Core Analysis of the Round Tank Queen Reservoir, Chaves County, New Mexico. By: Garrett Wilson

Size: px
Start display at page:

Download "Core Analysis of the Round Tank Queen Reservoir, Chaves County, New Mexico. By: Garrett Wilson"

Transcription

1 Core Analysis of the Round Tank Queen Reservoir, Chaves County, New Mexico By: Garrett Wilson

2 1. Introduction 2. Apparatus 3. Procedure 4. Results and Calculations 1. Porosity 2. Permeability 3. Fluid Displacement 4. Relative Permeability 5. Discussion 1. Porosity vs. Permeability 2. Fines Migration 3. Thin Section Analysis 4. SEM Imaging 6. Conclusion Table Of Contents

3 Introduction This research was commissioned as one facet of a larger project entitled Mini-Waterflood: A New Cost Effective Approach to Extend the Economic Life of Small, Mature Oil Reservoirs. The part of the mini-waterflood project described by this research concerns experimental core studies aimed at gaining information as to the fluid movement and displacement within the Round Tank Queen formation. These core studies encompass flooding with oil from the Queen formation and brine from the San Andres formation located below the Queen. The information gained through this research will be used for reservoir characterization and as input data for reservoir simulation.

4 The Round Tank Queen The Round Tank Queen Associated Pool, located in Chaves County, New Mexico, was established in The discovery well was the JW State # 1, located in Unit K, Section 30, T15S- R29E. To date, nine wells have produced approximately barrels of oil, 4.2 BCF of gas and 788 barrels of water. A gas cap in the formation covers approximately four sections. Oil in the formation is largely devoid of gas. Gas composition is 61% nitrogen and 39% hydrocarbon gas with a BTU content of 513 BTU/ft 3. The initial reservoir pressure was 600 psi, but over time, reservoir pressure has dropped to 50 psi and the reservoir temperature to 75 F. (Stubbs)

5 Round Tank Queen Core Ft. The core that was flooded was located at a depth of 1492 to 1494 feet. Although the main pay zone is located three feet below at a depth of 1497 to 1501 feet, this section of the core can be characterized as friable and thus was either rubblized or washed away during acquisition of the core..

6 Round Tank Queen # 6-Y Log Gamma Ray Neutron Porosity

7 Core # Ft.

8 Core Ft. Anhydrite bands are The lighter colored rock. Anhydrite Fluorescing Blue under the black light.

9 The Core Flooding System Oil Pump Core System Volume = 2.6 ml Brine Pump Brine Filters Core Collection beaker accurate to 0.2 ml. 0 ml 100 ml

10 Viton Core Sleeve

11 Viscometer Oil (Seconds) x (Constant) x 0.86 (g/ml oil density) = cp Brine 106 (Seconds) x (Constant) x 1.12 (g/ml brine density) = 1.56 cp

12 Density Meter The densities of the San Andres brine and Queen oil were measured using an Anton Paar mpds 2000V3 density meter. Using a small syringe, the fluid being measured is injected into the meter, which then gives a τ value for that fluid. A and B can be solved for simultaneously by plugging in the known density of air, pure water and their corresponding τ values. Air density = g/ml Water Density = 1 g/ml τ air = τ water = τ brine = τ oil = A= B= x 10-7 ρ oil = 0.86 g/ml ρ Brine = 1.12 g/ml

13 Diamond Coring Bit

14 Core Flooding Procedure 1. Measure the core flooding system volume. The system volume is subtracted from the amount of fluid injected into the core plug for both the porosity and permeability measurements. Place the distribution plugs against each other and close the output valve. Vacuum the air out of the system and then inject fluid until the pump pressure remains constant and the flow rate stops. The difference between the beginning pump volume and the ending pump volume equals the system volume. 2. Place the core plug inside a core sleeve and insert into the core holder. 3. Flood the core plug with THF (Tetrahydrofuran) until the THF at the output is relatively clear. When the THF is clear, it can be assumed that negligible amounts of oil and brine remain in the pore space. For better cleaning, close the output valve and pressure up the entire core plug to ensure maximum THF saturation. Remove the core plug from the core holder and rotate 180 to clean the lower portion of the core plug where any brine may be trapped.

