RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT"

Transcription

1 10 th International Conference on Hydroinformatics HIC 2012, Hamburg, GERMANY RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT CHI DUNG DOAN (1)(3), JIANDONG LIU (1), SHIE-YUI LIONG (1), ADRI VERWEY (2), DADIYORTO WENDI (1), ANH TUAN DAO (1) (1): Tropical Marine Science Institute, National University of Singapore, 12A Kent Ridge Road, Singapore, (2): Deltares,, Rotterdamseweg 185, Delft, The Netherlands (3): Singapore-Delft Water Alliance, Block E1 Level 08-25, No 1 Engineering Drive 2, Singapore, Several rainfall-runoff concepts are studied for Singapore River catchment. The urban rainfall-runoff model with Horton infiltration equation, the Green-Ampt infiltration method, the exponential loss method (also called HEC s nonlinear loss-rate function), as well as the very simple constant loss rate method are investigated for this highly urbanized catchment in Singapore. Also, some of the above mentioned approaches are further explored in a gridded domain. The study utilizes the software packages HEC-HMS with HEC-RAS (U.S. Army Corps of Engineers) and SOBEK (Deltares) to accomplish the task. The results and the suitability of applying each model for this typical highly urbanized catchment are discussed. Keywords: Singapore, rainfall-runoff modeling; urbanized catchment; HEC; SOBEK. INTRODUCTION Singapore River is approximately 15 kilometers long from its source at Kim Seng Bridge to its mouth at the Esplanade, where it flows into the Marina Channel and finally into the Singapore Strait [1]. Singapore has a tropical rainforest climate with no distinctive seasons and temperatures ranging from 22 C to 34 C. June and July in Singapore are the hottest months, while November and December are generally wetter in the monsoon season. Moreover, forest and nature reserves only occupy about 23 percent of Singapore s land area. Therefore, Singapore is a highly urbanized city. The Singapore River catchment area (Figure 1) is about 18 square kilometers. In 2010 and 2011, several floods, caused by heavy downpours, inundated some main roads in the downtown area. Especially on 16 June 2010, the excess water submerged some shopping malls and car park basements along the Orchard Road in the central business district. For a good understanding of what happened it is very important to describe an accurate relationship between rainfall and runoff as boundary conditions for hydrodynamic simulations. The main focus of the paper is to investigate the effects of excessive rainfall events by comparing various approaches in the modeling of the rainfall-runoff processes, in order to recommend the most suitable approach for a highly urbanized area like Singapore. For this

2 purpose, several rainfall-runoff models implemented in two software packages (SOBEK- Urban from Deltares and HEC-HMS with HEC-RAS from the US Army Corps of Engineers) were chosen for the simulation of Singapore River catchment. Figure 1. Marina catchment and Singapore River sub-catchment METHODOLOGY Each conceptual rainfall-runoff model consists of a transformation process from precipitation to runoff by various types of loss (infiltration and percolation) methods and surface runoff routing to river and channel systems. The rainfall-runoff models investigated are listed in Table 1. Table 1. Overview of rainfall-runoff models with their loss/infiltration and surface routing concepts Software package SOBEK-Urban HEC-HMS with HEC-RAS HEC-HMS alone Rainfallrunoff model SOBEK- Urban HEC-HMS HEC-HMS with gridded precipitation Loss (infiltration) method Horton infiltration Initial and constant Exponential loss Green-Ampt infiltration Initial and constant Routing method Linear reservoir Linear reservoir /kinematic wave ModClark In the study, the Singapore River catchment is divided into 24 sub-catchments for the simulation of the rainfall-runoff process. The time steps of simulation in HEC-HMS with HEC-RAS and SOBEK-Urban are 1 minute.

3 SOBEK-Urban SOBEK-Urban is an integrated 1D and 2D simulation model, developed by Deltares. SOBEK-Urban incorporates hydrology and 1D and 2D hydrodynamic modules [6]. In SOBEK-Urban, after subtraction of the initial loss, the infiltration is estimated by utilizing the Horton equation. Horton [2] presented a three-parameter empirical equation for the infiltration capacity expressed by (1) where: is the loss rate (mm/hour); is the initial infiltration capacity (mm/hour); is the final constant infiltration capacity (mm/hour) and is the factor representing the rate of decrease in the infiltration capacity. The Horton infiltration equation is quite popular because of its simplicity. However, some skill is required to estimate the parameters of the Horton infiltration equation from experimental data based on the land use and soil characteristics in each area. In SOBEK- Urban, each sub-catchment is mainly divided into (semi) pervious and impervious areas. The parameters of Horton equation have to be determined for up to four classes of such areas. After extracting losses and infiltration from total rainfall, a linear reservoir method is utilized for surface routing. HEC-HMS The U.S Army Corps of Engineers developed a suite of water resources simulation packages, containing a hydrological modeling system (HEC-HMS), river analysis system (HEC-RAS) and related tools. HEC-HMS is designed to simulate the precipitation-runoff processes of dendritic watershed systems [7]. HEC-RAS performs one-dimensional steady and unsteady flow river hydraulics calculations [8]. In the study, HEC-RAS simulates the hydrodynamics with the inflow derived from HEC-HMS. HEC-HMS provides functionality for lumped as well as gridded modelling. Three loss (infiltration) methods are presented in the lumped model: i) initial and constant loss method; ii) exponential loss method; and iii) Green-Ampt infiltration method. Similar with SOBEK, each sub-catchment can be divided into pervious and impervious areas for each lumped loss method. The kinematic wave is selected as the runoff routing method for all three loss methods. Initial and constant loss method The initial and constant loss method is a very simple method, which contains only two parameters, initial loss and constant infiltration rate. The initial loss specifies the amount of precipitation that will be initially lost by depression, tree canopies, etc. before infiltration and surface runoff begins. The constant rate determines the rate of infiltration that will

