Fast Pyrolysis Liquids to Biofuels: R&D at PNNL and IEA Bioenergy

Size: px
Start display at page:

Download "Fast Pyrolysis Liquids to Biofuels: R&D at PNNL and IEA Bioenergy"

Transcription

1 Fast Pyrolysis Liquids to Biofuels: R&D at PNNL and IEA Bioenergy DOUG ELLIOTT Chemical and Biological Process Development Energy and Environment Directorate NORTHWEST WOOD ENERGY TEAM FORUM STEVENSON, WASHINGTON MAY 7,

2 Outline Introduction to PNNL Research in fast pyrolysis and bio-oil upgrading at PNNL Status of process development within IEA Bioenergy countries

3 The National Laboratory system May 9,

4 Powerful combination of core capabilities World-class technical staff State-of-the-art equipment Mission-ready facilities May 9,

5 PNNL FY2013 at a Glance $936M operating budget 4,300 scientists, engineers and non-technical staff 2,000+ users & visiting scientists 1,168 peer-reviewed papers 85 U.S. and foreign patents; 264 invention disclosures Among top 1% in publications and citations in: Biology and Biochemistry Chemistry Clinical Medicine Engineering Environment and Ecology Geosciences Materials Science Microbiology Molecular Biology & Genetics Physics May 9,

6 Expanding campus, growing capabilities May 9,

7 Bioproducts, Sciences and Engineering Laboratory Discovery in processes for biobased product manufacture High-pressure catalytic reactor rooms Development and engineering of fungal fermentations Synthesis and preparation of catalysts and feedstocks Catalysis research laboratory Analytical chemistry May 9,

8 Pyrolytic Conversion of Biomass Mode Conditions Liquid Solid Gas Gasification ~ C 5% 10% char 85% Fast ~500 C, short hot vapor residence time ~1 s 75% 12% char 13% Intermediate ~500 C, hot vapor residence time ~10-30 s 50% in two phases 25% char 25% Carbonization (slow) ~400 C, long vapor residence hours/days 30% in two phases 35% char 35% Torrefaction (slow) ~290 C, solids residence time ~10-60 min 0% unless condensed, then up to 5% 80% solid 20% Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy :68 94 May 9,

9 Liquid Fuels from Biomass Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy :68 94 May 9,

10 Systems for Biomass Fast Pyrolysis Venderbosch, RH, Prins W. Fast pyrolysis technology development. Biofpr : May 9,

11 Deliver technologies for gasoline, diesel and jet fuel that use today s infrastructure 11

12 Technical Approach and Strategy Liquefaction Develop an understanding of intermediate bio-oil quality and how to improve It Conceptually In field remove O as CO 2 Yield versus quality trade-offs Pathways Fast Pyrolysis Catalytic Pyrolysis Hydropyrolysis Hydrothermal Liquefaction Catalytic Liquefaction Mixed oxygenates Upgrading Reduce process intensity, improve fit for purpose (fuels of choice) Improve catalyst life and activity Conceptually Remove O as H 2 O Retain carbon yield in final product Pathways HDO (remove O) Ketonization/condensation (improve C yield) Cracking (improve quality) Lack of understanding of fundamental reactions and species May 9,

13 Pyrolysis and Upgrading Upgraded Oil Hydrotreat Fast pyrolysis bio-oil composition The Opportunity with Fast Pyrolysis High bio-oil yield with relatively low capital cost Low quality with high volatile content containing acids, carbonyls and unsaturation Improved robust catalysts for upgrading thermally unstable oils HDO yield is consistent at 0.4g product/g bio-oil (due to O loss) Can we improve the quantity and quality of the jet and diesel fraction? May 9,

14 Hydrotreating of Pyrolysis Bio-oils fast pyrolyzer gas byproduct bio-oil H 2 hydrogen recycle and byproduct gas reforming light products 500 C 1-2 sec HT medium products char byproduct aqueous byproduct aqueous byproduct biomass HC heavy products May 9,

15 Fluidized-Bed Fast Pyrolysis System Secondary hopper FEED HOPPER Metered screw High speed screw Heated Nitrogen 1 kg/h 1.6s vapor residence time PUMP2 FLUIDIZED BED REACTOR PUMP1 Solids Collection Liquid Collection Gas Collection Cyclones PRODUCT TANK Hydrocarbon HX EXHAUST Wet Test Meter May 9, SPRAY TOWER Packing tower Coalescer #1 GC Dry ice trap Coalescer #2 Hydrocarbon quench circulation flow

16 Catalytic Upgrading at PNNL Two zone, continuous-flow, trickle-bed, bench-scale reactor 400 ml catalyst bed First zone: 140 C C Second zone: 350 C C sulfided catalyst ~200 ppm H 2 S in feed LHSV atm H m 3 H 2 /L bio-oil OBJECTIVE: To produce upgraded bio-oil for long periods of time (~ 60 days) May 9,

17 Stabilization in the Upgrading Process T < 200 C 0.5 LHSV 68 atm H m 3 H 2 /L bio-oil May 9, non-sulfided catalyst

18 Performance over 1440 hours Extended lifetime testing complete Expanded operating conditions evaluated Higher yield and lower oxygen content in cases Long-term catalyst defunctionalization present May 9,

19 The Future: 100% Renewable Jet The hydroplane ran on 98% Bio-SPK and 2% renewable aromatics Jet A1 Spec Starting SPK Woody Pyrolysis Oil Aromatics Freeze Point ( o C) Flash Point ( o C) Density (g/ml) May 9,

