METHODS OF IRRIGATION CHAPTER 1

Size: px
Start display at page:

Download "METHODS OF IRRIGATION CHAPTER 1"

Transcription

1 METHODS OF IRRIGATION CHAPTER 1 Deinition o Irrigation Irrigation may be deined as the science o artiicial application o water to the land, in accordance with the crop requirements throughout the crop period or ull-ledged nourishment o the crops. Following are the actors which govern the importance o irrigation Insuicient rainall Uneven distribution o rainall Improvement o perennial crops Development o agriculture in desert area Course Teacher: Pro. Dr. M. R. Kabir Advantages o irrigation Increase in ood production Optimum beneits Elimination o mixed cropping Improvement o cash crops Source o revenue General prosperity Generation o hydroelectric power Domestic water supply Facilities o communications Inland navigation Aorestation Disadvantages o irrigation Rising o water table: water-logging Problem o water pollution (nitrates seepage into GW) Formation o marshy land Dampness in weather Loss o valuable lands Types o Irrigation Surace Irrigation Sub-surace irrigation Surace irrigation In the surace methods o irrigation, water is applied directly to the soil surace rom a channel located at the upper reach o the ield. Water may be distributed to the crops in border strips, check basins or urrows. Two general requirements o prime importance to obtain high eiciency in surace methods o irrigation are: distribution systems to provide adequate control o water to the ields and proper land preparation to permit uniorm distribution o water over the ield. They are also designed to minimize labor and capital requirements. Eective management practices are dependent on the type o irrigation, and the climate and topography o the region. 1

2 System o Irrigation Surace Irrigation System Lit irrigation Flow irrigation By man or Animal power By mechanical or electrical power Inundation Irrigation Perennial Irrigation Open well Shallow Tube well Deep Tube well Direct Irrigation Storage Irrigation Subsurace irrigation In sub-irrigation, water is applied below the ground surace by maintaining an artiicial water table at some depth, depending upon the soil texture and the depth o the plant roots. Water reaches the plant roots through capillarity action. Water may be introduced through open ditches or underground through pipelines such as drains or mole drains. The depths o open ditches or trenches vary rom 30 cm to 100 cm and they are spaced about 15 m to 30 m apart. The water application system consists o ield supply channels, ditches or trenches suitably spaced to cover the ield adequately and drainage ditches or the disposal o excess water. Sub-main Pipe Fig: Sub-surace Method Perorated Pipe Sub-Surace Irrigation System Natural Sub-irrigation Artiicial Sub-irrigation Methods o Irrigation Free Flooding Border Flooding Check Flooding Basin Flooding Furrow irrigation method Sprinkler irrigation method Drip irrigation method 2

3 Free Flooding or Ordinary Flooding o Ditches are excavated in the ield o Water is applied rom ield ditches without any levee to guide its low. o Movement o water is not restricted, it is sometimes called wild looding o It is suitable or close growing crops, pastures etc. o It is practiced large where irrigation water is abundant and inexpensive. o It involves low initial cost o land preparation, extra labour cost in the application o water. o Application o eiciency is low. o This method may be used on rolling land (topography irregular) where borders, checks, basins and urrows are not easible. M A I N S U P P L Y D I T C H Outlets Main Supply Ditch Subsidiary Ditch Fig: Free looding (plan view) Border Flooding o The arm is divided into a number o strips (width 10 ~ 20 m and length 100 ~ 400 m) separated by low levees or borders. o Water is turned rom the supply ditch into these strips along which a low slowly toward the lower end, wetting the soil as it advances. When the advancing water ront reaches the lower end, the stream turned o. o The surace is essentially level between levees and lengthwise slope is somewhat according to natural slope o the land (0.2 ~ 0.4%) o It is suitable to soils having moderately low to moderately high iniltration rates and to all closely growing crops. o Uniorm distribution and high water application eiciencies are possible. o Large streams can be used eiciently. o It involves high initial cost. o Ridges between borders should be suiciently high o The land should be perpendicular to the low to prevent water rom concentrating on either side o the border Ditch Gate 100 to 400 m Low levees borders 10 to 20 m Fig: Border looding (Plan view) 3

4 Determination o required time to irrigate in border looding A relationship between the discharge through the supply ditch (), the average depth o water lowing over the strip (y), the rate o iniltration o the soil (), the area o the land irrigated (A), and the approximate time required to cover the given area with water (t), is given by the equation: y t 2.3 log A Where, = Discharge through the supply ditch y = Depth o water lowing over the border strip = Rate o iniltration o soil A = Area o land strip to be irrigated t = Time required to cover the given area A Derivation o Equation: t 2.3 y log A Supply Channel Border or Leevee Area da covered with water in time dt Border strip Area A covered with water in time t Considering small area, da o the border strip o area (A) Depth o water, y over this area (A) Assume that in time dt, water advances over this area (da). Now, the volume o water that lows to cover this area = y.da (1) During the same time dt The volume o water that percolates into the soil over the area (A) =.A.dt (2) The total quantity o water supplied to the strip during time (dt) =.dt (3) From equation (1), (2) & (3).dt = y. da +. A. dt y. da dt =. A For getting time required to irrigate the whole land, we have to integrate the above equation and considering y,, and as constants y. da ƒdt = ƒ. A 4

5 Ater integrating the above equation, we get t = y ln + C (constant) (4). A But at, t = 0, A = 0 From equation (4) Finally, t = 0 = 0 = y ln y ln.0 + C y y ln + C = ln(1 ) A y + C = 0 + C = 0 + C C = 0 or, t 2.3 y log A This above equation can be urther written as t. log Now, let 2.3. y A Then, x = log 10 x = A A.10 x.a.10 x = (10 x 1) =.A.10 x x 10 1 A = x.10 x 10 Further, considering the maximum value o 10 We get, A max = x 1 = 1 t y = x Problem: Determine the time required to irrigate a strip o land o 0.04 hectares in area rom a tube-well with a discharge o 0.02 cumec. The iniltration capacity o the soil may be taken as 5 cm/h and the average depth o low on the ield as 10 cm. Also determine the maximum area that can be irrigated rom this tube well. Solution: Here, A = 0.04 hectares = m 2 = 400 m 2 = 0.02 cumec = 0.02 m 3 /s = m 3 /hr = 72 m 3 /hr = 5 cm/hr = 0.05 m/hr y = 10 cm = 0.10 m Now, Time required or irrigating the strip o land, t = 2.3 log = 0.65 hr = 39 min Maximum area that can be irrigated is given by the equation: A max = 72 m 2 = 1440 m 2 = 1440/10 4 hectares = hectares 0.05 y log A 5