4 occur after the initial loss is satisfied. Both parameters are determined by insight followed by calibration trials. Exponential loss method (HEC s nonlinear loss-rate function) The Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers has developed an exponential loss method [4], describing the parts of precipitation not available to direct runoff. The exponential loss method can be expressed by where: is the loss rate (mm/hour); is the loss coefficient at the start of a storm; is the coefficient controlling the rate of decrease; is the accumulated loss during the storm (mm); is the rainfall intensity (mm/hour) and is the exponent ranging between 0.3 and 0.9, with a most commonly selected value of 0.7. The parameters are storm dependent, which can be determined from monitored rainfall and runoff relationships. The exponential loss method is not suitable for continuous simulation. Green-Ampt infiltration method Green and Ampt [3] proposed an infiltration method based on Darcy s law of soil water movement. The Green-Ampt infiltration equation is expressed by where: is the loss rate (mm/hour); is the effective hydraulic conductivity (mm/hour); is the wetting front soil suction head (mm); is the porosity; is the initial moisture content and is the cumulative infiltration. As compared to the empirical infiltration equations, the parameters, and of the Green-Ampt model can be computed from the soil properties. Gridded precipitation in HEC-HMS The gridded model is also explored and still on-going. The gridded precipitation is used as input of the rainfall-runoff model. In the gridded model, the aforementioned three loss methods can be applied for each individual grid cell. However, for surface routing in the gridded rainfall-runoff model only the ModClark [9] transformation is available. The ModClark transformation method is developed based on Clark s UH conceptual method, which accounts for a time-area relationship of the watershed, translated to a hydrograph and routed through a linear reservoir [9]. Different from Clark s UH method, the ModClark method considers the spatial variability of the stream runoff transformation and the spatial variability of the rainfall. The spatial distribution in ModClark is represented by a collection of grid cells covered by a watershed. Each cell, defined with uniform properties, is characterized by parameters to describe the flow length of the cell and the area it covers [10]. Each cell accounts for the specific rainfall amount it receives. Losses are subtracted to define the excess precipitation to be transformed by the ModClark method (2) (3)

5 to generate specific cell hydrographs. The entire set of derived cell hydrographs is then added together to represent the total runoff at the catchment outlet. This gridded model is still under exploration. In this study only lumped loss methods are evaluated and simulated by HEC-HMS alone, without integration with a hydrodynamic simulation based upon HEC-RAS. RESULTS AND DISCUSSIONS The performance of different rainfall-runoff models is examined for two periods with observed rainfall and discharges recorded at 10 minute intervals. It is noted that the data collected for these periods are from the time before the Marina Barrage was completed. Therefore, the hydrographs exhibit the tidal influence. The first rainfall period started on 17 Dec 2006 and ended on 20 Dec This event has been used for calibration. The second period selected is from 26 Dec 2006 to 28 Dec 2006 and has been used for validation ( Figure 2). a) Observed rainfall and discharge for calibration (17 Dec Dec 2006) b) Observed rainfall and discharge for validation (26 Dec Dec 2006) Figure 2. Hyetographs and corresponding hydrographs for calibration and validation Two performance indicators are used for the comparison. Correlation Coefficient (CC) (4) Nash Sutcliffe index (R2) (5) The results for calibration and validation obtained with different rainfall-runoff models are shown in Figure 4 and Figure 5, respectively.

6 Figure 4. Comparisons of hydrographs from different rainfall-runoff models for the calibration period Figure 5. Comparisons of hydrographs from different rainfall-runoff models for the validation period The correlation coefficients (CC) and Nash-Sutcliffe index (R2) for the calibration and validation events obtained for different rainfall-runoff models are listed in Table 2. Table 2. Correlation coefficients and R-squared values for calibration and validation events obtained for different rainfall runoff models

7 Calibration Validation CC R2 CC R2 SOBEK-Urban HEC Constant HEC Exponential HEC Green- Ampt HEC Gridded Precipitation The performance indices show that 4 types of rainfall-runoff models ranging from simple to complicated perform equally well for the catchment setup. The decision of choosing the best rainfall-runoff model for Singapore River catchment is still inconclusive. Further research needs to be carried out with the following remarks. It is noted that the comparison is affected not only by the use of the different rainfallrunoff modeling concepts but also by the hydrodynamic routing. Although both SOBEK and HEC-RAS utilize dynamic wave routing along the river, different numerical schemes could result in slightly different outputs. It would be ideal if the comparison could be performed in the upstream sub-catchments only, where the flow is not affected by the tide or by backwater effects. In such case, the assessment can be carried out purely for the rainfall-runoff model without the need of coupling the hydrodynamic routing. However, until very recently Singapore s upstream sub-catchments rarely have flow gauging stations and that condition hinders us from doing so. It could be expected that the gridded rainfall model of HEC-HMS would give better or equally good result for the validation period. However, due to the fact that the model is not yet coupled with 1D hydrodynamic routing, the output could not reflect the effect of the tide, which is a major component in the validation period. CONCLUSIONS Four rainfall-runoff concepts have been assessed for an 18km 2 sub-catchment of Singapore River with rainfall and flow data monitored in Dec 2006, when Singapore River was not yet dammed by the Marina Barrage. These concepts range from a simple initial and constant loss model to the physically-based Green-Ampt method. The comparison, for this calculation period, temporarily reveals that 4 methods perform equally well. More data would be needed and further study would have to be performed to achieve conclusive results. The results of HEC-HMS with gridded precipitation are very encouraging and the incorporation of HEC-RAS in the simulations will be carried out in the near future.