20 8-Reactor Packed Bed System (1.4 cc) 1.4 cc 8-reactor packed bed system Typical LHSV range = h -1 (cc oil/cc catalyst-h) Typical flow rate = 0.24 cc/h per tube May 9,

21 Bio-oil Hydrotreating Catalyst Evaluation using various bio-oils Lab-scale hydrotreater I II Two stage reactor Two-stage reactor, 40 ml catalyst capacity, T< 450 o C, P < 15 MPa Typical LHSV range = h -1 (cc oil/cc catalyst-h) Maximum flowrate = 5 cc/h June 14,

22 Hydrotreating Catalyst Bed Design Challenge: Catalyst Lifetime Bio-oil gas H 2 Gas recycle/ reforming Ligno-cellulosic biomass FLUIDIZED BED REACTOR char Bio-oil Liquid recycle HT Ebullated Bed HC Gas recycle Diesel Jet Fuel Gasoline Fast Pyrolysis H 2 aqueous Hydrotreatment May 9,

23 Scaled-up Catalytic Hydrotreater 9-zone fixed-bed catalytic hydrotreater (20 L) Atmospheric distilling column for fuel fraction collection May 9,

24 UOP Integrated Biorefinery Demo Kapolei, Oahu, Hawaii $25 M DOE funded with equal industrial cost share Integrated pyrolysis (RTP), bio-oil preparation (Upgrader I) and hydroprocessing (Upgrader II) 1 t/d = 4 bpd gasoline diesel jet fuel construction mid-2011 to 2015 operations 2012 and 2015 detailed life cycle assessment and growth potential commercialization plan = 4 RTP units and 1 upgrading unit to produce 50 million gallons of fuels annually May 9,

25 Distributed Pyrolysis and Centralized Bio-oil Processing Corn Stover P P P Refinery P P P Deoxygenate Biomass Pyrolysis Mixed Woods Stabilization Biocrude Other Refinery Processes Gasoline Diesel Jet Chemicals Holmgren, J. et al. UOP LLC, NPRA national meeting, San Diego, February May 9,

26 IEA Bioenergy is an international collaboration set up in 1978 by the International Energy Agency (IEA) as one of Implementing Agreements within IEA s Energy Technology Network May 9,

27 IEA Bioenergy Tasks The work of IEA Bioenergy is structured in a number of Tasks, which have well defined objectives, budgets, and time frames. Their activities include: Coordination of national RD&D programs, information exchange and joint projects Task meetings, study tours and workshops Publications, reports, newsletters, websites Networking with industrial and other stakeholders May 9,

28 23 Contracting Parties Australia Austria Belgium Brazil Canada Croatia Denmark European Commission Finland France Germany Ireland Italy Japan Korea Netherlands New Zealand Norway South Africa Sweden Switzerland United Kingdom United States May 9,

29 10 Tasks in three areas Feedstock Forest and agricultural products, MSW and recovered fuels Conversion Combustion, gasification, pyrolysis, anaerobic digestion, fermentation, biorefineries Integrating Research Issues GHG balances, socioeconomic drivers, international trade, systems analysis May 9,

30 Task 34 Pyrolysis Approved Plan for Objective: To facilitate commercialization of biomass fast pyrolysis, -- maximize liquid product yield and quality -- produce renewable fuel oil and transportation fuels Priority Topics Review of Bio-oil Applications Bio-oil Standardization Support Round Robin for Method Validation TEAs of Biomass Pyrolysis Application Technologies May 9,

31 Task 34 Approved Plan for Task Participants National Team Leaders U.S.A. Doug Elliott, Pacific Northwest National Laboratory Germany Dietrich Meier, Thünen Institute of Wood Research Netherlands Bert van de Beld, BTG BV Finland Anja Oasmaa, VTT -- Technical Research Centre of Finland U.K. Tony Bridgwater, Aston University Bioenergy Research Group Sweden Magnus Marklund, Energy Technology Centre USA is Operating Agent Contracting Parties U.S.A. Department of Energy, Bioenergy Technologies Office Germany Federal Ministry of Food, Agriculture and Consumer Protection Netherlands NL Agency Finland TEKES, Agency for Technology and Innovation U.K. Department of Energy and Climate Change Sweden Swedish Energy Agency May 9,

32 Project Plan Review of Bio-oil Applications Near-term emphasis Market size, resource size, property impacts Deliverable journal article (update Oasmaa, Gust, Peacocke et al.) Bio-oil Standardization Support implementation of standard methods CEN ASTM REACH Deliverable Improved MSDS Round Robin Bio-oil production with standardized feedstock and centralized analysis Deliverable journal article publication of evaluation of results May 9,

33 Project Plan, cont. Technoeconomic assessments Evaluate various biomass pyrolysis application routes Deliverable--TEA to be published by TBD Proposed Inter-task collaborations TEA of bio-oil combustion to compare to solid biomass combustion (Task 32) TEA of bio-oil gasification to compare to solid biomass gasification (Task 33) Use TEAs to develop LCAs (Task 38) Development of operations database (Task 39, 33, ExCo) Evaluation of a pyrolysis-based biorefinery (Task 42) May 9,

34 Continuing Task Activities Round Robin on bio-oil production 15 participants will provide bio-oil products for centralized analysis IEA Bioenergy web database Data input for pyrolysis plants will be generated Collaboration on LCA of biomass liquefaction processes LCA being prepared and will be reviewed by Task 38 Planned participation with Task 42 meeting in Hamburg in June Comparison of biomass and bio-oil gasification continues May 9,