6 Check Flooding o Similar to Ordinary looding o Water is controlled by surrounding the check area with low and lat levees o The check is illed with water at a airly high rate and allowed to stand until the water iniltrates o The conined plot area varies rom 0.2 to 0.8 hectares Ditch Openings Levees along the contours Fig: Check looding (Plan view) Adaptability: It is suitable or low as well as high intake soils and or rice or other crops which can withstand temporary looding. Advantages: Eective leaching. Maximum use o seasonal rainall High application eiciencies. Limitations: Soil crusting Unsuitable or crops that cannot accommodate inundation. Basin Flooding o Special type o check looding o Adopted specially or Orchard trees o One or more trees are generally placed in the basin o Surace is looded as in check method by ditch water Subsidiary ditches Connecting Levee Entry o water through a bank hole or by a hose siphon MAIN DITCH Trees Basins Fig: Basin Flooding (plan view) 6

7 Adaptability: It is suitable or low as well as high intake soils. Advantages: Eective leaching Maximum use o seasonal rainall High application eiciencies Limitations: Soil crusting Unsuitable or crops that cannot accommodate inundation. Application eiciency is comparatively high. Furrow irrigation method o Furrow are narrow ield ditches, excavated between rows o plants and carry water through them o Spacing o urrows is determined by proper spacing o the plants. o Furrows vary rom 8 to 30 cm deep and may be as much as 400 meters long o Deep urrows are widely used or row crops. o Small shallow urrow (called corrugations) suitable or irregular topography and close growing crops such as meadows and small grains. o Water diverted into the urrows by using rubber hose tubing. o Hose prevents the necessity o breaking o the ditch bank and provides a uniorm low into the urrow. FURROWS OR FIELD DITCHES ENTRY OF WATER THROUGH A BANK HOLE OR BY A HOSE SYPHON Fig: Plan view (Furrow irrigation method) Adaptability: It is suitable or row crops (like potatoes, groundnut, sugarcane etc.) and or medium to moderately ine textured soil. Advantage: Only about one-ith to one-hal o the land surace is wetted by water. So, it results in less evaporation, less pudding o soil. Disadvantages: Excessively long urrows may result in too much percolation near upper end and too little water near the down-slope end. It involves high initial cost and salt accumulation in the ridges. 7

8 Sprinkler irrigation method o Water is applied to the soil in the orm o a spray through a network o pipes and pumps. o It is kind o an artiicial rain and gives good results o It is a costly process and not widely used in our country. o It can be used or all types o soils and or widely dierent topographies and slopes. o It ulills the normal requirement o uniorm distribution o water. Adaptability: This method can be used or almost all crops (except rice and jute) and on most soils. It is best suited to sandy soils that have a high iniltration rate. It can be applied to any topographic conditions without extensive land preparation. Crops Sprinkling Water Water Supply Fig: Plan view (sprinkler irrigation method) Types o sprinkler systems: Permanent system: In permanent system, pipes are permanently buried in such a way that they do not interere with the arming operations. Semi-permanent system: In semi-permanent system, the main lines are buried in the ground, while the laterals are portable. Portable system: In the portable system, the mains as well as laterals are portable. These portable networks can be moved rom arm to arm Advantages o sprinkler irrigation: o Seepage losses, which occur in earthen channels o surace irrigation methods, are completely eliminated. Moreover, only optimum quantity o water is used in this method o Land leveling is not required and thus avoiding removal o top ertile soil, as happens in other surace irrigation methods. o No cultivation area is lost or making ditches results in increasing about 16 % o the cropped area o The water is to be applied at a rate lesser than the iniltration capacity o the soil, and thus avoiding surace run o. o This method leaches down salts and prevents water-logging or salinity o It is less labor oriented and hence useul where labor is costly and scarce. o Up to 80% o applied water can be stored in the root zone o plants. o Fertilizers can be uniormly applied, because they can mixed with irrigation water Limitations o sprinkler irrigation: o High winds may distort sprinkler pattern, causing non-uniorm spreading o water on the crops. o In areas o high temperature and high wind velocity, considerable evaporation losses o water my take place. o They are not suited to crops requiring requent and larger depths o irrigation, such paddy. o Initial cost o the system is very high, and the system requires a high technical skill o A constant water supply is needed or commercial use o equipment o Only sand and silt ree water can be used, as otherwise pump impellers liting such waters will get damaged. 8

9 Drip irrigation method o It is the latest ield irrigation technique (also called trickle irrigation) o Irrigation water is applied by using small diameter (12 to 32 mm) plastic lateral lines. o The lateral lines contains some devices called emitters at selected spacing to deliver water to the soil surace near the base o the plants. o It is best suited or widely spaced plants, salt problems and or areas with water scarcity. o In this method, water is slowly and directly applied to the root zone o the plants or minimizing the losses by evaporation and percolation o This method is being used or small nourishes, orchards, or gardens. Water supply Fig: Section view (Drip irrigation method) Beneits: Conventional losses such as deep percolation, runo and soil water can be minimized by applying a volume o water approaching the consumptive use o the plants. Small area is wetted thereby reducing weed growth, insects and diseases etc. Soil crusting and intererence with harvesting is minimized. Greater crop yield and better quality can be obtained. For widely spaced like ruit trees, the system may be even more economical than sprinkler method o irrigation. Disadvantages: High initial cost o the deep irrigation equipment sometimes limits its use to orchard and vegetables in water scarcity areas. Clogging o emitter may disrupt the irrigation system. Plastic pipes may damaged by rodents. Wind erosion can harm the pipes. Like the sprinkler method, drip irrigation permits the simultaneous application o ertilizers through the system. When compared to the sprinkler system, the drip method operates on much lower line pressure, thus providing a saving in energy requirements. 9

10 Irrigation Project Surveying Availability o Irrigation Water When it is ound necessary to take up an irrigation project, the availability o required water should be investigated. The ollowing points should be considered Whether any perennial river is available near the command area or not. I an inundation river is available, the maximum discharge o that river is to be ascertained rom the highest lood level mark (as indicated by the villagers residing near the bank o the river). From various investigations (i.e. maximum discharge, rainall etc.) it is necessary to ascertain whether the river will be able to meet the total water requirement or not. Selection o probable site or Barrage or Dam When the source o water is available, the suitable site or the barrage or dam should be ound out considering the ollowing points, The course o the river should be straight at least or a distance o about one kilometer both on the upstream and down-stream side o the site. The width o the river should be minimum and the section o the river should be welldeined. A suitable basin should be available or the storage reservoir. The elevation o the site should be higher than that o the culturable command area. The storage reservoir should not submerge much valuable land. The capacity o the reservoir should ulill the total water requirement. Discharge observation or the river The gauge and discharge observation station should be established at the proposed site to collect the ollowing data: The daily discharge, maximum discharge and minimum discharge o the river throughout the year should be recorded. Silt analysis should be carried out in rainy season (when the river carries much silt) to determine the nature o sedimentation in river or reservoir. Discharge observations should also be carried out or all the rivers crossing the proposed canal. This is required or designing cross-drainage works. Marking o GCA and Cultivable area When it is decided to make up the project, the gross command area should be marked on the topographic map. The culturable areas should be deined on the map to ind the culturable command area that is to be included in the project. Marking o alignment o main canal The alignment should be marked on the topographical map o the concerned area. While marking the alignment the ollowing points should be kept in mind. The alignment o the main canal should be taken in such a way so that unnecessary cutting and banking is avoided. The alignment o the main canal should be such that the branch canals can be taken suitably to cover the whole culturable area. The alignment should cross the rivers, roads, railways lines etc. perpendicularly as much as possible. The alignment should not be taken through the valuable agricultural land. The alignment should not pass through the thickly populated areas, religious places, burial grounds, etc. 10