8 ACKNOWLEDGMENTS The authors gratefully acknowledge the support & contributions of the Tropical Marine Science Institute and Singapore-Delft Water Alliance ( Multi-objective Multiple Reservoir Management research programme (R )). REFERENCES [1] Wikipedia, Singapore River, retrieved from on 6th Jan [2] Horton, R. E., Analyses of Runoff-Plat Experiments with Varying Infiltration Capacity, Trans. Am. Geophys. Union, Vol. 20, (1939), pp [3] Green, W. H. and Ampt, G., Studies of Soil Physics, Part I: The Flow of Air and Water through Soils, J. Agric. Sci., Vol. 4, No. 1, (1911), pp [4] Feldman, A. D. and Goldman, D. M., Infiltration and Soil Moisture Redistribution in HEC-1, TP-95, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, (1984). [5] Bupta, Ram S., Hydrology and Hydraulic Systems, Second Edition, Waveland Press, Illinois, U.S., (2001). [6] Delft Hydraulics part of Deltares, SOBEK Online Help, Delft Hydraulics part of Deltares, Netherlands, (2009). [7] U.S. Army Corps of Engineers, Hydrologic Modeling System HEC-HMS, Technical Reference Manual, CPD-74B, U.S Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, (2000). [8] U.S. Army Corps of Engineers, HEC-RAS, River Analysis System Hydraulic Reference Manual, CPD-69, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, (2010). [9] Kull, D., Nicolini, T., Peters, J. and Feldman, A., A Pilot Application of Weather Radar Based Runoff Forecasting, Salt River Basin, MO, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, (1996). [10] Scharffenberg, W. A., HEC-HMS User s Manual Version 2.1, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, (2001).

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

2

2 1 2 3 4 5 6 The program is designed for surface water hydrology simulation. It includes components for representing precipitation, evaporation, and snowmelt; the atmospheric conditions over a watershed.

More information

Alternative Approaches to Water Resource System Simulation

Alternative Approaches to Water Resource System Simulation US Army Corps of Engineers Hydrologic Engineering Center Alternative Approaches to Water Resource System Simulation May 1972 Approved for Public Release. Distribution Unlimited. TP-32 REPORT DOCUMENTATION

More information

Suspended Sediment Discharges in Streams

Suspended Sediment Discharges in Streams US Army Corps of Engineers Hydrologic Engineering Center Suspended Sediment Discharges in Streams April 1969 Approved for Public Release. Distribution Unlimited. TP-19 REPORT DOCUMENTATION PAGE Form Approved

More information

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description

Hydrologic Engineering Center. Training Course on. Hydrologic Modeling with HEC-HMS. Davis, CA. Course Description Hydrologic Engineering Center Training Course on Hydrologic Modeling with HEC-HMS Davis, CA Course Description The course provides an introduction to HEC-HMS for new users, focusing both on using the program

More information

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar Hydrology and Water Management Dr. Mujahid Khan, UET Peshawar Course Outline Hydrologic Cycle and its Processes Water Balance Approach Estimation and Analysis of Precipitation Data Infiltration and Runoff

More information

Rainfall - runoff: Unit Hydrograph. Manuel Gómez Valentín E.T.S. Ing. Caminos, Canales y Puertos de Barcelona

Rainfall - runoff: Unit Hydrograph. Manuel Gómez Valentín E.T.S. Ing. Caminos, Canales y Puertos de Barcelona Rainfall - runoff: Unit Hydrograph Manuel Gómez Valentín E.T.S. ng. Caminos, Canales y Puertos de Barcelona Options in many commercial codes,, HMS and others HMS Menu Transform method, User specified,

More information

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE KOTSIFAKIS

More information

Outlet Structure Modeling

Outlet Structure Modeling Watershed Modeling using HEC-RAS Outlet Structure Modeling Jeff Wickenkamp, P.E., CFM, D.WRE Patrick Lach, P.E. Hey and Associates, Inc. Water Resources, Wetlands and Ecology Outline of Presentation Why

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Modeling System HEC-HMS Applications Guide June 2017 Approved for Public Release Distribution Unlimited CPD-74C REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting

More information

Florida s Deranged Hydrology and the National Water Model Challenges and Opportunities

Florida s Deranged Hydrology and the National Water Model Challenges and Opportunities Florida s Deranged Hydrology and the National Water Model Challenges and Opportunities Peter J. Singhofen, P.E. Streamline Technologies, Inc. psinghofen@icpr4.com Part 1 Florida is Different 2 2016, Streamline

More information

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow Engineering Hydrology (ECIV 4323) CHAPTER FIVE Runoff Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Overland flow interflow Base flow Saturated overland flow ١ ٢ 5.1 Introduction To Runoff Runoff

More information

2D flood modelling: coping with real world applications

2D flood modelling: coping with real world applications 2D flood modelling: coping with real world applications Dr Vasilis Bellos CH2M, Experienced Researcher Marie Curie fellow Introduction Flooding is a natural hazard of great importance Improving the accuracy

More information

Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed

Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed International Journal of Hydraulic Engineering 213, 2(2): 28-33 DOI: 1.5923/j.ijhe.21322.2 Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed Reshma T *, Venkata Reddy K,