15 Core Flooding Procedure 4. Flood with nitrogen until THF is no longer detected at the output. 5. Close the output valve and vacuum the core plug to evacuate any remaining matter for 1 day. 6. Flood with brine to measure porosity, and to saturate the core plug. Measure the amount of brine that the core plug will accept at a constant pressure. 7. Let sit 1-2 days to age. 8. Determine the permeability with brine by observing the variation in flow rates at multiple constant pressure drops or by observing the variation in pressure drops at multiple flow rates.

16 Core Flooding Procedure 9. Flood with oil at a constant pressure until no brine is seen at the output. Measure the volumes of input/output oil and brine as well as the flow rates. During this process determine the oil to water unsteady-state relative permeabilities. 10. Let the plug sit 2-3 days to age. 11. Inject several pore volumes (PVs) of oil at the same pressure drop to see if more water is produced. Determine the effective permeability of oil at interstitial water saturation. 12. Flood with brine at a constant pressure drop until no oil is seen at the output. Measure the volumes of input/output oil and brine as well as the flow rates. 13. Inject brine at a higher or lower pressure drop to determine an increase of oil production, if any. Note: Steps were not conducted on Core #1 and Core #3 because of the decrease in permeability.

17 Porosity Calculations Core # ft ml injected into the core at 500 psi ml system volume = ml porous volume / core bulk volume of ml = % porosity

18 Porosity Calculations - Core # Ft ml injected into the core at 500 psi ml system volume = 10.8 ml porous volume / core bulk volume of 54.4 ml = 19.8% porosity

19 Porosity Calculations Core # Ft ml injected into the core at 500 psi ml system volume = 15.3 ml porous volume / core bulk volume of 86.8 ml = 17.6% porosity

20 Porosity Measurement Sources of Error Chips in the core Filled with epoxy Inadequate removal of insitu brine and oil THF was relatively clear Errors in the system volume measurements System volume measurements remained consistent. The porosity measured was probably accurate to within ± 10 %.

21 Permeability Calculations Using Darcy s Law Core # Ft. = 1.5 md Core # Ft. = 2.6 md Core # Ft. = 1.6 md

22 Permeability Measurement Sources of Error Fines Migration THF injection reduced the permeability by 30% over 48 hours Possible clay swelling Fluid movement between the inside of the core sleeve and the outside of the core Overburden pressure was kept at 3500 psi.

23 Volume Recovered vs. Volume Injected Misreading the output amounts for core #1 caused error in the measurement of that core s water injected vs. oil recovered data. For core #2, a full flooding schedule was able to be completed and so the data was acquired for oil injection at 150 and 500 psi dp, as well as water injection at 500 psi dp. Due to the loss of permeability in core #3, oil injection data was the only data gathered. A possible source of error is from flooding with oil and water multiple times, which reduced the permeability.

24 Oil Recovered vs. Brine Injected Core #2 0.7 Brine Produced vs. Oil Injected For Core # 2 at Ft Volume of Water Produced (PVs) Psi dp 150 Psi dp Interstitial water at 500 psi dp= 43% Interstitial water at 150 psi dp= 37% Volume of Oil Injected (PVs)

25 Brine Recovered vs. Oil Injected Core # Brine Injected vs. Oil Recovered at 500 psi dp Oil Produced (PVs) Brine Injected (PVs)

26 Johnson-Bossler-Nauman Calculations of Imbibition Relative Permeability for Core #2 1. Collect the data for cumulative brine injection (Wi), cumulative oil produced (Vo) in terms of core pore volumes, and the flow rate (Q) at each interval in terms of ml/sec. 2. Calculate Savg (average brine saturation in the core) by adding each interval of brine injected into the core to Swi (interstitial water saturation). For core #2, Swi is equal to 43% of the core volume.

27 3. Calculate Fo (fraction of oil in the produced fluid). Vop is equal to the volume of oil produced in that interval in PVs, and Vwp is equal to the volume of water produced in that interval in PVs. 4. Calculate S 2 (terminal water saturation).

28 5. Calculate the relative injectivity constant. k eo, in Darcy, is equal to the effective permeability of oil at interstitial water conditions, which is 1.17 for core #2. P was held constant at 34 atmospheres. μ o is equal to 13 cp. L and A are respectively equal to 3.8 cm and cm 2. Multiply this constant by Q at each interval to solve for 1/Ir. I r constant is equal to

29 6. Calculate 1/Wi for each interval. 7. Calculate 1/WiIr for each interval. 8. Graph 1/Wi vs. 1/WiIr as a log/log plot. Graph the points where Fo < 1. Use the power option for the trendline. Take the derivative of trendline equation with respect to 1/WiIr.