11 Preliminary location survey The reconnaissance survey should be carried out along the alignment to record necessary data such as obstacles, road crossings, railway crossings, river crossings, etc. This survey involves the ollowing procedures: The approximate distance along the alignment should be measured by pacing and the magnetic bearings o the traverse legs (open traverse) and it should be noted in the ield book. The objects and the nature o the ground on both sides o the alignment should also be noted in the ield book. The alignment may be diverted to avoid religious places, valuable structures, etc. The alignment should be made to cross the rivers perpendicularly. An index should be prepared or the alignment. Final Survey: a) Final location o Barrage or Dam: The inal location o the barrage or dam site involves the ollowing steps: The centre line o the barrage or dam site should be marked with pillars on both banks o the river. The cross-section o the barrage site should be taken very precisely. Cross-sections should be taken at regular interval on the upstream side o the barrage site to ascertain the storage capacity o the reservoir. Boring test should be carried out along the centre line o the barrage site to determine the depth and nature o oundation. b) Route survey: A prismatic compass survey or plane table survey should be conducted along the alignment o the main canal to prepare a route survey map o the area covering a distance o about 30 m on both sides o the alignment. c) Longitudinal leveling: The longitudinal leveling should be done along the alignment o the main canal. Generally, the sta readings are taken at an interval o 20 m along the centre line o the main canal. The magnetic bearings o the lines (traverse legs) should also be noted in the level book. Longitudinal leveling or the branch canals should also be done. d) Cross-sectional leveling: The cross-sectional leveling at regular intervals along the alignment o the main canal should be taken. The cross-sections or the branch canals also should be taken. These cross-sections are required or the computation o volume o earth work. e) Data or cross drainage works: At the places o river crossings, road crossings, railway crossings etc. additional data should be collected or designing cross-drainage works. At the sites o river crossings the gauge and discharge observation stations should be established. ) Soil survey: The soil survey should be conducted along the alignment. It consists o collecting the sample o soil by boring up to the depth until impervious layer is obtained. g) Well observation: Well observation should be carried out along the alignment. This operation consists o measuring the water level o the wells existing on both sides (within 50 m) o the alignment. This is done to know the nature o water table along the course o the canal. 11

12 Preparation o drawings Route survey map (to suitable scale). Longitudinal sections or the main and branch canals with ormation level (to suitable scale). Cross-sections o main and branch canals with ormation level (to suitable scale). Contour map along the alignment. Design o curves with setting out table. Oice works The sections o the canals should be designed. The detailed estimate should be prepared to know the volume o earth work in cutting or banking along the main canal and branch canals. The total land width required should be marked on the route survey map. The design o the barrage or dam, cross-drainage works and other allied structures should be completed. The detailed report should be prepared or the compensation. It includes the names o owners, location, amount o properties, valuation o the land, etc. The total cost o the project should be ascertained by considering all the aspects. Justiication o the selection o inal alignment Ater preliminary survey, the estimates or the tentative alignments (i taken) are prepared. Then by comparing the total costs, working easibility, etc. with the alignments the inal alignment is selected. Final location survey The inal location survey o the approved alignment o the canal should be carried out or the execution o the project works. It includes the ollowing: The center line o the main and branch canals should be marked with concrete pillars at intervals o 30 m or 50 m. The total land width required or the main and branch canals should be marked with pillars at suitable intervals. 12

13 Irrigation Project Report Introduction: The introduction o the project includes the ollowing points: Aim o the project Location o the project Total area to be covered within the project. Total population to be beneited by the project. Future prospect i irrigation is practiced. Stages o uture development. Total cost o the project. Necessity and economic justiication To justiy the necessary and economical development o the area, the ollowing points should be clearly illustrated: Amount o yearly rainall. Nature o distribution o rainall during the crop season. Types o major crops grown in the area. Total water requirement o the crops. Amount o water requirement by irrigation system. Expected increase in yield o crops, i irrigation is practiced. Total revenue expected. Report on land acquisition and compensation A detailed statement should be prepared showing the names o owners, types o properties, quantity, amount o compensation, etc. The procedure adopted or the land acquisition should be clearly mentioned. Details o design and drawing o hydraulic structures The detailed design procedure and drawing o hydraulic structures, canals and other allied structures should be incorporated. Detailed estimate The detailed estimate or all the works o the project should be incorporated. Speciication The speciications o the construction materials and dierent works should be clearly mentioned. Availability o materials and laborers The source o construction materials and places o recruitment o laborers should be mentioned. Communication The existing communication to the selected barrage or dam site should be pointed out. I new communication is required or inaccessible site, the possible route should be pointed out and the expenditure or the new route should be included in the project. Maps Topographical map o the area showing the canal alignment and barrage or dam site. Route survey map. Longitudinal sections. Cross-sections. Contour map o alignment. Detailed drawing o barrage or dam, cross-drainage works, etc. Conclusion and recommendation Ater urnishing all the aspects o the project, the proposal is orwarded to the higher authority with proper recommendation or the necessary approval. 13

METHODS OF IRRIGATION BY NAVANITA CHOUDHURY ASSISTANT PROFESSOR RSET

METHODS OF IRRIGATION BY NAVANITA CHOUDHURY ASSISTANT PROFESSOR RSET METHODS OF IRRIGATION BY NAVANITA CHOUDHURY ASSISTANT PROFESSOR RSET CLASSIFICATION OF IRRIGATION METHOD A.Surface Irrigation: Water moves over and across the land by simple gravity flow in order to wet

More information

SAMPLE STUDY MATERIAL. GATE, IES & PSUs Civil Engineering

SAMPLE STUDY MATERIAL. GATE, IES & PSUs Civil Engineering SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering HYDROLOGY & IRRIGATION C O N T E N T 1. IRRIGATION TECHNIQUES AND WATER REQUIREMENT OF CROPS 03-34 2. CANALS AND DESIGN

More information

SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING IRRIGATION & HYDROLOGY STUDY MATERIAL IRRIGATION ENGINEERING

SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING IRRIGATION & HYDROLOGY STUDY MATERIAL IRRIGATION ENGINEERING 1 SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING IRRIGATION & HYDROLOGY STUDY MATERIAL SSC-JE Syllabus : Irrigation Engineering : Definition, Necessity, Benefits, III effects of irrigation, types