More information

AMICE Adaptation of the Meuse to the Impacts of Climate Evolution

AMICE Adaptation of the Meuse to the Impacts of Climate Evolution AMICE Adaptation of the Meuse to the Impacts of Climate Evolution Sub report 1 BELGIAN SCENARIOS FOR THE MEUSE 710_14 WL Adviezen Vlaamse overheid www.watlab.be AMICE: Adaptation of the Meuse to the Impacts

More information

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality

Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality Using SWMM 5 in the continuous modelling of stormwater hydraulics and quality M.J. Cambez 1, J. Pinho 1, L.M. David 2 * 1 Trainee at Laboratório Nacional de Engenharia Civil (LNEC) 2 Research Officer at

More information

Module 3. Lecture 4: Introduction to unit hydrograph

Module 3. Lecture 4: Introduction to unit hydrograph Lecture 4: Introduction to unit hydrograph (UH) The unit hydrograph is the unit pulse response function of a linear hydrologic system. First proposed by Sherman (1932), the unit hydrograph (originally

More information

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection DRAFT Technical Memorandum Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility Hydraulic Modeling Software Selection Prepared for: City of Newport Public Works Department 70 Halsey Street Newport,

More information

Section 600 Runoff Table of Contents

Section 600 Runoff Table of Contents Section 600 Runoff Table of Contents 601 INTRODUCTION...600-1 602 RATIONAL METHOD...600-1 602.1 Rational Method Formula...600-2 602.2 Time of Concentration...600-2 602.3 Intensity...600-4 602.4 Runoff

More information

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff October 2003, Revised February 2005 Chapter 6.0, Runoff Page 1 6.1 Introduction 6.0 Runoff The timing, peak rates of discharge, and volume of stormwater runoff are the primary considerations in the design

More information

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952).

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). 1. Stream Network The most common approach to quantitatively describing stream networks was postulated by Strahler (1952). First Order Streams streams with no tributaries. Second Order Streams begin at

More information

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH INTRODUCTION Water is a common chemical substance essential for the existence of life and exhibits many notable and unique

More information

Lecture 9A: Drainage Basins

Lecture 9A: Drainage Basins GEOG415 Lecture 9A: Drainage Basins 9-1 Drainage basin (watershed, catchment) -Drains surfacewater to a common outlet Drainage divide - how is it defined? Scale effects? - Represents a hydrologic cycle

More information

HEC River Analysis System (HEC-RAS)

HEC River Analysis System (HEC-RAS) US Army Corps of Engineers Hydrologic Engineering Center HEC River Analysis System (HEC-RAS) August 1994 Approved for Public Release. Distribution Unlimited. TP-147 REPORT DOCUMENTATION PAGE Form Approved

More information

San Antonio Water System Mitchell Lake Constructed Wetlands Below the Dam Preliminary Hydrologic Analysis

San Antonio Water System Mitchell Lake Constructed Wetlands Below the Dam Preliminary Hydrologic Analysis San Antonio Water System enhancement. This recommendation was based on limited water quality data provided by SAWS and using a free-water surface constructed wetland with approximately 112 acres of wetted

More information

Computation of Hydrographs in Evros River Basin

Computation of Hydrographs in Evros River Basin European Water 31: 33-42, 2010. 2010 E.W. Publications Computation of Hydrographs in Evros River Basin P. Angelidis 1, G. Mystakidis 2, S. Lalikidou 2, V. Hrissanthou 2 and N. Kotsovinos 3 Department of

More information

The Fourth Assessment of the Intergovernmental

The Fourth Assessment of the Intergovernmental Hydrologic Characterization of the Koshi Basin and the Impact of Climate Change Luna Bharati, Pabitra Gurung and Priyantha Jayakody Luna Bharati Pabitra Gurung Priyantha Jayakody Abstract: Assessment of

More information

The Effect of Surface Texture on Evaporation, Infiltration and Storage Properties of Paved Surfaces

The Effect of Surface Texture on Evaporation, Infiltration and Storage Properties of Paved Surfaces The Effect of Surface Texture on Evaporation, Infiltration and Storage Properties of Paved Surfaces M. Mansell* and F. Rollet School of Engineering and Science, University of the West of Scotland, Paisley

More information

Training Course Brochure Building Capacity in Rural & Urban Water Management

Training Course Brochure Building Capacity in Rural & Urban Water Management Training Course Brochure 2015 Building Capacity in Rural & Urban Water Management Introduction The WastePro Academy seeks to encourage the use of desktop software applications in the water and environmental

More information

Storm Water Runoff from Green Urban Areas. Modellers Guideline

Storm Water Runoff from Green Urban Areas. Modellers Guideline Storm Water Runoff from Green Urban Areas Modellers Guideline Report March 2015 This report has been prepared under the DHI Business Management System certified by DNV to comply with ISO 9001 (Quality

More information

Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin in Iran

Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin in Iran IOSR Journal of Engineering (IOSRJE) e-iss: 2250-3021, p-iss: 2278-8719 Vol. 3, Issue 9 (September. 2013), V3 PP 10-16 Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin

More information

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor.

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor. AN ALTERNATE APPROACH FOR ESTIMATING SCS UNIT HYDROGRAPH PEAK RATE FACTORS (PRFS) IN SOUTHWEST FLORIDA Himat Solanki Southwest Florida Water Management District 115 Corporation Way, Venice, Florida 34292

More information

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools.