30 8. The slope equation 1/Wi vs. 1/WiIr R² = /WiIr 1.00 y = x /Wi

31 9. Calculate kro. 10.Calculate krw/kro. 11.Calculate krw.

32 Relative Permeability Curves 0.30 Imbibition Relative Permeability For Core #2 at 500 psi dp Relative Permeability kro krw Average Water Saturation (%)

33 Sources of Error in Relative Permeability Calculations Limitations involving the measurement equipment used during the procedures were thought to be the one the main facotrs for the errors in the relative permeability calculations. The beaker measuring the volume of oil and brine at the output side of the core was only accurate to 0.2 ml. This lead to difficulty in calculating the fraction of oil and water (Fo, Fw) produced from the core. Evidence of fine migration and clay swelling also renders the results questionable.

34 The Relationship Between Porosity and Permeability This graph shows the observed correlation between porosity and permeability for 610 sandstone samples. The permeability and porosity values for even core #2 plot well off of any of the trendlines shown by the graph. Permeability values started at unusually low levels and decreased as experimentation for each core continued.

35 Brine Permeability, Percent of Original 1 Reduction in Permeability Due to Fines Migration and/or Clay Swelling Fines Migration Direction of Flow Reversed Clay Swelling and/or Fines Migration 0 0 Brine Injected, Pore Volumes (Core Labs Inc.)

36 Fines Migration Permeability vs. Pore Volumes Injected at Constant 200 Psi dp Permeability of Brine (mds) Reversed Flow Reversed Flow Absolute permeability of brine increasing as brine saturation increases Water Injected (Pore Volumes) Reversed Flow

37 Thin Sections Analysis at 1492 Ft. Thin sections were made at 1 foot intervals from ft. and ft. Blue shows porosity. Yellow indicates Potassium Feldspar. The bright, multicolored areas are anhydrite. The field of view for this picture is 80 microns and the average grain size is estimated to be less than 10 microns. The amount of blue indicates fairly high porosity. The picture shows fine grained sandstone and as permeability is a function of grain size squared, this partially explains the low permeability exhibited by the rock.

38 Thin Section Showing Poikilotopic Anhydrite Cement at 1492 ft. Poikilotopic means one large crystal that engulfs many small grains. This image shows a good example of poikilotopic anyhydrite as the anhydrite seems to surround all of the sand grains and provide a colorful backdrop.

39 SEM Imaging Photographs were taken using either BSE imaging or SE imaging. This picture is a BSE image of Anhydrite at 1502 ft.

40 SE Image of Unflooded and Flooded Core #2 at 100 Microns Unflooded Flooded

41 SE Image of Unflooded and Flooded Core #2 at 50 Microns Unflooded Flooded

42 SE Image of Unflooded and Flooded Core at 20 Microns Unflooded Flooded

43 Conclusions 1. Despite the differences in the San Andres and Queen brines, the San Andres brine and the Queen rock seem to be compatible. 2. Fines migration and clay swelling is suspected to occur in the core and will rapidly reduce permeability during water flooding. 3. Anhydrite layering occurs to a lesser degree in the pay zone, but some anhydrite to gypsum transformation may still occur during water flooding of the pay zone. This will cause the anhydrite to swell which will reduce permeability.

44 Conclusions 4. When performing core analysis, measurement utensils with greater precision should be utilized. 5. Further work should be conducted on mitigating the transformation of anhydrite cement to gypsum cement as well as lessening the effects of fines migration and clay swelling.