More information

Lift irrigation Using man or Animal power Using Mechanical or Electrical Power Flow irrigation a)inundation Irrigation b) Perennial Irrigation Direct

Lift irrigation Using man or Animal power Using Mechanical or Electrical Power Flow irrigation a)inundation Irrigation b) Perennial Irrigation Direct Lift irrigation Using man or Animal power Using Mechanical or Electrical Power Flow irrigation a)inundation Irrigation b) Perennial Irrigation Direct irrigation Storage irrigation a)flow irrigation system:

More information

Irrigation System. BWCDD Zanjero Training 2/13/2008

Irrigation System. BWCDD Zanjero Training 2/13/2008 Irrigation System BWCDD Zanjero Training Session #7 2/13/2008 Irrigation System The (main) intake structure t directs water from the source of supply, such as a reservoir or a river, into the irrigation

More information

Fig: Alignment of a ridge or watershed canal (Head reach of a main canal in plains)

Fig: Alignment of a ridge or watershed canal (Head reach of a main canal in plains) SYSTEM OF IRRIGATION CANAL CHAPTER 6 Alluvial Soil and Non-Alluvial Soil The soil which is formed by transportation and deposition of silt through the agency of water, over a course of time, is called

More information

Basic Types of Irrigation Systems. Surface irrigation Subsurface irrigation Sprinkler irrigation Drip/trickle irrigation

Basic Types of Irrigation Systems. Surface irrigation Subsurface irrigation Sprinkler irrigation Drip/trickle irrigation Irrigation systems Basic Types of Irrigation Systems Surface irrigation Subsurface irrigation Sprinkler irrigation Drip/trickle irrigation Subsurface Irrigation Also call subirrigation Artificial regulation

More information

Solution for Irrigation Engineering

Solution for Irrigation Engineering Solution for Irrigation Engineering December 2015 Index Q.1) a). 2-3 b).3-5 c).5-6 d).6-8 e).9-10 Q.2) a).10-11 b). 12-14 c). 14-15 Q.3) a). 15-16 b). 17 c). 18 Q.4) a). N.A b). N.A c). N.A Q.5) a).20-22

More information

CHAPTER 17: Low-cost pipes distribution system

CHAPTER 17: Low-cost pipes distribution system Pressurized Irrigation Techniques 17.1 CHAPTER 17: Low-cost pipes distribution system INTRODUCTION Pump irrigation covers the majority of the irrigated lands in the developing countries of the arid and

More information

2. METHODS AND DEPTH OF IRRIGATION WATER

2. METHODS AND DEPTH OF IRRIGATION WATER 2. METHODS AND DEPTH OF IRRIGATION WATER INTRODUCTION Faulty method of irrigation leads to more wastage of costly irrigation water. Proper leveling and preparation of field help in even distribution of

More information

Unit F: Soil Fertility and Moisture Management. Lesson 3: Using Irrigation

Unit F: Soil Fertility and Moisture Management. Lesson 3: Using Irrigation Unit F: Soil Fertility and Moisture Management Lesson 3: Using Irrigation 1 Terms Border strip irrigation Center-pivot irrigation Chemigation Ground truthing Irrigation scheduling Moisture sensor Remote

More information

Civil Engineering Department. 2 Marks Question and Answer. CE:2301:Irrigation Engineering

Civil Engineering Department. 2 Marks Question and Answer. CE:2301:Irrigation Engineering Civil Engineering Department 2 Marks Question and Answer CE:2301:Irrigation Engineering 1 UNIT 1 INTRODUCTION 1) Define irrigation? Irrigation is defined as the science of artificial application of water

More information

CHAPTER (7) TRICKLE IRRIGATION

CHAPTER (7) TRICKLE IRRIGATION CHAPTER (7) TRICKLE IRRIGATION Advantages of Trickle Irrigation 1-A drip system produces healthy, fast-growing plants. 2-Drip watering keeps the moisture content of soil relatively constant and ensures

More information

IUCN Pakistan. Efficient Irrigation Systems

IUCN Pakistan. Efficient Irrigation Systems IUCN Pakistan Efficient Irrigation Systems Background Pakistan»s agriculture is classified as irrigated agriculture with about 18 million hectares (Mha) of irrigated area contributing 90% of total agricultural

More information

CHAPTER 2: Pressure piped irrigation techniques

CHAPTER 2: Pressure piped irrigation techniques Pressurized Irrigation Techniques 2.1 CHAPTER 2: Pressure piped irrigation techniques PRESSURE PIPED IRRIGATION SYSTEMS A pressure piped irrigation system is a network installation consisting of pipes,

More information

Drip Irrigation. Seminar report SUBMITTED TO: SUBMITTED BY:

Drip Irrigation.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report on Drip Irrigation Submitted in partial fulfillment of the requirement for the award of degree of CIVIL SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org www.studymafia.com1

More information

Operating, Calibrating, and Maintaining Irrigation Systems

Operating, Calibrating, and Maintaining Irrigation Systems Lesson A7 4 Operating, Calibrating, and Maintaining Irrigation Systems Unit A. Mechanical Systems and Technology Problem Area 7. Agricultural Equipment Systems Lesson 4. Operating, Calibrating, and Maintaining

More information

Water Management in Horticultural Crops

Water Management in Horticultural Crops CHAPTER 7 Water Management in Horticultural Crops OBJECTIVES After studying this chapter, students will be able to: Learn about water management and various methods of irrigation including micro irrigation

More information

Dr. D Y Patil Institute of Engineering Management and Research Akurdi, Pune (MH). 5 Assistant Professor, Parikrama polytechnic kashti, Nagar

Dr. D Y Patil Institute of Engineering Management and Research Akurdi, Pune (MH). 5 Assistant Professor, Parikrama polytechnic kashti, Nagar Comparative Study of Technique and Yield for Turmeric Crop: A case Study of Satara City Ranjeet Sabale 1, Rohit Deshmukh 2, Shivkumar Hallale 3, Sainanad Khot 4, Rajaram Shinde 5 1,2,3,4 Assistant Professor,

More information

DRAINAGE & DESIGN OF DRAINAGE SYSTEM

DRAINAGE & DESIGN OF DRAINAGE SYSTEM Drainage on Highways DRAINAGE & DESIGN OF DRAINAGE SYSTEM P. R.D. Fernando Chartered Engineer B.Sc.(Hons), M.Eng. C.Eng., MIE(SL) Drainage Requirement of Highway Drainage System Introduction Drainage means

More information

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur Module 3 Irrigation Engineering Principles Lesson 4 Types of Irrigation Schemes and Methods of Field Water Application Instructional objectives On completion of this lesson, the students come to know of

More information

IRRIGATION SYSTEM, MICROIRRIGATION

IRRIGATION SYSTEM, MICROIRRIGATION 441-1 NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD IRRIGATION SYSTEM, MICROIRRIGATION (No. and Ac.) CODE 441 DEFINITION An irrigation system for frequent application of small quantities