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools. Remote Software This document briefly presents the hydrological and hydraulic modeling software available on the University of Nice Server with Remote Desktop Connection. Note that the Server provides

More information

FLOOD FORECASTING MODEL USING EMPIRICAL METHOD FOR A SMALL CATCHMENT AREA

FLOOD FORECASTING MODEL USING EMPIRICAL METHOD FOR A SMALL CATCHMENT AREA Journal of Engineering Science and Technology Vol. 11, No. 5 (2016) 666-672 School of Engineering, Taylor s University FLOOD FORECASTING MODEL USING EMPIRICAL METHOD FOR A SMALL CATCHMENT AREA CHANG L.

More information

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ

APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ 2008/2 PAGES 1 7 RECEIVED 13.1.2008 ACCEPTED 26.4.2008 A. H. KAMEL APPLICATION OF A HYDRODYNAMIC MIKE 11 MODEL FOR THE EUPHRATES RIVER IN IRAQ Ing. Ammar H. Kamel Slovak University of Technology Faculty

More information

TECHNICAL MEMORANDUM. SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design

TECHNICAL MEMORANDUM. SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design TECHNICAL MEMORANDUM FROM: Ken MacKenzie and Ryan Taylor SUBJECT: Determination of watershed historic peak flow rates as the basis for detention basin design DATE: June 7, 2012 The purpose of this memorandum

More information

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE

HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE HYDROLOGIC MODELING CONSISTENCY AND SENSITIVITY TO WATERSHED SIZE by James C.Y. Guo. Professor, Civil Engineering, U. Of Colorado at Denver, James.Guo@cudenver.edu.. And Eric Hsu, Project Engineer, Parson

More information

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS

GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS GEOMORPHIC EFECTIVENESS OF FLOODS ON LOWER TAPI RIVER BASIN USING 1-D HYDRODYNAMIC MODEL,HEC-RAS Darshan Mehta 1, Raju Karkar 2, Lalji Ahir 3 Assistant Professor, CED, S.S.A.S.I.T, Surat, Gujarat, India

More information

Continuous Simulation Modeling of Stormwater Ponds, Lakes, & Wetlands: A BUILT-IN APPLICATION OF PONDS 3.2

Continuous Simulation Modeling of Stormwater Ponds, Lakes, & Wetlands: A BUILT-IN APPLICATION OF PONDS 3.2 Continuous Simulation Modeling of Stormwater Ponds, Lakes, & Wetlands: A BUILT-IN APPLICATION OF PONDS 3.2 PRESENTED AT THE SFWMD WORKSHOP PRE-DEVELOPMENT VERSUS POST DEVELOPMENT RUNOFF VOLUME ANALYSIS

More information

A GEOGRAPHIC INFORMATION SYSTEM BASED SPATIALLY DISTRIBUTED RAINFALL RUNOFF MODEL

A GEOGRAPHIC INFORMATION SYSTEM BASED SPATIALLY DISTRIBUTED RAINFALL RUNOFF MODEL A GEOGRAPHIC INFORMATION SYSTEM BASED SPATIALLY DISTRIBUTED RAINFALL RUNOFF MODEL by Khalid Naseem Khan B.E. in Civil Engineering, University of Roorkee, 1998 Submitted to the Graduate Faculty of School

More information

ADVANCED APPLICATIONS OF HEC-HMS

ADVANCED APPLICATIONS OF HEC-HMS Hydrologic Engineering Center Training Course on ADVANCED APPLICATIONS OF HEC-HMS 18 22 April 2016 Davis, California Course Objectives The course covers a variety of areas that go beyond the Basic HEC-HMS

More information

FLO-2D Pro Model Verification & Approval Project. Thomas R. Loomis, P.E., RLS, CFM Special Projects Branch Manager Engineering Division

FLO-2D Pro Model Verification & Approval Project. Thomas R. Loomis, P.E., RLS, CFM Special Projects Branch Manager Engineering Division FLO-2D Pro Model Verification & Approval Project Thomas R. Loomis, P.E., RLS, CFM Special Projects Branch Manager Engineering Division Agenda Model applications Why? What was tested and how Examples Approval

More information

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology GG22A: GEOSPHERE & HYDROSPHERE Hydrology Definitions Streamflow volume of water in a river passing a defined point over a specific time period = VxA discharge m 3 s -1 Runoff excess precipitation - precipitation

More information

Comparison of Green-Ampt and Curve Number Infiltration Methods in a single-gauged Brazilian watershed

Comparison of Green-Ampt and Curve Number Infiltration Methods in a single-gauged Brazilian watershed Comparison of Green-Ampt and Curve Number Infiltration Methods in a single-gauged Brazilian watershed Julio Issao Kuwajima Toulouse, 2013 Introduction The volume and rate of runoff of rain events are of

More information

Operational Water Quality Management for Marina Reservoir, Singapore

Operational Water Quality Management for Marina Reservoir, Singapore Operational Water Quality Management for Marina Reservoir, Singapore Tjitte Nauta 1, Chang Chian Wui 2, Johannes Smits 1, Elizabeth Lee 2, JanJaap Brinkman 1 1 Deltares Delft Hydraulics, PO Box 177, 2600

More information

Risk-Based Analysis for Corps Flood Project Studies A Status Report

Risk-Based Analysis for Corps Flood Project Studies A Status Report US Army Corps of Engineers Hydrologic Engineering Center Risk-Based Analysis for Corps Flood Project Studies A Status Report June 1996 Approved for Public Release. Distribution Unlimited. TP-153 REPORT

More information

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY)

APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) APPENDIX IV. APPROVED METHODS FOR QUANTIFYING HYDROLOGIC CONDITIONS OF CONCERN (NORTH ORANGE COUNTY) Hydromodification design criteria for the North Orange County permit area are based on the 2- yr, 24-hr

More information

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model 9 th International Conference on Urban Drainage Modelling Belgrade 2012 Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model Beniamino Russo, David Suñer, Marc Velasco,

More information

Stanley J. Woodcock, Michael Thiemann, and Larry E. Brazil Riverside Technology, inc., Fort Collins, Colorado

Stanley J. Woodcock, Michael Thiemann, and Larry E. Brazil Riverside Technology, inc., Fort Collins, Colorado 7.5 FRASER RIVER EXTENDED STREAMFLOW PREDICTION SYSTEM Stanley J. Woodcock, Michael Thiemann, and Larry E. Brazil Riverside Technology, inc., Fort Collins, Colorado Esther Vincent and Andy Pineda * Northern

More information

DRAFT. Jacob Torres, P.E.; Nick Fang, Ph.D., P.E.