35 A commercial application Savon Voima Oyj, Local energy production and distribution company in North Savo region, Finland. Has built a bio-oil compatible district heating plant in Iisalmi, Finland. Stand-by hot water for the district heating grid. Municipal and industrial buildings as well as private houses. Fortum (with UPM & VTT) Integrated fast pyrolysis plant in Joensuu, Finland Has signed a commercial supply contract for pyrolysis oil Fuel delivery will start in the beginning of May 9,

36 CHP Integrated Pyrolysis Process Fortum with UPM & VTT integrated fast pyrolysis in Joensuu, Finland May 9,

37 BTG & BTG Bioliquids FAST PYROLYSIS PROCESS Development of rotating cone fast pyrolysis process; BTG Bioliquids has been established in 2007 to commercialize the technology; Pilot plant and bench-scale pyrolysis unit available in BTG lab 2 5 kg/hr kg/hr 2 t/hr May 9,

38 EMPYRO: Pyrolysis demonstration plant, Hengelo

39 EMPYRO: Pyrolysis demonstration plant, Hengelo Basic plant configuration: Single reactor Pyrolysis gas and flue gas afterburning at 850 C Integrated combustor/boiler External sand cooler Single-stage, low temperature, oil spraycondensor 22m Basic data of the plant: Capacity = 5 t dry biomass/hr Oil Production = 3.2 t/hr Steam production = 2.5 MW Electricity production = 700 kw e May 9,

40 Closing Thoughts Biomass conversion to liquid fuels via pyrolytic processes and catalytic hydroprocessing continues in development Need to match end goal (fuel type and processing size) with conversion technology and, where possible, biomass type Catalysis plays a key role in improving quality of products Significant advances in upgrading catalysts Long term stable operation even with the lowest grade bio-oils Allow researchers to focus on deactivation Moving forward Improvements in catalyst life and activity Reducing risk refinery integration opportunities Scale-up is underway May 9,

41 Thank You! Acknowledgement: Bio-oil Production Miki Santosa LJ Rotness Todd Hart Dan Howe Hydroprocessing Gary Neuenschwander Mariefel Olarte LJ Rotness Huamin Wang Management John Holladay Corinne Drennan Rick Orth

Enabling Extended Catalyst Lifetime in Fixed Bed Hydrotreating of Bio-Oil

Enabling Extended Catalyst Lifetime in Fixed Bed Hydrotreating of Bio-Oil Enabling Extended Catalyst Lifetime in Fixed Bed Hydrotreating of Bio-Oil Alan Zacher, Mariefel Olarte, Doug Elliott Pacific Northwest National Laboratory Richland, WA, USA 6 September 2013 PNNL-SA-97972

More information

Prospects for the International Bioenergy Market and Scientific Cooperation

Prospects for the International Bioenergy Market and Scientific Cooperation Prospects for the International Bioenergy Market and Scientific Cooperation Network of Expertise in Energy Technology Integrated Approaches to Energy Technologies Beijing, China November 27, 2012 Jonathan

More information

Upgrading In Situ Catalytic Pyrolysis Bio-oil to Liquid Hydrocarbons

Upgrading In Situ Catalytic Pyrolysis Bio-oil to Liquid Hydrocarbons Upgrading In Situ Catalytic Pyrolysis Bio-oil to Liquid Hydrocarbons Douglas Elliott, Daniel Santosa, Mariefel Olarte Pacific Northwest National Laboratory Yrjö Solantausta, Ville Paasikallio VTT Technical

More information

Biofuels Research Opportunities in Thermochemical Conversion of Biomass

Biofuels Research Opportunities in Thermochemical Conversion of Biomass University of Massachusetts Amherst ScholarWorks@UMass Amherst Conference on Cellulosic Biofuels September 2008 Biofuels Research Opportunities in Thermochemical Conversion of Biomass Douglas Elliott PNL,

More information

Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011

Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011 PNNL-SA-77610 Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011 John Holladay Pacific Northwest National Laboratory PO Box 999, MSIN: P8-60, Richland, WA

More information

Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production. Prof. Chunshan Song, Penn State Douglas C.

Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production. Prof. Chunshan Song, Penn State Douglas C. Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production Prof. Chunshan Song, Penn State Douglas C. Elliott, PNNL Utilization of Petroleum Refining Technologies for Biofuels Production

More information

Task 34. Direct Thermochemical Liquefaction

Task 34. Direct Thermochemical Liquefaction ExCo64 Doc 0x.0x Task 34 Direct Thermochemical Liquefaction Task Prolongation Proposal for the new triennium 2016-2018 20 January 2016 Prepared by: Alan Zacher, Task Leader And National Team Leaders Task

More information

Supporting How2Guide. Kees Kwant, 27 November 2014

Supporting How2Guide. Kees Kwant, 27 November 2014 Supporting How2Guide Facilitating commercialisation and market deployment of environmentally sound, socially acceptable and cost-competitive bioenergy systems and technologies Kees Kwant, 27 November 2014

More information

International Energy Agency Biofuels & Bioenergy Technology Roadmaps

International Energy Agency Biofuels & Bioenergy Technology Roadmaps Joint Research Center of the European Commission EC JRC National Research Center Kurchatov Institute Workshop International Cooperation in the Field of Bioenergy Moscow, 22 23 October 2013 International

More information

TASK 34. Direct Thermochemical Liquefaction

TASK 34. Direct Thermochemical Liquefaction ExCo76 Doc 05.03 TASK 34 Direct Thermochemical Liquefaction Final Proposal for Task Prolongation for the new triennium 2016-2018 ExCo76 Berlin, Germany 26 October 2015 Prepared by: Doug Elliott, Task Leader