More information

Distance from inlet end (ft)

Distance from inlet end (ft) Advance Movement of water from the inlet end to the downstream end Curve of Time vs. Distance is NOT linear Rule-of-Thumb: 1/3 of the total advance time is needed to reach midpoint of the furrow length

More information

SOIL AND THE HYDROLOGIC CYCLE

SOIL AND THE HYDROLOGIC CYCLE GEOLOGY 408/508 SOIL AND THE HYDROLOGIC CYCLE CHAPTER 6 Brady & Weil, Rev. 14th ed. THE HYDROLOGIC CYCLE (FIGURE 6.2) WATER BALANCE EQUATION Watershed - an area of land drained by a single stream system

More information

Irrigation Structures 2. Dr. M. R. Kabir

Irrigation Structures 2. Dr. M. R. Kabir CHAPTER 9 Irrigation Structures 2 Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 22 What is Cross Drainage Works? In an irrigation project,

More information

Managing furrow irrigation

Managing furrow irrigation Section K Managing furrow irrigation The goal of every surface irrigator should be to apply the right amount of water as uniformly as possible to meet the crop needs and minimize leaching of nitrogen from

More information

Model Layout/Components of a Drip Irrigation System

Model Layout/Components of a Drip Irrigation System Dept. of Agril. Engg, BAU Lecture Note No. 7 FNRM-121 (Hydrology, Soil and Water Conservation) Instructor- Dr. M. Job First Year Semester II Dated: 15 th July &08 th Aug Drip Irrigation: It can be defined

More information

Irrigation Practices in the Umatilla and Morrow County Area

Irrigation Practices in the Umatilla and Morrow County Area Irrigation Practices in the Umatilla and Morrow County Area In the production of irrigated crops a farmer must make three decisions; (1) when to irrigate, (2) how much water to apply, and (3) how to apply

More information

6 Analysis and evaluation of the data from the questionnaire with respect to irrigation efficiency

6 Analysis and evaluation of the data from the questionnaire with respect to irrigation efficiency 6 Analysis and evaluation of the data from the questionnaire with respect to irrigation efficiency 6.1 Conveyance efficiency The early irrigation projects of more recent times nearly always received their

More information

LAND PREPARATION. For most crop plants, such a seedbed is one in which the surface soil is loose and free of clods (Fig. 6-18).

LAND PREPARATION. For most crop plants, such a seedbed is one in which the surface soil is loose and free of clods (Fig. 6-18). LAND PREPARATION Major purposes of land preparation are to: (1) Level the land where needed. (2) Incorporate crop residues, green manure, and cover crops. (3) Prepare and maintain a seedbed in good tilth.

More information

Introduction to Surface Irrigation

Introduction to Surface Irrigation Introduction to Surface Irrigation Kabul, Afghanistan February 2011 7 This watershed rehabilitation and restoration training was prepared by the U.S. Department of Agriculture (USDA) team of Jon Fripp

More information

Subsurface Drip Irrigation in the Southeast

Subsurface Drip Irrigation in the Southeast Print LSU AgCenter innovate, educate, improve lives www.lsuagcenter.com BAE > Extension > Agriculture & Environment > Irrigation > Subsurface Drip Irrigation in the Southeast Subsurface drip irrigation

More information

Florida Irrigation Systems 1

Florida Irrigation Systems 1 Circular 1035 Florida Irrigation Systems 1 Allen G. Smajstrla, Gary A. Clark and Dorota Z. Haman 2 Introduction Irrigation is extensively used for crop production in Florida. Currently, more than two million

More information

Irrigation Water Management: Irrigation Methods

Irrigation Water Management: Irrigation Methods Table of Contents Irrigation Water Management: Irrigation Methods Training manual no 5 Provisional edition a manual prepared jointly by C. Brouwer International Institute for Land Reclamation and Improvement

More information

Chapter 2. Water intake to a field

Chapter 2. Water intake to a field Structures for water control and distribution 3 Chapter 2 Water intake to a field In an irrigation scheme, water is taken from a water source, passes through a network of irrigation canals and is delivered

More information

Created by Simpo PDF Creator Pro (unregistered version) Asst.Prof.Dr. Jaafar S. Maatooq

Created by Simpo PDF Creator Pro (unregistered version)  Asst.Prof.Dr. Jaafar S. Maatooq Lect.No.9 2 nd Semester Barrages, Regulators, Dams 1 of 15 In order to harness the water potential of a river optimally, it is necessary to construct two types of hydraulic structures, as shown in Figure

More information

Guidelines for Construction of Pipe Distribution Network (PDN) for Irrigation

Guidelines for Construction of Pipe Distribution Network (PDN) for Irrigation Guidelines for Construction of Pipe Distribution Network (PDN) for Irrigation Mr. Sandesh B. Kulavmode 1, Dr.S.S.Valunjkar 2 1P.G. Student, Dept. of Civil Engineering, Government College of Engineering,

More information

Controlling runon and runoff:

Controlling runon and runoff: Chapter 8. Surface Water Management This chapter explores: runon and runoff what they are, and the risks associated with them. various management options runon reductions, runoff catchbasins, vegetated

More information

3.8 Effluent distribution and irrigation systems. Managing effluent for irrigation. Systems for land application. Recycling irrigation tailwater

3.8 Effluent distribution and irrigation systems. Managing effluent for irrigation. Systems for land application. Recycling irrigation tailwater 3.8 Effluent distribution and irrigation systems The uniformity of land application (or distribution) of effluent depends on the type of system used to transport and deliver dairy effluent to the land

More information

Water Conveyance System

Water Conveyance System Water Conveyance System Water Conveyance System Water Conveyance System Canals Conduits Canals-Canals are the structure constructed to carry or transport water from the reservoir to the area which is to

More information

D.G.S.W. Pitakumbura Manager (Groundwater Studies) Groundwater Section NWS&DB. Groundwater recharge or deep drainage or

D.G.S.W. Pitakumbura Manager (Groundwater Studies) Groundwater Section NWS&DB. Groundwater recharge or deep drainage or Groundwater Recharge and Extraction Techniques D.G.S.W. Pitakumbura Manager (Groundwater Studies) Groundwater Section NWS&DB What is Groundwater Recharge Groundwater recharge or deep drainage or deep percolation

More information

CENTRAL PLATTE NATURAL RESOURCES DISTRICT NITROGEN MANAGEMENT CERTIFICATION TEST

CENTRAL PLATTE NATURAL RESOURCES DISTRICT NITROGEN MANAGEMENT CERTIFICATION TEST CENTRAL PLATTE NATURAL RESOURCES DISTRICT NITROGEN MANAGEMENT CERTIFICATION TEST NAME: CERT #: ADDRESS: CITY: Section A: The Nitrate Contamination Concern 1) The U.S. Environmental Protection Agency s

More information

Ponds. Pond A water impoundment made by excavating a pit, or constructing a dam or an embankment.