45 Questions???

Influence of Clay Content on Surfactant- Polymer Flooding For an Egyptian Oil Field. Prof. Atef Abdelhady, British University in Egypt

Influence of Clay Content on Surfactant- Polymer Flooding For an Egyptian Oil Field. Prof. Atef Abdelhady, British University in Egypt Influence of Clay Content on Surfactant- Polymer Flooding For an Egyptian Oil Field Prof. Atef Abdelhady, British University in Egypt Presentation Outline Background. Surfactant- Polymer Flooding Overview

More information

For contact information, please visit our website:

For contact information, please visit our website: Weatherford s Integrated Laboratory Services (ILS) effectively combines the experience and expertise of leaders in the oil and gas service industry by integrating their considerable abilities under one

More information

HYSTERESIS EFFECTS IN CAPILLARY PRESSURE, RELATIVE PERMEABILITY AND RESISTIVITY INDEX OF NORTH SEA CHALK

HYSTERESIS EFFECTS IN CAPILLARY PRESSURE, RELATIVE PERMEABILITY AND RESISTIVITY INDEX OF NORTH SEA CHALK HYSTERESIS EFFECTS IN CAPILLARY PRESSURE, RELATIVE PERMEABILITY AND RESISTIVITY INDEX OF NORTH SEA CHALK M.T. Tweheyo, M.S. Talukdar and O. Torsæter Department of Petroleum Engineering and Applied Geophysics

More information

Moving from Secondary to Tertiary Recovery Stages. 9 TH ANNUAL WYOMING EORCO2 CONFERENCE JULY 14-16, 2015 Casper, WY By Jim Mack MTech Ventures LLC

Moving from Secondary to Tertiary Recovery Stages. 9 TH ANNUAL WYOMING EORCO2 CONFERENCE JULY 14-16, 2015 Casper, WY By Jim Mack MTech Ventures LLC Moving from Secondary to Tertiary Recovery Stages 9 TH ANNUAL WYOMING EORCO2 CONFERENCE JULY 14-16, 2015 Casper, WY By Jim Mack MTech Ventures LLC 1 Outline Reservoir Data Geologic Data Formation Data

More information

Minnelusa Core Analysis and Evaluation Project

Minnelusa Core Analysis and Evaluation Project Minnelusa Core Analysis and Evaluation Project Collaborative work of EORI with the Minnelusa Consortium and C&PE faculty members, Professors: Alvarado, Morrow and Piri Prepared for The EOR Commission and

More information

CO 2 -Brine Relative Permeability Characteristics of Low Permeable Sandstones in Svalbard

CO 2 -Brine Relative Permeability Characteristics of Low Permeable Sandstones in Svalbard SCA22-42 /6 CO 2 -Brine Relative Permeability Characteristics of Low Permeable Sandstones in Svalbard Raheleh Farokhpoor, Erik Lindeberg 2, Mai Britt E. Mørk, Ole Torsæter, NTNU, 2, SINTEF This paper was

More information

Chapter Two Reservoir Properties Porosity

Chapter Two Reservoir Properties Porosity Chapter Two Reservoir Properties Porosity The porosity of a rock is a measure of the storage capacity (pore volume) that is capable of holding fluids. Quantitatively, the porosity is the ratio of the pore

More information

Chapter 2. Reservoir Rock and Fluid Properties

Chapter 2. Reservoir Rock and Fluid Properties Chapter 2 Reservoir Rock and Fluid Properties Table of Contents Pages 1. Introduction... 3 2. Rock and Minerals... 3 3. Porosity... 4 3.1. Porosity Classification... 6 3.2. Range of porosity values for

More information

Fundamentals Of Petroleum Engineering ROCK AND FLUID PROPERTIES

Fundamentals Of Petroleum Engineering ROCK AND FLUID PROPERTIES Fundamentals Of Petroleum Engineering ROCK AND FLUID PROPERTIES Mohd Fauzi Hamid Wan Rosli Wan Sulaiman Department of Petroleum Engineering Faculty of Petroleum & Renewable Engineering Universiti Technologi

More information

Technical Feasibility of Solvent-Assisted Polymer Flooding to Improve Heavy Oil Recovery

Technical Feasibility of Solvent-Assisted Polymer Flooding to Improve Heavy Oil Recovery Technical Feasibility of Solvent-Assisted Polymer Flooding to Improve Heavy Oil Recovery Venous Vafaei, M.Sc. Student, Farshid Torabi, Ph.D., P. Eng. Fotini Labropulu, Ph.D. University of Regina, Canada

More information

Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method

Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method Reza Cheraghi Kootiani, and Ariffin Bin Samsuri International Science Index, Physical and Mathematical Sciences