More information

Fast Pyrolysis: A Shortcut to Refineries. Bio4Fuels Robbie Venderbosch Ås, February

Fast Pyrolysis: A Shortcut to Refineries. Bio4Fuels Robbie Venderbosch Ås, February Fast Pyrolysis: A Shortcut to Refineries Bio4Fuels Robbie Venderbosch Ås, February 10 2017 1 Content Organisation Fast Pyrolysis Process Development Commercial Demonstration Plant: EMPYRO Rolling out Pyrolysis

More information

Technical and Economic Aspects for Hydrothermal Liquefaction of Algae

Technical and Economic Aspects for Hydrothermal Liquefaction of Algae Technical and Economic Aspects for Hydrothermal Liquefaction of Algae JOHN HOLLADAY Algae Biomass Summit WEDNESDAY, OCTOBER 2, 2013 October 8, 2013 1 Outline and Acknowledgments Outline Our reason for

More information

Transportation fuels from biomass via fast pyrolysis and hydroprocessing

Transportation fuels from biomass via fast pyrolysis and hydroprocessing Transportation fuels from biomass via fast pyrolysis and hydroprocessing Douglas C. Elliott, Pacific Northwest National Laboratory Biomass is a renewable source of carbon, which could provide a means to

More information

Regulatory and Policy Frameworks for Bioenergy. Kees Kwant NL Enterprise Agency Vice Chair IEA Bioenergy

Regulatory and Policy Frameworks for Bioenergy. Kees Kwant NL Enterprise Agency Vice Chair IEA Bioenergy Regulatory and Policy Frameworks for Bioenergy Kees Kwant NL Enterprise Agency Vice Chair IEA Bioenergy Facilitating commercialisation and market deployment of environmentally sound, sustainable and cost-competitive

More information

Gasification of Biomass and Waste Recent Activities and Results of IEA Bioenergy Task 33

Gasification of Biomass and Waste Recent Activities and Results of IEA Bioenergy Task 33 Gasification of Biomass and Waste Recent Activities and Results of IEA Bioenergy Task 33 Presentation made by: Berend Vreugdenhil (ECN, Netherlands) Presented by: Timo Gerlagh (RVO.nl, Netherlands) Beijing,

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

Liquid Fuel Production by Fast Pyrolysis of Biomass

Liquid Fuel Production by Fast Pyrolysis of Biomass Liquid Fuel Production by Fast Pyrolysis of Biomass September 2013. DTU International Energy Conference Peter Arendt Jensen, paj@kt.dtu.dk DTU, Chemical Engineering, CHEC Flash pyrolysis process Biomass

More information

Stability of fast pyrolysis bio-oils and upgraded products

Stability of fast pyrolysis bio-oils and upgraded products Stability of fast pyrolysis bio-oils and upgraded products TCBiomass13 Anja Oasmaa, VTT, Finland Douglas C. Elliott, PNNL, USA VTT Technical Research Centre of Finland 2 Content Composition of fast pyrolysis

More information

Integrating Biocrudes into Bitumen Upgrading and Petroleum Refining via Co-processing

Integrating Biocrudes into Bitumen Upgrading and Petroleum Refining via Co-processing Integrating Biocrudes into Bitumen Upgrading and Petroleum Refining via Co-processing Jinwen Chen, Anton Alvarez-Majmutov, Rafal Gieleciak CanmetENERGY, Natural Resources Canada One Oil Patch Drive, Devon,

More information

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Gasification 2010 Feedstock, Pretreatment and Bed Material 28-29 October, Gothenburg, Sweden Anja Oasmaa, Kai Sipilä, Yrjö Solantausta VTT

More information

Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy. 1 Office of the Biomass Program eere.energy.

Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy. 1 Office of the Biomass Program eere.energy. Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy 1 Office of the Biomass Program eere.energy.gov Program Focus U.S. Department of Energy Biomass Program Cellulosic

More information

PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil

PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil www.ecn.nl PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil Paul de Wild, Ron van der Laan, Raghu Sumbharaju, Herman Bodenstaff, Edwin Brouwer, Christiaan van der Meijden Catalytic

More information

Pilot Scale Biorefinery for Sustainable Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion

Pilot Scale Biorefinery for Sustainable Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion 8 th Task Meeting, Chicago, Illinois, 4 6 October, 2010 Pilot Scale Biorefinery for Sustainable Fuels Biomass via Integrated and Catalytic Hydroconversion Steve Lupton UOP LLC, A Honeywell Company IEA

More information

Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil

Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil Engineering Conferences International ECI Digital Archives BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals Proceedings Spring 6-11-2013 Novel Ni-based catalysts for

More information

Green Fuel Nordic The Smart Way. Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks

Green Fuel Nordic The Smart Way. Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks Green Fuel Nordic The Smart Way Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks Abstract Transitioning to a low-carbon economy is one of the major global

More information

Fast pyrolysis demonstration - Increasing efficiency with integration to CHP. October 27, IEA Bioenergy 2015 Joakim Autio, Valmet Technologies

Fast pyrolysis demonstration - Increasing efficiency with integration to CHP. October 27, IEA Bioenergy 2015 Joakim Autio, Valmet Technologies Fast pyrolysis demonstration - Increasing efficiency with integration to CHP October 27, Joakim Autio, Valmet Technologies How to enable global economic growth without risking the world s sustainable future?