Ponds. Pond A water impoundment made by excavating a pit, or constructing a dam or an embankment. POND SITE SELECTION AND CONSTRUCTION Uses, Planning, & Design David Krietemeyer Area Engineer USDA-NRCS June 20, 2008 Uses Considerations for Location of Commonly Used Terms Pond A water impoundment made

More information

Alpha College of Engineering. Fifth Semester B.E. Question Bank. Hydrology and irrigation engineering

Alpha College of Engineering. Fifth Semester B.E. Question Bank. Hydrology and irrigation engineering Alpha College of Engineering Fifth Semester B.E. Question Bank Hydrology and irrigation engineering UNIT 1: INTRODUCTION & PRECIPITATION 1.Explain in brief the different types of precipitation. 2.How do

More information

BENEFITS FROM IMPROVING FLOOD IRRIGATION EFFICIENCY

BENEFITS FROM IMPROVING FLOOD IRRIGATION EFFICIENCY BENEFITS FROM IMPROVING FLOOD IRRIGATION EFFICIENCY Report of Progress 544 Agricultural Experiment Station Kansas State University, Manhattan Walter R. Woods, Director BENEFITS FROM IMPROVING FLOOD IRRIGATION

More information

12/12/ General. Crop period and base period Duty and delta of a crop Duty and delta of a crop

12/12/ General. Crop period and base period Duty and delta of a crop Duty and delta of a crop 2. 1. General The quantity of water, regardless of its source, required by crop in a given period of time for its normal growth under field conditions. Crop period and base period CWR = ET or CU + application

More information

USE OF GABIONS IN SMALL HYDRAULIC WORKS

USE OF GABIONS IN SMALL HYDRAULIC WORKS USE OF GABIONS IN SMALL HYDRAULIC WORKS SECTION 1 SITE SELECTION FOR SMALL DAMS Table of Contents 1.1 CLASSIFICATION ACCORDING TO USE... 2 1.2 CLASSIFICATION BY HYDRAULIC DESIGN (site and basin requirements)...2

More information

HYDROLOGY - BASIC CONCEPTS

HYDROLOGY - BASIC CONCEPTS HYDROLOGY - BASIC CONCEPTS Hydrology Hydrology is the science of the waters of the earth and its atmosphere. It deals with occurrence, circulation, distribution and movements of these waters over the globe

More information

Irrigation water management for subsurface drip

Irrigation water management for subsurface drip Section M Irrigation water management for subsurface drip Subsurface drip system Subsurface drip irrigation (SDI) refers to an irrigation system where the water delivery occurs below the soil surface and

More information

BIG HORN BASIN IRRIGATION WATER MANAGEMENT P ROGRAM

BIG HORN BASIN IRRIGATION WATER MANAGEMENT P ROGRAM BIG HORN BASIN IRRIGATION WATER MANAGEMENT P ROGRAM Lateral Move Sprinkler System B I G H O R N B A S I N I R R I G A T I O N W A T E R M A N A G E M E N T P R O G R A M Looking at a New System: The Systems

More information

Use of Irrigation in East Texas - Pastures and Forages

Use of Irrigation in East Texas - Pastures and Forages Use of Irrigation in East Texas - Pastures and Forages Pineywoods Cattle Congress April 13, 2012 Guy Fipps, P.E. Professor and Extension Agricultural Engineer Charles Swanson Extension Program Specialist

More information

Contents: Purpose and objective Water and energy conservation 1 1

Contents: Purpose and objective Water and energy conservation 1 1 1 Chapter 1 Contents: 652.0100 Purpose and objective 1 1 652.0101 Water and energy conservation 1 1 652.0102 Soil conservation, water quality, and pollution abatement 1 2 652.0103 Using the guide 1 3 (a)

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

CHAPTER 11: Microsprinklers

CHAPTER 11: Microsprinklers Pressurized Irrigation Techniques 11.1 CHAPTER 11: Microsprinklers INTRODUCTION Microsprinklers are low capacity water emitters, sprinkler in type, but smaller in size than the conventional sprinklers

More information

Impact of Climate Changes on Drinking and Sanitation Water Use in the Rural Community of the Dry Zone Sri Lanka

Impact of Climate Changes on Drinking and Sanitation Water Use in the Rural Community of the Dry Zone Sri Lanka Impact of Climate Changes on Drinking and Sanitation Water Use in the Rural Community of the Dry Zone Sri Lanka Prof. G.M. Bandaranayake, Senior Lecturer, Water Resources Studies, Department of Geography,

More information

13. Integrated Water Resource Management for Increasing Productivity and Water Use Efficiency in the Rain-fed Areas of India

13. Integrated Water Resource Management for Increasing Productivity and Water Use Efficiency in the Rain-fed Areas of India 13. Integrated Water Resource Management for Increasing Productivity and Water Use Efficiency in the Rain-fed Areas of India Piara Singh, P Pathak, Suhas P Wani and KL Sahrawat International Crops Research

More information

IRRIGATION WATER MANAGEMENT OPTIONS FOR ALFALFA ABSTRACT

IRRIGATION WATER MANAGEMENT OPTIONS FOR ALFALFA ABSTRACT IRRIGATION WATER MANAGEMENT OPTIONS FOR ALFALFA Larry Schwankl 1, Dan Putnam 2, Khaled Bali 3, and Daniele Zaccaria 4 ABSTRACT All types of irrigation systems, including border strip flood systems, various

More information

08. WATER BUDGETING AND ITS IMPORTANCE - IRRIGATION SCHEDULING - APPROACHES

08. WATER BUDGETING AND ITS IMPORTANCE - IRRIGATION SCHEDULING - APPROACHES 08. WATER BUDGETING AND ITS IMPORTANCE - IRRIGATION SCHEDULING - APPROACHES Water budgeting: Allocation of the water receipt including anticipated within the crop period and its detailed account of expenditure

More information

Best Practices for Building High-Performance Resource Roads. Road Drainage. Developed by: The Roads and Infrastructure Group

Best Practices for Building High-Performance Resource Roads. Road Drainage. Developed by: The Roads and Infrastructure Group Best Practices for Building High-Performance Resource Roads Road Drainage Developed by: The Roads and Infrastructure Group THIS GUIDE IS INTENDED FOR EQUIPMENT OPERATORS CONSTRUCTION CONTRACTORS FIELD

More information

FIGURE Towing the compact machine.

