biogeochemical Cycles. Nutrient cycling at its finest! Biogeochemical Cycles Nutrient cycling at its finest! Four Criteria for Sustainability Sustainable Ecosystems Need: Reliance on Solar Energy High Biodiversity Population Control Nutrient Cycling This note

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information

Natural Ecosystem Change

Natural Ecosystem Change Environmental Science Set 3 of 9 Natural Ecosystem Change Presentation MEDIA Version 2 BIOZONE International 2009, 2013 Processes in Carbon Cycling Carbon cycles between the living (biotic) and non-living

More information

Chapter 15: Ecosystem Dynamics

Chapter 15: Ecosystem Dynamics Chapter 15: Ecosystem Dynamics Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 15-1 What is ecology? Ecology is the branch of

More information

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ).

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ). The Nitrogen Cycle Nitrogen is essential for many processes; it is crucial for all life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information