More information

Catalytic Biomass Pyrolysis Studies at Pilot-Scale

Catalytic Biomass Pyrolysis Studies at Pilot-Scale Catalytic Biomass Pyrolysis Studies at Pilot-Scale TCS2016, November 1-4, 2016, Chapel Hill, NC Ofei Mante, D. Dayton, D. Barbee, M. Carpenter, L. Shumaker, K. Wang, and J. Peters RTI International is

More information

From lab to commercial success biomass-to-liquid innovations story with VTT

From lab to commercial success biomass-to-liquid innovations story with VTT VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD From lab to commercial success biomass-to-liquid innovations story with VTT Antti Arasto Biomass North Forum 2017 Opportunities for Challenging Times, Thunder

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

Gasification Research at OSU

Gasification Research at OSU Gasification Research at OSU Ajay Kumar, Assistant Professor Biobased Products and Energy Center (BioPEC), Biosystems and Agricultural Engineering, Oklahoma State University OK EPSCoR Annual State Conference

More information

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Sanjeev K. Gajjela and Philip H. Steele Department of Forest Products College of Forest Resources Mississippi State University

More information

Status of Bioenergy and roadmap to the future

Status of Bioenergy and roadmap to the future Status of Bioenergy and roadmap to the future COP23, Bonn Kees Kwant, Chair IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development

More information

Country Report - Sweden IEA Bioenergy Task 34 meeting Hengelo May Magnus Marklund SP Energy Technology Centre

Country Report - Sweden IEA Bioenergy Task 34 meeting Hengelo May Magnus Marklund SP Energy Technology Centre Country Report - Sweden IEA Bioenergy Task 34 meeting Hengelo May 2015 Magnus Marklund SP Energy Technology Centre My origin SWE Country Report IEA T34 May 2015 2 Pyrolysis oil sites/activities LTU Green

More information

Advanced Biofuels from Fast Pyrolysis Bio-Oil Dr. Tijs Lammens, BTG Bioliquids B.V.

Advanced Biofuels from Fast Pyrolysis Bio-Oil Dr. Tijs Lammens, BTG Bioliquids B.V. Advanced Biofuels from Fast Pyrolysis Bio-Oil Dr. Tijs Lammens, BTG Bioliquids B.V. ETIP Bioenergy Workshop Emerging Technologies 4 June 2018, Brussels What is Fast Pyrolysis? Thermal cracking of organic

More information

Fast Pyrolysis: Pathway to Unlocking Value from Forest Product Residuals. Randal Goodfellow March 15 th, 2011

Fast Pyrolysis: Pathway to Unlocking Value from Forest Product Residuals. Randal Goodfellow March 15 th, 2011 Fast Pyrolysis: Pathway to Unlocking Value from Forest Product Residuals Randal Goodfellow March 15 th, 2011 Envergent Envergent Technologies Technologies 2009 2009 Agenda Introduction Rapid Thermal Processing

More information

Biofuels Technology Options for Waste to Energy

Biofuels Technology Options for Waste to Energy Biofuels Technology Options for Waste to Energy David C. Dayton, Ph.D. Fellow, Chemistry and Biofuels Director Energy Technology Division Sustainable Food Supply Chain Workshop March 16-17, 2015 Princeton

More information

100% Biobased PET: A Sustainable Approach to Fiber, Film, and Bottles.

100% Biobased PET: A Sustainable Approach to Fiber, Film, and Bottles. 100% Biobased PET: A Sustainable Approach to Fiber, Film, and Bottles. Greg Keenan, Virent Inc. - Vice President Business Development & Engineering 5th Annual Renewable Energy and Advanced Biofuels Summit

More information

Integrated Hydropyrolysis and Hydroconversion Process for Production of Gasoline and Diesel Fuel from Biomass Extended Abstract 2009 AICHE

Integrated Hydropyrolysis and Hydroconversion Process for Production of Gasoline and Diesel Fuel from Biomass Extended Abstract 2009 AICHE Integrated Hydropyrolysis and Hydroconversion Process for Production of Gasoline and Diesel Fuel from Biomass Extended Abstract 2009 AICHE 2009 Gas Technology Institute All rights reserved. Terry Marker,

More information

Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy

Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild June 2015 ECN-L--15-038 Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild www.ecn.nl Contents Intro ECN

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

2nd generation biofuels Güssing demo plant

2nd generation biofuels Güssing demo plant 2nd generation biofuels Güssing demo plant Dr. Reinhard Rauch Institute for Chemical Vienna, University of Technology Content IEA Bioenergy Task33 Thermal Gasification of Biomass Overview about research

More information

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass Pyrolysis Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Aston University Bioenergy Research Group IEA Bioenergy, York, 12 October 2010 2 What is pyrolysis? Biomass

More information

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining G. Jungmeier 1, R. Van Ree 2, E. de Jong 3, H. Jørgensen 4, P. Walsh 4, M. Wellisch

More information

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry Biomass co-firing Technology, barriers and experiences in EU TNO Science and Industry Prof.dr.ir. Gerrit Brem GCEP Advanced Coal Workshop March 15 th -16 th 2005, Provo (UT), USA Presentation overview

More information

EU Transport & Renewable Energy policies : The role of Advanced Biofuels in Decarbonising Transport

EU Transport & Renewable Energy policies : The role of Advanced Biofuels in Decarbonising Transport EU Transport & Renewable Energy policies : The role of Advanced Biofuels in Decarbonising Transport Kyriakos Maniatis PhD Energy Technologies Innovation & Clean Coal DG ENER, European Commission 6-8 March

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Pyrolysis Oil: Heat, Electricity, Green. and Chemicals Too. September 13 th, 2010

Pyrolysis Oil: Heat, Electricity, Green. and Chemicals Too. September 13 th, 2010 Pyrolysis Oil: Heat, Electricity, Green Transportation Fuel, and Chemicals Too September 13 th, 2010 1 Agenda Ensyn and Fast Pyrolysis Pathways of Biomass to Stationary and Transportation Fuels The Joint