FIGURE Towing the compact machine. Pressurized Irrigation Techniques 9.5 DESIGN CRITERIA AND CONSIDERATIONS The travelling Spray Booms are movable systems and can easily be transferred from one field to another towed by a tractor. The most

More information

22 Tubewell Drainage Systems

22 Tubewell Drainage Systems 22 Tubewell Drainage Systems WK Boehmer' and J Boonstra2 221 Introduction ' Tubewell drainage is a technique of controlling the watertable and salinity in agricultural areas It consists of pumping, from

More information

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream

What is runoff? Runoff. Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream What is runoff? Runoff Runoff is often defined as the portion of rainfall, that runs over and under the soil surface toward the stream 1 COMPONENTS OF Runoff or STREAM FLOW 2 Cont. The types of runoff

More information

The control head. The water pipelines. The dripper lines. IRRIGATION SCHEDULING Irrigation requirements

The control head. The water pipelines. The dripper lines. IRRIGATION SCHEDULING Irrigation requirements Pressurized Irrigation Techniques 15.5 The control head The control head consists of a control plastic shut off valve 1 inch (gate or ball valve), and a 1 inch plastic (PP) line filter, screen or disk

More information

Water Resources. Associate Prof. Ahmed Moustafa Moussa Lecture -1 Lecture 4

Water Resources. Associate Prof. Ahmed Moustafa Moussa Lecture -1 Lecture 4 Water Resources By Associate Prof. Ahmed Moustafa Moussa Lecture -1 Lecture 4 High Aswan Dam Project 1. Location The High Aswan Dam (HAD) location was determined to fit the topographical features of the

More information

Irrigation Design (1) IHD302

Irrigation Design (1) IHD302 Irrigation Design (1) IHD302 Instructors : 1-Prof Dr. Kamal Abou Alhasan 2- Dr. Ashraf Saad 3- Dr. Soha Elayoty 4- Dr. Mohamed Attia 5- Dr. Hany Gomaa Topics Design of irrigation system Design of Bridge

More information

Performance Evaluation of Perfo Spray Irrigation System

Performance Evaluation of Perfo Spray Irrigation System Performance Evaluation of Perfo Spray Irrigation System K. L. Bidkar 1, K. T. Phalak 2, P. D. Jadhao 3 kisan_bidkar@rediffmail.com 1, phalak_kt@rediffmail.com 2, jpradip11@rediffmail.com 3 1, 2, 3. Civil

More information

BLOCKING AND FILLING SURFACE DRAINAGE DITCHES

BLOCKING AND FILLING SURFACE DRAINAGE DITCHES MINNESOTA WETLAND RESTORATION GUIDE BLOCKING AND FILLING SURFACE DRAINAGE DITCHES TECHNICAL GUIDANCE DOCUMENT Document No.: WRG 4A-1 Publication Date: 10/14/2015 Table of Contents Introduction Application

More information

CHAPTER 6: Irrigation scheduling

CHAPTER 6: Irrigation scheduling Pressurized Irrigation Techniques 6.1 CHAPTER 6: Irrigation scheduling Irrigation scheduling is one of the factors that influence the agronomic and economic viability of small farms. It is important for

More information

Irrigation Structures 1

Irrigation Structures 1 CHAPTER 8 Irrigation Structures 1 Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 20 Diversion Head Works Definition: The works, which

More information

[1] Level spreaders can release sheet flow down steep slopes, but the level spreader itself must be constructed across a level gradient.

[1] Level spreaders can release sheet flow down steep slopes, but the level spreader itself must be constructed across a level gradient. Level Spreaders DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short Term Steep Gradient [1] Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] Level spreaders can release

More information

HYDRAULIC STRUCTURES

HYDRAULIC STRUCTURES 7 th Semester B.TECH. [ CIVIL ENGINEERING ] HYDRAULIC STRUCTURES A hydraulic structure is a structure submerged or partially submerged in any body of water, which disrupts the natural flow of water. They

More information

Irrigation can increase the production of

Irrigation can increase the production of B-6150 5/04 Irrigation of Forage Crops Juan Enciso, Dana Porter, Guy Fipps and Paul Colaizzi* Irrigation can increase the production of forages where rainfall is limited. In planning an irrigation system

More information

1.6 Experience and challenges of spate irrigation projects in Tigray. (By Demisew Abate)

1.6 Experience and challenges of spate irrigation projects in Tigray. (By Demisew Abate) 1.6 Experience and challenges of spate irrigation projects in Tigray (By Demisew Abate) Part I : Introduction What is spate irrigation? o Spate irrigation is a flood harvesting and management system, involving

More information

PROJECT TITLE: Automatic Irrigation System Using Microcontroller

PROJECT TITLE: Automatic Irrigation System Using Microcontroller PROJECT TITLE: Automatic Irrigation System Using Microcontroller Suraj S. Gore, Shubham M. Shinde, Sanket D. Kundurkar, Rupesh C. Sarvade ELECTRONICS & TELECOMMUNICATION ENGINEERING SVERI s COLLEGE OF

More information

Soil Water Relationship. Dr. M. R. Kabir

Soil Water Relationship. Dr. M. R. Kabir CHAPTER 4 Soil Water Relationship Dr. M. R. Kabir Professor and Head, Department of Civil Engineering University of Asia Pacific (UAP), Dhaka LECTURE 10 Introduction Root zone (depth of soil penetrated

More information

12. Water Management Technology Options for Non-Rice Crops

12. Water Management Technology Options for Non-Rice Crops 12. Water Management Technology Options for Non-Rice Crops Special irrigation techniques for non-rice crops: Paired row technique: It is a method in which accommodating crop rows on both sides of furrow

More information

CONTENTS Flood irrigation

CONTENTS Flood irrigation CONTENTS Flood irrigation 1 Introduction...11.1 1.1 Description...11.1 1.2 Definitions...11.2 1.3 Types of flood irrigation...11.3 1.3.1 Basin irrigation...11.3 1.3.1.1 Background...11.3 1.3.1.2 Functioning...11.3

More information

CONSTRUCTION PLAN CHECKLIST

CONSTRUCTION PLAN CHECKLIST CONSTRUCTION PLAN CHECKLIST The design engineer is responsible for ensuring that plans submitted for city review are in accordance with this checklist. It is requested that the executed checklist be submitted

More information

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur

Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur Module 3 Irrigation Engineering Principles Lesson 8 Conveyance Structures for Canal Flows Instructional objectives On completion of this lesson, the student shall learn the following: 1. The need for structures

More information

Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani****

Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani**** NITROGEN REMOVAL FUNCTION OF PADDY FIELD IN A CIRCULAR IRRIGATION SYSTEM Yoshinaga Ikuo *, Y. W. Feng**, H. Hasebe*** and E. Shiratani**** * National Institute for Rural Engineering, Tsukuba Science City

More information

Infiltration Trench Factsheet

Infiltration Trench Factsheet Infiltration Trench Factsheet Infiltration Trench is a practice that provides temporary storage of runoff using the void spaces within the soil/sand/gravel mixture that is used to backfill the trench for

More information

EC Furrow Irrigation of Nebraska Soils

EC Furrow Irrigation of Nebraska Soils University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Historical Materials from University of Nebraska- Lincoln Extension Extension 1971 EC71-771 Furrow Irrigation of Nebraska