More information

Oil Fields & Porosity of Sandstone Algebra: Manipulation and Factoring

Oil Fields & Porosity of Sandstone Algebra: Manipulation and Factoring GEOL 452 - Mathematical Tools in Geology Lab Assignment # 3 - Feb 4, 2010 (Due Feb 11) Name: Oil Fields & Porosity of Sandstone Algebra: Manipulation and Factoring A. Gas, Oil, and Water Recovery Look

More information

Reservoir Engineering

Reservoir Engineering Reservoir Engineering How much oil is in place? How much oil is recoverable? How can I maximize oil recovery? Under economic constraints Origin of Petroleum Where are the resources? Traps Dome trap Fault

More information

Chapter 5 HISTORY MATCHING OF THE J1 AND J2 SANDS AT BULLWINKLE, GREEN CANYON BLOCK 65, GULF OF MEXICO

Chapter 5 HISTORY MATCHING OF THE J1 AND J2 SANDS AT BULLWINKLE, GREEN CANYON BLOCK 65, GULF OF MEXICO 162 Chapter 5 HISTORY MATCHING OF THE J1 AND J2 SANDS AT BULLWINKLE, GREEN CANYON BLOCK 65, GULF OF MEXICO Reservoir simulation is a tool that gives insight into dynamic rock and fluid properties for evaluation

More information

Chemical Flood Design

Chemical Flood Design Chemical Flood Design V L A D I M I R A L V A R A D O C H E M I C A L A N D P E T R O L E U M E N G I N E E R I N G J A N U A R Y 2 0 1 2 Outline Project objective Fluid characterization Design challenge

More information

Relative permeability, hysteresis and I-S w measurements on a carbonate prospect

Relative permeability, hysteresis and I-S w measurements on a carbonate prospect Relative permeability, hysteresis and I-S w measurements on a carbonate prospect N. van der Post, S.K. Masalmeh, J.G.C. Coenen, K.H. van der Gijp and J.G. Maas Shell International Exploration and Production

More information

AN OVERVIEW OF THE LOW AND HIGH TEMPERATURE WATER-OIL RELATIVE PERMEABILITY FOR OIL SANDS FROM DIFFERENT FORMATIONS IN WESTERN CANADA

AN OVERVIEW OF THE LOW AND HIGH TEMPERATURE WATER-OIL RELATIVE PERMEABILITY FOR OIL SANDS FROM DIFFERENT FORMATIONS IN WESTERN CANADA SCA2014-066 1/6 AN OVERVIEW OF THE LOW AND HIGH TEMPERATURE WATER-OIL RELATIVE PERMEABILITY FOR OIL SANDS FROM DIFFERENT FORMATIONS IN WESTERN CANADA U. Romanova 1, M. Piwowar and T. Ma Weatherford Laboratories

More information

Erik Lindeberg and Per Bergmo. SINTEF Petroleum Research, NO-7465 Trondheim, Norway

Erik Lindeberg and Per Bergmo. SINTEF Petroleum Research, NO-7465 Trondheim, Norway THE LONG-TERM FATE OF CO 2 INJECTED INTO AN AQUIFER Erik Lindeberg and Per Bergmo SINTEF Petroleum Research, NO-7465 Trondheim, Norway ABSTRACT Assuming that an underground aquifer is capped by a capillary

More information

Fluid Flow in Porous Media

Fluid Flow in Porous Media Fluid Flow in Porous Media Petroleum Engineering 524 Fall 2010 Written by Thomas W. Engler, Ph.D., P.E. Professor of Petroleum Engineering New Mexico Tech Copyright 2010 Table of Contents Chapter 1 Introduction

More information

POLYMER FLOODING Dr. Helmy Sayyouh Petroleum Engineering Cairo University

POLYMER FLOODING Dr. Helmy Sayyouh Petroleum Engineering Cairo University POLYMER FLOODING Dr. Helmy Sayyouh Petroleum Engineering Cairo University 12/26/2017 1 You will learn 1. Polymer flood are ideally suited for reservoirs where normal waterfloods fail due to high heterogeneity

More information

Deriving Mineralogy and Reservoir Properties in the Oil Sands Using X-Ray Fluorescence (XRF)

Deriving Mineralogy and Reservoir Properties in the Oil Sands Using X-Ray Fluorescence (XRF) Deriving Mineralogy and Reservoir Properties in the Oil Sands Using X-Ray Fluorescence (XRF) Tom Weedmark, Ron Spencer, Justin Besplug and Heather Wright, XRF Solutions Ltd. Introduction XRF Solutions