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

Thermochemical Technology Overview

Thermochemical Technology Overview Thermochemical Technology Overview Presented by Dr. Richard L. Bain, Principal Research Supervisor richard_bain@nrel.gov Biorefinery Analysis National Bioenergy Center Energy 2007 New Orleans, LA August

More information

Bioenergy Research at University of Surrey

Bioenergy Research at University of Surrey SUPERGEN Researchers Day 6 th May 2016 Bioenergy Research at University of Surrey Dr. Siddharth Gadkari Research Fellow Department of Chemical and Process Engineering University of Surrey, Guildford Development

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

Processing Recalcitrant Feedstocks in a Biorefinery

Processing Recalcitrant Feedstocks in a Biorefinery Processing Recalcitrant Feedstocks in a Biorefinery Johnway Gao Dwight Anderson Benjamin Levie Paul Spindler October 10-12, 2012 For Bio Pacific Rim Summit on Industrial Biotechnology and Bioenergy Vancouver

More information

Update on Biomass Gasification in New Zealand

Update on Biomass Gasification in New Zealand Update on Biomass Gasification in New Zealand IEA Bioenergy Task 33 Meeting, Sweden November 2013 Shusheng Pang Department of Chemical and Process Engineering University of Canterbury Christchurch, New

More information

Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass

Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass October 2009 1 Overview of Gasification Process Catalytic Hydrothermal Gasification (CHG) is a wet process which produces renewable

More information

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN Flash Pyrolysis Flash Pyrolysis Flash Pyrolysis 2 step HDT 1) Stabilization 2) Hydroconversion Flash Pyrolysis HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION

More information

Tappi International Bioenergy and Biochemicals Conference

Tappi International Bioenergy and Biochemicals Conference Advanced Clean Technology for Biomass Conversion to Bioenergy, Fuels, and Chemicals Tappi International Bioenergy and Biochemicals Conference Memphis TN Agenda TRI Overview TRI Thermochemical Platform

More information

Sustained Hydrotreatment of Biomass Pyrolysis Bio oil with Minimal Catalyst Deactivation

Sustained Hydrotreatment of Biomass Pyrolysis Bio oil with Minimal Catalyst Deactivation Sustained Hydrotreatment of Biomass Pyrolysis Bio oil with Minimal Catalyst Deactivation Zia Abdullah, PhD Versa Renewables, LLC Rachid Taha, PhD Battelle Memorial Institute Huamin Wang, PhD Pacific Northwest

More information

Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production. December 8 th 2015 São Paulo, Brasil Martin van t Hoff

Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production. December 8 th 2015 São Paulo, Brasil Martin van t Hoff Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production December 8 th 2015 São Paulo, Brasil Martin van t Hoff ECN & Royal Dahlman A 15 year relationship in R&D, Engineering

More information

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Thomas D. Foust, Ph.D., P.E. Director, National Advanced Fuels Consortium NREL Bioenergy Center December 9, 2013 NREL is a national laboratory of the

More information

through the addition of renewable hydrogen

through the addition of renewable hydrogen Boosting the production of liquid biofuels through the addition of renewable hydrogen Dr. Jitka Hrbek Vienna University of Technology Institute of Chemical, Environmental and Biological Engineering Joint

More information

Sustainable Bioenergy Systems for the Bioeconomy Development Status and Challenges

Sustainable Bioenergy Systems for the Bioeconomy Development Status and Challenges Sustainable Bioenergy Systems for the Bioeconomy Development Status and Challenges Reunión de Redes de Energia 2018 James D. (Jim) McMillan, Ph.D. National Bioenergy Center Cuernavaca, Morelos, Mexico

More information

Second Annual California Biomass Collaborative Forum

Second Annual California Biomass Collaborative Forum Second Annual California Biomass Collaborative Forum John Ferrell Office of Biomass Program U.S. Department of Energy March 1, 2005 Federal Goals for Biorefinery Development and Implications for Fuel and

More information

Sustainable Biofuels A Small Step towards Carbon Management

Sustainable Biofuels A Small Step towards Carbon Management Energy Technology Division Sustainable Biofuels A Small Step towards Carbon Management Raghubir Gupta and David Dayton Energy Technology Division RTI International Research Triangle Park, NC 27709 April

More information

Energy Generation from Recovered Wood for Greenhouse Gas Reduction

Energy Generation from Recovered Wood for Greenhouse Gas Reduction Energy Generation from Recovered Wood for Greenhouse Gas Reduction Gerfried Jungmeier Joint Workshop COST Action E31 and IEA Bioenergy Task 38 Greenhouse Gas Aspects of Biomass Cascading Reuse, Recycling

More information

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION IEA Biomass Task 34 Meeting in Chicago 15-09-2009 Jani Lehto, Metso Pekka Jokela, UPM Contents Metso Metso and UPM Bio-oil Development Project Joint

More information

RESEARCH GROUP: Future Energy Technology

RESEARCH GROUP: Future Energy Technology RESEARCH GROUP: Email: hermann.hofbauer@tuwien.ac.at Web: http://www.vt.tuwien.ac.at Phone: +43 1 58801 166300 Fax: +43 1 58801 16699 Institute of Chemical Engineering page 1 Project Groups of : Univ.Prof.