More information

2. DESIGN OF SURFACE IRRIGATION SYSTEMS

2. DESIGN OF SURFACE IRRIGATION SYSTEMS 2. DESIGN OF SURFACE IRRIGATION SYSTEMS Introduction to Surface Irrigation Systems Main glossary in irrigation methods Surface Irrigation Methods Criteria for Selection of Various Methods Hydraulic Design

More information

Chapter 12 Stormwater Sand Filters

Chapter 12 Stormwater Sand Filters TABLE OF CONTENTS 1.1 Overview o Practice... 1 1. Site Constraints and Siting o the Filter... 5 1..1 Minimum Drainage Area... 5 1.. Maximum Drainage Area... 5 1.. Elevation o Site Inrastructure... 5 1..4

More information

Studies on Estimative Methods and their Role in Artificial Ground Water Recharge

Studies on Estimative Methods and their Role in Artificial Ground Water Recharge International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.1, pp 435-440, Jan-Mar 2011 Studies on Estimative Methods and their Role in Artificial Ground Water Recharge Leena

More information

The soil is a very. The soil can. The manure. Soil Characteristics. effective manure treatment system if manures are applied at the proper rate.

The soil is a very. The soil can. The manure. Soil Characteristics. effective manure treatment system if manures are applied at the proper rate. The soil is a very effective manure treatment system if manures are applied at the proper rate. The soil can filter pollutants and prevent them from reaching groundwater. The manure application rate should

More information

From the Ground Up- Field Soil Considerations

From the Ground Up- Field Soil Considerations From the Ground Up- Field Soil Considerations Ted Bilderback Nursery Extension Specialist Department of Horticulture Science North Carolina State University Ted_Bilderback@ncsu.edu http://www.ces.ncsu.edu/depts/hort/nursery/

More information

VETIVER SYSTEM. Application under Kuwaiti Environment. Dr. Paul Truong Veticon Consulting Brisbane, Australia

VETIVER SYSTEM. Application under Kuwaiti Environment. Dr. Paul Truong Veticon Consulting Brisbane, Australia VETIVER SYSTEM Application under Kuwaiti Environment Dr. Paul Truong Veticon Consulting Brisbane, Australia www.uqconnect.net/veticon All materials in this document remain the property of Veticon Consulting

More information

DRAINAGE OF IRRIGATED LANDS

DRAINAGE OF IRRIGATED LANDS CVE 471 WATER RESOURCES ENGINEERING DRAINAGE OF IRRIGATED LANDS Assist. Prof. Dr. Bertuğ Akıntuğ Civil Engineering Program Middle East Technical University Northern Cyprus Campus CVE 471 Water Resources

More information

UPSC ESE/IES Civil Engineering Syllabus

UPSC ESE/IES Civil Engineering Syllabus 1 UPSC ESE/IES Civil Engineering Syllabus PAPER I 1. Building Materials: Stone, Lime, Glass, Plastics, Steel, FRP, Ceramics, Aluminum, Fly Ash, Basic Admixtures, Timber, Bricks and Aggregates: Classification,

More information

Degradation of the resource Fertility loss Organic matter Tilth degradation. Water quality Sediment Nutrients

Degradation of the resource Fertility loss Organic matter Tilth degradation. Water quality Sediment Nutrients Near Blue River ca. 1980 Degradation of the resource Fertility loss Organic matter Tilth degradation Water quality Sediment Nutrients Program cost Cheaper to prevent Still expensive Long-term productivity

More information

MATERIAL BEHAVIOR IN METAL FORMING

MATERIAL BEHAVIOR IN METAL FORMING MATERIAL BEHAVIOR IN METAL FORMING Considerable insight about the behavior o metals during orming can be obtained rom the stressstrain curve. The typical stress-strain curve or most metals is divided into

More information

Manure Management Milk Shake Dairy Ken Johnson Cache County, Utah

Manure Management Milk Shake Dairy Ken Johnson Cache County, Utah Manure Management Milk Shake Dairy Ken Johnson Cache County, Utah Purpose: To provide the site specifications necessary to properly utilize manure generated on the Milk Shake Diary owned and operated by

More information

Efficiencies of Florida Agricultural Irrigation Systems 1

Efficiencies of Florida Agricultural Irrigation Systems 1 BUL247 Efficiencies of Florida Agricultural Irrigation Systems 1 A.G. Smajstrla, B.J. Boman, G.A. Clark, D.Z. Haman, D.S. Harrison, F.T. Izuno, D.J. Pitts and F.S. Zazueta 2 Irrigation efficiency is a

More information

Improving whole farm and infield irrigation efficiencies using Irrimate TM tools

Improving whole farm and infield irrigation efficiencies using Irrimate TM tools Improving whole farm and infield irrigation efficiencies using Irrimate TM tools Steven Raine 1,2, Jim Purcell 3 and Erik Schmidt 1,2 1 National Centre for Engineering in Agriculture, University of Southern

More information

WATER RESOURCE ENNG.(NCE-702)

WATER RESOURCE ENNG.(NCE-702) Assignment: I (Unit 1) 1. Describe the concept of hydrologic cycle with the help of a neat sketch. What are the different components ofthe hydrologic cycle? What do you mean by hydrologic system? 2. A

More information

Development of Rain Gun Irrigation System for Large Scale Irrigation of FELDA Sugarcane Platation in Malaysia

Development of Rain Gun Irrigation System for Large Scale Irrigation of FELDA Sugarcane Platation in Malaysia Development of Rain Gun Irrigation System for Large Scale Irrigation of FELDA Sugarcane Platation in Malaysia Mohamed Daud Fakulti Kejuruteraan Universiti Pertanian Malaysia SUMMARY: Report on the equipment

More information

WHAT INTEREST OF DRIP IRRIGATION FOR CASH CROPS IN FRANCE?

WHAT INTEREST OF DRIP IRRIGATION FOR CASH CROPS IN FRANCE? WHAT INTEREST OF DRIP IRRIGATION FOR CASH CROPS IN FRANCE? Bernard LACROIX b.lacroix@arvalisinstitutduvegetal.fr Marc Berrodier Sophie Gendre Bruno Fontaine Alain Bouthier Bruno Molle Cyril Dejean Jean-Marc

More information

Crops. Information contained in this presentation came from the National Engineering Handbook Irrigation Guide

Crops. Information contained in this presentation came from the National Engineering Handbook Irrigation Guide Crops Information contained in this presentation came from the National Engineering Handbook Irrigation Guide Crops The purpose of irrigation is to supplement natural precipitation so that the moisture

More information

Rainfall Detention Best Management Practice. BMP Workshop September 24, 2015 EREC, Belle Glade

Rainfall Detention Best Management Practice. BMP Workshop September 24, 2015 EREC, Belle Glade Rainfall Detention Best Management Practice BMP Workshop September 24, 2015 EREC, Belle Glade BMP PTS DESCRIPTION NUTRIENT CONTROL: MINIMIZE MOVEMENT OF NUTRIENTS OFF-SITE Nutrient Application Control

More information