More information

Gaps and Challenges for Light and Tight EOR

Gaps and Challenges for Light and Tight EOR Gaps and Challenges for Light and Tight EOR Williston Basin Petroleum Conference Regina, May 3, 2017 Presented by Kelvin (Kelly) D. Knorr, P. Eng. Operations Manager, Energy Division Saskatchewan Research

More information

PETROPHYSICS OF SHU AIBA RESERVOIR, SHAYBAH FIELD

PETROPHYSICS OF SHU AIBA RESERVOIR, SHAYBAH FIELD PETROPHYSICS OF SHU AIBA RESERVOIR, SHAYBAH FIELD ABSTRACT Taha M. Okasha, SPE, James J. Funk, SPE, and Yaslam S. Balobaid Saudi Aramco Lab Research and Development Center, Dhahran, Saudi Arabia Shaybah

More information

The ability of water to flow through a saturated soil is known as permeability.

The ability of water to flow through a saturated soil is known as permeability. SOIL MECHANICS LAB CECOS UNIVERSITY PESHAWAR 1 Permeability Tests: The ability of water to flow through a saturated soil is known as permeability. The ease with which the water flow through the soil is

More information

Performance Optimization of Water Alternating CO 2 Flooding in Tight Oil Formations

Performance Optimization of Water Alternating CO 2 Flooding in Tight Oil Formations Presenter s Name Paper Title & Session Date Chengyao Song and Daoyong (Tony) Yang Petroleum Systems Engineering University it of Regina Performance Optimization of Water Alternating CO 2 Flooding in Tight

More information

The study of local polymers on enhance oil recovery

The study of local polymers on enhance oil recovery Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2015, 7 (6):48-55 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 The study

More information

An experimental study of permeability determination in the lab

An experimental study of permeability determination in the lab Petroleum and Mineral Resources 221 An experimental study of permeability determination in the lab E. Lock, M. Ghasemi, M. Mostofi & V. Rasouli Department of Petroleum Engineering, Curtin University, Australia

More information

Chapter 2 Porosity (2.15)

Chapter 2 Porosity (2.15) 2.3 Measurement Porosity can be estimated through volumetric measurements of core samples, or from geophysical logs, which measure a property of the rock and infer porosity, or from Petrographic Image

More information

Coalbed Methane- Fundamental Concepts

Coalbed Methane- Fundamental Concepts Coalbed Methane- Fundamental Concepts By: K. Aminian Petroleum & Natural Gas Engineering Department West Virginia University Introduction This article is the first in a series of articles that will discuss

More information

CAN FIELD WIDE VARIATIONS IN WATER INJECTIVITY DURING WAG BE EXPLAINED BY DIFFERENCES IN ROCK TYPE? Jairam Kamath and Frank Nakagawa, ChevronTexaco

CAN FIELD WIDE VARIATIONS IN WATER INJECTIVITY DURING WAG BE EXPLAINED BY DIFFERENCES IN ROCK TYPE? Jairam Kamath and Frank Nakagawa, ChevronTexaco SCA2002-20 /2 CAN FIELD WIDE VARIATIONS IN WATER INJECTIVITY DURING WAG BE EXPLAINED BY DIFFERENCES IN ROCK TYPE? Jairam Kamath and Frank Nakagawa, ChevronTexaco ABSTRACT Some injectors in the McElroy

More information

Case Study of Polymer Flooding a Heavy Oil in the Tambaredjo Field, Suriname 2008 till now

Case Study of Polymer Flooding a Heavy Oil in the Tambaredjo Field, Suriname 2008 till now REGIONAL ASSOCIATION OF OIL, GAS & BIOFUELS SECTOR COMPANIES IN LATIN AMERICA AND THE CARIBBEAN Case Study of Polymer Flooding a Heavy Oil in the Tambaredjo Field, Suriname 2008 till now Kathleen Moe Soe

More information

TETIARY CARBON DIOXIDE FLOODING OF LOW PERMEABLE CHALK WITH IN-SITU SATURATION DETERMINATION USING X-RAY COMPUTED TOMOGRAPHY