More information

Sustainable Transportation: Overview of Bio-Fuels Systems

Sustainable Transportation: Overview of Bio-Fuels Systems Sustainable Transportation: Overview of Bio-Fuels Systems Terry Surles, surles@hawaii.edu University of Hawaii and Neil Rossmeissl DOE/Office of Energy Efficiency and Renewable Energy April 7, 2014 1 Bioenergy

More information

Prospects of pyrolysis of lignocellulosic biomass to produce marine biofuels PNNL-ACT-SA-10195

Prospects of pyrolysis of lignocellulosic biomass to produce marine biofuels PNNL-ACT-SA-10195 Prospects of pyrolysis of lignocellulosic biomass to produce marine biofuels PNNL-ACT-SA-10195 ALAN ZACHER Pacific Northwest National Laboratory IEA Bioenergy ExCo78 workshop Wednesday 9 November 2016,

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

BTL2030 Project presentation

BTL2030 Project presentation BTL2030 Project presentation VTT Technical Research Centre of Finland Ltd Espoo, August 2018 1 BTL2030-project Project title: Production of transport fuels from biomass by gasification-based concepts integrated

More information

Conversion of Bio-oil to Hydrocarbons Via a Low Hydrogen Route Philip H. Steele and Sathish K. Tanneru

Conversion of Bio-oil to Hydrocarbons Via a Low Hydrogen Route Philip H. Steele and Sathish K. Tanneru Conversion of Bio-oil to Hydrocarbons Via a Low Hydrogen Route Philip H. Steele and Sathish K. Tanneru Forest Products Department Mississippi State University 1 Pyrolysis auger reactor: MSU has developed

More information

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, August 2018

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, August 2018 BTL2030 Project presentation VTT Technical Research Centre of Finland Ltd Espoo, August 2018 BTL2030-project Project title: Production of transport fuels from biomass by gasification-based concepts integrated

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

Modifying a Davison Circulating Riser to accommodate biomass-derived feedstocks

Modifying a Davison Circulating Riser to accommodate biomass-derived feedstocks Modifying a Davison Circulating Riser to accommodate biomass-derived feedstocks Jessica Olstad, Mark Jarvis, Yves Parent, Kim Magrini, Brady Peterson, Mike Sprague, & Glenn Powell tcbiomass 2017, Chicago,

More information

ScienceDirect. Energy recovery from biomass by fast pyrolysis

ScienceDirect. Energy recovery from biomass by fast pyrolysis Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 669 674 10th International Conference on Mechanical Engineering, ICME 2013 Energy recovery from biomass by fast pyrolysis

More information

Process Analysis and Design: Objectives and Introduction

Process Analysis and Design: Objectives and Introduction Process Analysis and Design: Objectives and Introduction Presented by Dr. Richard L. Bain, Principal Research Supervisor Biorefinery Analysis, National Bioenergy Center Presented to the NSF Biomass Thermochemical

More information

An NSF Perspective on. Next Generation Hydrocarbon Biofuels:

An NSF Perspective on. Next Generation Hydrocarbon Biofuels: An NSF Perspective on Next Generation Hydrocarbon Biofuels: Implications on Land and Water Use Atibaia, Brazil John R. Regalbuto Catalysis and Biocatalysis Program Directorate for Engineering National

More information

Thermal Processes in Biorefineries the Dibanet Example

Thermal Processes in Biorefineries the Dibanet Example Thermal Processes in Biorefineries the Dibanet Example Tony Bridgwater Presented by Daniel Nowakowski Bioenergy Research Group Aston University, Birmingham B4 7ET, UK DIBANET WP4 Tasks Task 4.1 Pyrolysis

More information

Woody Biomass Factsheet WB4

Woody Biomass Factsheet WB4 Woody Biomass Factsheet WB4 of Woody Biomass Gareth Mayhead, Rebecca Snell, John R. Shelly University of California Berkeley is the thermal decomposition of a substance that occurs in the absence of air

More information

Country report for UK. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK

Country report for UK. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Country report for UK Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK List of academic organisations in UK Aston University Queens University, Belfast Aberystwyth Birmingham

More information

2010 USDA Agricultural Outlook Forum

2010 USDA Agricultural Outlook Forum 2010 USDA Agricultural Outlook Forum Biomass for Energy & Conservation: Can We Do Both? Sustainability of Woody Biomass: From Slash to Hybrid Plantations Carlos Rodríguez-Franco Forest Management Sciences

More information

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, June 2017

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, June 2017 BTL2030 Project presentation VTT Technical Research Centre of Finland Ltd Espoo, June 2017 BTL2030-project Project title: Production of transport fuels from biomass by gasification-based concepts integrated

More information

EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY

EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY Ref. Ares(2013)2551793-01/07/2013 EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY Renewables, Research and Innovation, Energy Efficiency New Energy Technologies, Innovation and Clean Coal Brussels, 27 th

More information

EUROPEAN BIOMASS CHP IN PRACTICE

EUROPEAN BIOMASS CHP IN PRACTICE EUROPEAN BIOMASS CHP IN PRACTICE Kati Veijonen, Technical Research Centre of Finland Anders Evald, FORCE Technology, Janet Witt, Institute for Energy and Environment, Germany Harrie Knoef, BTG Biomass

More information

Bioenergy Demonstration Projects in Canada: Lessons Learned, Key Factors for Success, Knowledge and Technology Gaps

Bioenergy Demonstration Projects in Canada: Lessons Learned, Key Factors for Success, Knowledge and Technology Gaps 1 Bioenergy Demonstration Projects in Canada: Lessons Learned, Key Factors for Success, Knowledge and Technology Gaps Jawad Jeaidi, Marzouk Benali and Eric Soucy Bioenergy Australia Conference November