DRAFT. Jacob Torres, P.E.; Nick Fang, Ph.D., P.E. \ Memorandum SSPEED Center at Rice University Department of Civil & Environmental Engineering 6100 Main MS-317 Houston, Texas 77005-1827 sspeed.rice.edu tel: 713-348-4977 To Andy Yung, P.E. CFM; Lane Lease,

More information

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 600 STORM RUNOFF TABLE OF CONTENTS 601 INTRODUCTION 603 601.1 - Basin Characteristics 603 602 TIME OF

More information

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER

ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Civil Engineering Forum Volume XXII/ - May 03 ANALYSIS OF HYDRAULIC FLOOD CONTROL STRUCTURE AT PUTAT BORO RIVER Ruhban Ruzziyatno Directorate General of Water Resources, Ministry of Public Works, Republic

More information

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA

FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA FLOOD INUNDATION ANALYSIS FOR METRO COLOMBO AREA SRI LANKA Mohamed Mashood Mohamed Moufar* (MEE 13633) Supervisor: Dr. Duminda Perera**, ABSTRACT The canal network in Metro Colombo area in Sri Lanka, initially

More information

Event and Continuous Hydrologic Modeling with HEC-HMS

Event and Continuous Hydrologic Modeling with HEC-HMS Event and Continuous Hydrologic Modeling with HEC-HMS Xuefeng Chu, A.M.ASCE 1 ; and Alan Steinman 2 Abstract: Event hydrologic modeling reveals how a basin responds to an individual rainfall event e.g.,

More information

Integrated urban water systems modelling with a simplified surrogate modular approach

Integrated urban water systems modelling with a simplified surrogate modular approach Integrated urban water systems modelling with a simplified surrogate modular approach Z. Vojinovic 1 *, and S.D. Seyoum 2 Department of Hydroinformatics and Knowledge Management, UNESCO-IHE, Institute

More information

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies

STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies STORMWATER MANAGEMENT: Emerging Planning Approaches and Control Technologies Chapter 5 " HYDROLOGIC SYSTEMS " CHAPTER 5 5.1 INTRODUCTION 5.1.1 Training Objectives The objectives of this module are:! to

More information

Uncertainty in Hydrologic Modelling for PMF Estimation

Uncertainty in Hydrologic Modelling for PMF Estimation Uncertainty in Hydrologic Modelling for PMF Estimation Introduction Estimation of the Probable Maximum Flood (PMF) has become a core component of the hydrotechnical design of dam structures 1. There is

More information

Simulation of 2008 Pellice River flood

Simulation of 2008 Pellice River flood Simulation of 2008 Pellice River flood 1 L. Natale 1, G.Petaccia 1 Department of Hydraulic and Environmental Engineering, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy Abstract E-mail: petaccia@unipv.it

More information

Universität Stuttgart

Universität Stuttgart Universität Stuttgart Institute for Sanitary Engineering, Water Quality and Solid Waste Management - ISWA Auslandsorientierter Studiengang Wasserwirtschaft Master of Science Program Water Resources Engineering

More information

Lower Ohio and Middle Mississippi Rivers Flood Management

Lower Ohio and Middle Mississippi Rivers Flood Management Lower Ohio and Middle Mississippi Rivers Flood Management Abstract The Great Lakes and Ohio River Division Water Management Team of the U.S. Army Corps of Engineers (USACE) is responsible for reducing

More information

Project Drainage Report

Project Drainage Report Design Manual Chapter 2 - Stormwater 2A - General Information 2A-4 Project Drainage Report A. Purpose The purpose of the project drainage report is to identify and propose specific solutions to stormwater

More information

Nick van de Giesen, Jens Liebe, Marc Andreini, and Tammo Steenhuis (2004), Use of small reservoirs in West Africa as remotely-sensed cumulative

Nick van de Giesen, Jens Liebe, Marc Andreini, and Tammo Steenhuis (2004), Use of small reservoirs in West Africa as remotely-sensed cumulative Nick van de Giesen, Jens Liebe, Marc Andreini, and Tammo Steenhuis (2004), Use of small reservoirs in West Africa as remotely-sensed cumulative runoff gauges, in Proceedings of the 2 nd international CAH-

More information

Integrating soakaway infiltration devices in distributed urban drainage models from allotment to neighbourhood scale

Integrating soakaway infiltration devices in distributed urban drainage models from allotment to neighbourhood scale Integrating soakaway infiltration devices in distributed urban drainage models from allotment to neighbourhood scale M. Bergman*, P. Binning*, G. Kuczera **, P. S. Mikkelsen* and O. Mark*** * Department

More information

Chapter 7 : Conclusions and recommendations

Chapter 7 : Conclusions and recommendations Chapter 7 : Conclusions and recommendations 7.1 Conclusions The main goal of this research was to investigate the modelling and rainfall data requirements for the design of combined sewer systems and the