TETIARY CARBON DIOXIDE FLOODING OF LOW PERMEABLE CHALK WITH IN-SITU SATURATION DETERMINATION USING X-RAY COMPUTED TOMOGRAPHY SCA2010-36 1/6 TETIARY CARBON DIOXIDE FLOODING OF LOW PERMEABLE CHALK WITH IN-SITU SATURATION DETERMINATION USING X-RAY COMPUTED TOMOGRAPHY Ben Niu, Wei Yan, Alexander A. Shapiro, Erling H. Stenby Center

More information

EXPERIMENTAL INVESTIGATION OF FACTORS AFFECTING LABORATORY MEASURED RELATIVE PERMEABILITY CURVES AND EOR

EXPERIMENTAL INVESTIGATION OF FACTORS AFFECTING LABORATORY MEASURED RELATIVE PERMEABILITY CURVES AND EOR SCA2017-052 1/10 EXPERIMENTAL INVESTIGATION OF FACTORS AFFECTING LABORATORY MEASURED RELATIVE PERMEABILITY CURVES AND EOR Sami M. Aboujafar Libyan Petroleum Institute, Tripoli - Libya This paper was prepared

More information

Exercise 14: Estimating HC Volumes

Exercise 14: Estimating HC Volumes Exercise 14: Estimating HC Volumes Objective Calculate a first-order estimate of the volume of oil that could be contained in the Alpha and Beta prospects using a simple reservoir volume formula and typical

More information

CONFINING PRESSURE EFFECTS ON MULTI-PHASE TRANSPORT IN A SHEAR-FRACTURED SANDSTONE

CONFINING PRESSURE EFFECTS ON MULTI-PHASE TRANSPORT IN A SHEAR-FRACTURED SANDSTONE SCA2008-21 1/12 CONFINING PRESSURE EFFECTS ON MULTI-PHASE TRANSPORT IN A SHEAR-FRACTURED SANDSTONE Sultan M. Al Enezi, Philip M. Halleck, and Abraham S. Grader Energy Institute, Department of Energy and

More information

Sand Control. Gravel packing is the oldest and simplest method of sand control. Works in both on and off shore wells.

Sand Control. Gravel packing is the oldest and simplest method of sand control. Works in both on and off shore wells. Sand Control Marine deposited sands, most oil and gas reservoir sands, are often cemented with calcareous or siliceous minerals and may be strongly consolidated. In contrast, Miocene or younger sands are

More information

Geological sequestration. or storage of CO 2

Geological sequestration. or storage of CO 2 Geological sequestration 10-100 mm or storage of CO 2 Porous matrix Berea sandstone Dmitriy Silin - UC Berkley, 2005 Fluids (oil, natural gas, CO 2 and/or water) are contained in tiny pore spaces in porous

More information

SPECIAL PETROPHYSICAL TOOLS: NMR AND IMAGE LOGS CORE

SPECIAL PETROPHYSICAL TOOLS: NMR AND IMAGE LOGS CORE SPECIAL PETROPHYSICAL TOOLS: NMR AND IMAGE LOGS CORE NMR Logging LEARNING OBJECTIVES By the end of this lesson, you will be able to: Understand the basic concepts of Nuclear Magnetic Resonance (NMR) logging

More information

Reservoir Surveillance Fundamentals Lab Work. Compliments of Intertek Westport Houston Laboratory

Reservoir Surveillance Fundamentals Lab Work. Compliments of Intertek Westport Houston Laboratory Reservoir Surveillance Fundamentals Lab Work Compliments of Intertek Westport Houston Laboratory Lab Work for PEs and Background to ARE Course Lab Work Geochemistry Phase Behavior Miscibility/Immiscibility

More information

This is Reservoir Engineering COPYRIGHT. By the end of this lesson, you will be able to:

This is Reservoir Engineering COPYRIGHT. By the end of this lesson, you will be able to: Learning Objectives This is Reservoir Engineering By the end of this lesson, you will be able to: Describe what reservoir engineers do, and why they do it Describe the general layout and structure of this

More information

Applicability of Gravity-Stable CO2 Injection in Mature Tensleep Reservoirs with Large TZ/ROZs

Applicability of Gravity-Stable CO2 Injection in Mature Tensleep Reservoirs with Large TZ/ROZs Applicability of Gravity-Stable CO2 Injection in Mature Tensleep Reservoirs with Large TZ/ROZs Prepared for the EORI Joint EOR Commission & Technical Advisory Board Meeting Shaochang Wo and Peigui Yin