More information

green energy to the power3

green energy to the power3 green energy to the power3 Three exhibitions in parallel, 30-31 january, Parc Expo Rennes ReGen Europe Biogaz Europe Bois Energie waste to energy biogas-biomethane wood heating networks 1-4 Coming to Rennes

More information

Overview of Renewable Energy Technologies: Transforming Our Energy Economy

Overview of Renewable Energy Technologies: Transforming Our Energy Economy Overview of Renewable Energy Technologies: Transforming Our Energy Economy Robert M. Margolis National Renewable Energy Laboratory 32 nd Annual IAEE International Conference San Francisco, CA June 22,

More information

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer Bioenergy Optimization Program Demonstration Project Presentation BIOCLEANTECH Forum In Ottawa ON Grid Stability, Remote Communities, and Air Quality Biopower Session on November 3, 2016 Dennis St. George,

More information

Project Title: Development of a novel gasification technology for distributed power generation from solid wastes

Project Title: Development of a novel gasification technology for distributed power generation from solid wastes Project Title: Development of a novel gasification technology for distributed power generation from solid wastes Contract Number: RD4-1 Milestone Number: 3 Report Date: April 3, 218 Principal Roger Ruan

More information

MULTIOBJECTIVE OPTIMIZATION OF BIOMASS- TO-LIQUIDS PROCESSING NETWORKS

MULTIOBJECTIVE OPTIMIZATION OF BIOMASS- TO-LIQUIDS PROCESSING NETWORKS MULTIOBJECTIVE OPTIMIZATION OF BIOMASS- TO-LIQUIDS PROCESSING NETWORKS Fengqi You * and Belinda Wang Northwestern University Evanston, IL 60208 Abstract This paper addresses the optimal design and planning

More information

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting May 2015, Ponferrada, Spain Ilkka Hannula

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting May 2015, Ponferrada, Spain Ilkka Hannula Finnish Country Highlights Biomass Gasification in 2015 IEA Task 33 meeting May 2015, Ponferrada, Spain Ilkka Hannula 2 PAST LARGE PROJECTS: Biomass and waste gasification for boilers and kilns Model:

More information

Corrosion Issues Associated With Thermochemical Production Of Biofuels

Corrosion Issues Associated With Thermochemical Production Of Biofuels Corrosion Issues Associated With Thermochemical Production Of Biofuels James R Keiser, Michael P Brady, Samuel A Lewis, Sr and Raynella M Connatser Oak Ridge National Laboratory Studies Have Been Conducted

More information

Highlights of the Conference Nicolae Scarlat

Highlights of the Conference Nicolae Scarlat Highlights of the Conference Nicolae Scarlat Technical Programme Chairman European Commission, Joint Research Centre, Directorate for Energy, Transport and Climate, ITALY 2 SCIENTIFIC OPENING: APPLICATIONS

More information

Advanced Biofuels and Biorefinery Research at CanmetENERGY-Ottawa Fernando Preto

Advanced Biofuels and Biorefinery Research at CanmetENERGY-Ottawa Fernando Preto Advanced Biofuels and Biorefinery Research at CanmetENERGY-Ottawa Fernando Preto CanmetENERGY-Ottawa, NRCan About CanmetENERGY CanmetENERGY is the science and technology branch of Natural Resources Canada

More information

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula Finnish Country Highlights Biomass Gasification in 2014 IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula 04/11/2014 RECENT PROJECTS: Biomass and waste gasification for boilers and kilns 2 Model: Volter 30

More information

Green Fuels for Arctic Maritime Vessels. SAQIB SOHAIL TOOR, PhD Associate Professor Department of Energy Technology Aalborg University, Denmark

Green Fuels for Arctic Maritime Vessels. SAQIB SOHAIL TOOR, PhD Associate Professor Department of Energy Technology Aalborg University, Denmark Green Fuels for Arctic Maritime Vessels SAQIB SOHAIL TOOR, PhD Associate Professor Department of Energy Technology Aalborg University, Denmark Agenda 2 HTL (Hydrothermal Liquefaction) a brief technology

More information

BIOENERGY TECHNOLOGIES OFFICE. Jonathan L. Male Director, Bioenergy Technologies Office. NASEO February 6, Bioenergy Technologies Office

BIOENERGY TECHNOLOGIES OFFICE. Jonathan L. Male Director, Bioenergy Technologies Office. NASEO February 6, Bioenergy Technologies Office BIOENERGY TECHNOLOGIES OFFICE NASEO February 6, 2015 Jonathan L. Male Director, Bioenergy Technologies Office 1 Bioenergy Technologies Office Outline I. Overview II. III. IV. Risk Demonstration Portfolio

More information

Formation of Liquid and Solid Products of Liquid Phase Pyrolysis

Formation of Liquid and Solid Products of Liquid Phase Pyrolysis Formation of Liquid and Solid Products of Liquid Phase Pyrolysis Schwaiger, N. Zahel *, K. Pieber, A. Feiner, R. Pucher, H. Witek, V.* Pucher*, P. Ahn*, E. Wilhelm +, P. Schroettner +, H. Siebenhofer,

More information

The Future of Energy with Agricultural Carbon Utilization

The Future of Energy with Agricultural Carbon Utilization The Future of Energy with Agricultural Carbon Utilization Energy & Agricultural Carbon Utilization Symposium (June 11, 2004) Athens, GA Danny Day, Eprida danny.day@eprida.com 716-316-1765 James Lee ORNL

More information

Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks

Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks Reinhard Seiser Andrew Burke Session 1: Biofuel and Biomethane Transportation Fuels - Setting

More information