More information

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall 6.0 Introduction This chapter summarizes methodology for determining rainfall and runoff information for the design of stormwater management facilities in the City. The methodology is based on the procedures

More information

Measuring discharge. Climatological and hydrological field work

Measuring discharge. Climatological and hydrological field work Measuring discharge Climatological and hydrological field work 1. Background Discharge (or surface runoff Q s) refers to the horizontal water flow occurring at the surface in rivers and streams. It does

More information

Learning objectives. Upon successful completion of this lecture, the participants will be able to:

Learning objectives. Upon successful completion of this lecture, the participants will be able to: Solomon Seyoum Learning objectives Upon successful completion of this lecture, the participants will be able to: Describe and perform the required step for designing sewer system networks Outline Design

More information

CHAPTER 11 1 PREDICTION AND MODELING OF FLOOD HYDROLOGY AND HYDRAULICS

CHAPTER 11 1 PREDICTION AND MODELING OF FLOOD HYDROLOGY AND HYDRAULICS CHAPTER 11 1 PREDICTION AND MODELING OF FLOOD HYDROLOGY AND HYDRAULICS JORGE A. RAMÍREZ Water Resources, Hydrologic and Environmental Sciences Civil Engineering Department Colorado State University Fort

More information

Appendix 4 ADB. IN THE 6 CI's RIVER BASIN TERRITORY - PACKAGE B. Final Report B.2 - Strategic Spatial Planning

Appendix 4 ADB. IN THE 6 CI's RIVER BASIN TERRITORY - PACKAGE B. Final Report B.2 - Strategic Spatial Planning ADB TA 7189-INO: INSTITUTIONAL STRENGTHENING FOR INTEGRATED WATER RESOURCES MANAGEMENT (IWRM) IN THE 6 CI's RIVER BASIN TERRITORY - PACKAGE B Final Report B.2 - Strategic Spatial Planning Appendix 4 Modeling

More information

Reservoir planning, design and operation

Reservoir planning, design and operation Reservoir planning, design and operation Reservoirs are among the largest human interventions on earth. Worldwide the number of dams is staggering and still increasing. Approximately half of these dams

More information

Review of existing simulation based flood frequency frameworks in Greece

Review of existing simulation based flood frequency frameworks in Greece European Procedures for Flood Frequency Estimation FLOODFREQ COST ACTION ES0901 3 rd Management Committee Meeting, Prague, 28 29 October 2010 WG3: Use of rainfall runoff models for flood frequency estimation

More information

CEE3430 Engineering Hydrology

CEE3430 Engineering Hydrology CEE3430 Engineering Hydrology Practice Exam (There are multiple practice questions here A 110 min test will likely not have more than four questions) 1. Water Balance Write the water balance as Δ Where

More information

ADDIS ABABA INSTITUTE OF TECHNOLOGY MASTER S THESIS RUNOFF ESTIMATION BY GIUH BASED CLARK AND NASH MODELS FOR SHAYA RIVER MULUGETA MUSSIE

ADDIS ABABA INSTITUTE OF TECHNOLOGY MASTER S THESIS RUNOFF ESTIMATION BY GIUH BASED CLARK AND NASH MODELS FOR SHAYA RIVER MULUGETA MUSSIE ADDIS ABABA INSTITUTE OF TECHNOLOGY MASTER S THESIS RUNOFF ESTIMATION BY GIUH BASED CLARK AND NASH MODELS FOR SHAYA RIVER By MULUGETA MUSSIE Thesis Advisor PROFESSOR Dr. P. SREENIVASULU June, 2013 i ADDIS

More information

Use of SWAT for Urban Water Management Projects in Texas

Use of SWAT for Urban Water Management Projects in Texas Use of SWAT for Urban Water Management Projects in Texas Jaehak Jeong and Allan Jones Texas AgriLife Research Presentation Outline Modeling of Urban Watersheds and Stormwater Best Management Practices

More information

An Overview of JULES. Christina Bakopoulou

An Overview of JULES. Christina Bakopoulou An Overview of JULES Christina Bakopoulou JULES, MOSES AND TRIFFID JULES (Joint UK Land Environment Simulator) is a new land surface model Joint initiative: NERC through the CEH, CLASSIC, QUEST and the

More information

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED

THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED THE RATIONAL METHOD FREQUENTLY USED, OFTEN MISUSED Mark Pennington, Engineer, Pattle Delamore Partners Ltd, Tauranga ABSTRACT The Rational Method has been in use in some form or another at least since

More information

Stream Reaches and Hydrologic Units

Stream Reaches and Hydrologic Units Chapter United States 6 Department of Agriculture Natural Resources Conservation Service Chapter 6 Stream Reaches and Hydrologic Units Rain clouds Cloud formation Precipitation Surface runoff Evaporation

More information

GIS Applications in Water Resources Engineering

GIS Applications in Water Resources Engineering King Fahd University of Petroleum & Minerals City & Regional Planning Department Introduction to Geographic Information Systems Term Paper Presentation GIS Applications in Water Resources Engineering Prepared

More information

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands USDA-ARS Southwest Watershed Research Center Mission Sound Science for Watershed Decisions To develop knowledge and technology to conserve water and soil in semi-arid lands ARS Watershed Locations Selected

More information

Understanding. Hydraulics. palgrave macmillan. Les Hamill. University of Plymouth THIRD EDITION

Understanding. Hydraulics. palgrave macmillan. Les Hamill. University of Plymouth THIRD EDITION Understanding Hydraulics THIRD EDITION Les Hamill Senior Lecturer in Civil Engineering, School of Marine Science and Engineering, University of Plymouth palgrave macmillan Preface to third edition Acknowledgements

More information

Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend

Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend 20 July 2012 International SWAT conference, Delhi INDIA TIPAPORN HOMDEE 1 Ph.D candidate Prof. KOBKIAT PONGPUT

More information

Gwinnett County Stormwater System Assessment Program

Gwinnett County Stormwater System Assessment Program Gwinnett County Stormwater System Assessment Program Jonathan Semerjian, PE Dept. of Water Resources Stormwater Management Sam Fleming, PE Dewberry Presentation Overview Project Background Drivers Enhanced

More information

Hydrology for Folsom Dam Water Control Manual Update

Hydrology for Folsom Dam Water Control Manual Update Hydrology for Folsom Dam Water Control Manual Update Brian Walker, EIT Civil Engineer, Hydrology Section U.S. Army Corps of Engineers Sacramento District 1325 J Street Sacramento, CA 95816 Tel: (916) 557-7376

More information

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Runoff and soil loss (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Part I. Runoff Contents 1. Fundamental Concepts 2. Generation of

More information

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain River Basin Management IV 149 The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain C. F. B. Havenga 1, A. Jeleni 1, W. V. Pitman 2 & A. K. Bailey 2 1 Department of Water Affairs

More information

Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini

Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini Latornell Conference November 17, 2016 Outline Background Tools: 1. Low Impact Development Treatment Train Tool

More information

Flood Modelling and Water Harvesting Plan for Paravanar Basin

Flood Modelling and Water Harvesting Plan for Paravanar Basin International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.14, pp 01-08, 2017 Flood Modelling and Water Harvesting Plan for Paravanar Basin Dhinesh

More information

Chehalis Basin Strategy Causes of Extreme Flooding. October 11, 2016 Policy Workshop

Chehalis Basin Strategy Causes of Extreme Flooding. October 11, 2016 Policy Workshop Chehalis Basin Strategy Causes of Extreme Flooding October 11, 2016 Policy Workshop Agenda Hydrology o Precipitation o Flow Climate Change Effects Land Use o Channel straightening and incision o Riparian

More information

Development of Rainfall-Runoff Model Using System Dynamics (SD) Analysis

Development of Rainfall-Runoff Model Using System Dynamics (SD) Analysis th International Congress on Advances in Civil Engineering, 7-9 October 22 Middle East Technical University, Ankara, Turkey Development of Rainfall-Runoff Model Using System Dynamics (SD) Analysis Alireza

More information

History of Model Development at Temple, Texas. J. R. Williams and J. G. Arnold

History of Model Development at Temple, Texas. J. R. Williams and J. G. Arnold History of Model Development at Temple, Texas J. R. Williams and J. G. Arnold INTRODUCTION Then Model development at Temple A long history (1937-present) Many scientists participating in: Data collection

More information

HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY

HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY HYDRAULIC HYDRODYNAMIC MODELING AS AN EFFECTIVE MANAGEMENT TOOL FOR LARGE COLLECTION SYSTEMS - THE L.A. STORY Fernando Gonzalez, Adel Hagekhalil, Bryan Trussell, City of Los Angeles Bureau of Sanitation

More information

Hydrologic Engineering Center Models for Urban Hydrologic Analysis

Hydrologic Engineering Center Models for Urban Hydrologic Analysis 56 TRANSPORTATON RESEARCH RECORD 1471 Hydrologic Engineering Center Models for Urban Hydrologic Analysis ARLEN 0. FELDMAN The Hydrologic Engineering Center (HEC) has several numerical models for simulation

More information

Water Quality Design Storms for Stormwater Hydrodynamic Separators

Water Quality Design Storms for Stormwater Hydrodynamic Separators 1651 Water Quality Design Storms for Stormwater Hydrodynamic Separators Victoria J. Fernandez-Martinez 1 and Qizhong Guo 2 1 Rutgers University, Department of Civil and Environmental Engineering, 623 Bowser

More information

Software Applications for Runoff Hydrological Assessment

Software Applications for Runoff Hydrological Assessment Bulletin UASVM Horticulture, 67(2)/2010 Print ISSN 1843-5254; Electronic ISSN 1843-5394 Software Applications for Runoff Hydrological Assessment Severin CAZANESCU 1), Sorin CIMPEANU 1), Oana GUI 2), Dana

More information

Water Resources on PEI: an overview and brief discussion of challenges

Water Resources on PEI: an overview and brief discussion of challenges Water Resources on PEI: an overview and brief discussion of challenges Components: Components and links Atmospheric water Surface water (including glacial water) Groundwater Links: Precipitation (atm(

More information

Index. Page numbers followed by f indicate figures.

Index. Page numbers followed by f indicate figures. Index Aerodynamic method, 103, 110 111 Algae, 131, 173, 175 Alternate depth, 88 Alternating block method, 132, 140 141 Attenuation, 106, 107f, 118, 120 Page numbers followed by f indicate figures. Baseflow

More information

Hydraulic Problems during 2001 Flood in Gdańsk

Hydraulic Problems during 2001 Flood in Gdańsk PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-10 (406), 2008 Hydraulic Problems during 2001 Flood in Gdańsk Wojciech MAJEWSKI Institute of Meteorology and Water Management Podleśna 61, 01-673 Warszawa, Poland

More information

D. Common Water Quality Models

D. Common Water Quality Models D. Common Water Quality Models In this appendix we introduce a few of the common models used in water quality analysis. This is by no means a complete list, but does provide a starting point from which

More information