More information

DISPLACEMENT OF OIL BY SURFACTANT FLOODING IN MIXED-WET CONDITION

DISPLACEMENT OF OIL BY SURFACTANT FLOODING IN MIXED-WET CONDITION SCA2012-23 1/12 DISPLACEMENT OF OIL BY SURFACTANT FLOODING IN MIXED-WET CONDITION Kumuduni Prasangika Abeysinghe, Ingebret Fjelde and Arild Lohne International Research Institute Stavanger, Norway This

More information

Global Climate & Energy Project

Global Climate & Energy Project The Energy Seminar Stanford University April 9, 2008 Stanford University Global Climate & Energy Project CO 2 Sequestration: What have we found? What should future priorities be? Tony Kovscek Energy Resources

More information

INCORPORATING CORE ANALYSIS DATA UNCERTAINTY IN ASSEST VALUE ASSESSMENT. Andre J. Bouchard and Matthew J. Fox Conoco Inc.

INCORPORATING CORE ANALYSIS DATA UNCERTAINTY IN ASSEST VALUE ASSESSMENT. Andre J. Bouchard and Matthew J. Fox Conoco Inc. INCORPORATING CORE ANALYSIS DATA UNCERTAINTY IN ASSEST VALUE ASSESSMENT Andre J. Bouchard and Matthew J. Fox Conoco Inc. ABSTRACT This paper describes how uncertainty in core analysis parameters are integrated

More information

Prediction of Water Production in CBM wells

Prediction of Water Production in CBM wells CHAPTER 7 Prediction of Water Production in CBM wells 7.1 Introduction Coal is a complex heterogeneous system with methane gas remaining adsorbed on coal surface by lithostatic and hydrostatic pressure

More information

Timber Creek Field Study for Improving Waterflooding

Timber Creek Field Study for Improving Waterflooding The 2 nd Minnelusa Workshop of EORI Timber Creek Field Study for Improving Waterflooding Shaochang Wo Gillette, Wyoming June 4, 2014 Project Summary and Timeline A collaborative study between EORI and

More information

USING A DENSITOMETER FOR QUANTITATIVE DETERMINATIONS OF FLUID DENSITY AND FLUID VOLUME IN CORE FLOODING EXPERIMENTS AT RESERVOIR CONDITIONS

USING A DENSITOMETER FOR QUANTITATIVE DETERMINATIONS OF FLUID DENSITY AND FLUID VOLUME IN CORE FLOODING EXPERIMENTS AT RESERVOIR CONDITIONS SCA2017-039 1/10 USING A DENSITOMETER FOR QUANTITATIVE DETERMINATIONS OF FLUID DENSITY AND FLUID VOLUME IN CORE FLOODING EXPERIMENTS AT RESERVOIR CONDITIONS Dan Olsen GEUS, Denmark This paper was prepared

More information

Analytical Gas-Oil Relative Permeability Interpretation Method for Immiscible Flooding Experiments under Constant Differential Pressure Conditions

Analytical Gas-Oil Relative Permeability Interpretation Method for Immiscible Flooding Experiments under Constant Differential Pressure Conditions SCA2016-034 1/6 Analytical Gas-Oil Relative Permeability Interpretation Method for Immiscible Flooding Experiments under Constant Differential Pressure Conditions Hashem Nekouie, Jie Cao, L.A. James, T.E.

More information

EFFECTS OF WETTABILITY AND INTERFACIAL TENSION ON THE DISTRIBUTION OF RESIDUAL OIL ON THE PORE SCALE AFTER WATER FLOODING

EFFECTS OF WETTABILITY AND INTERFACIAL TENSION ON THE DISTRIBUTION OF RESIDUAL OIL ON THE PORE SCALE AFTER WATER FLOODING SCA2014-053 1/6 EFFECTS OF WETTABILITY AND INTERFACIAL TENSION ON THE DISTRIBUTION OF RESIDUAL OIL ON THE PORE SCALE AFTER WATER FLOODING T. Ramstad 1,2, T. Varslot 2, R. Meland 2 and O. J. Arntzen 1 1

More information

Evaluation and prevention of formation damage in offshore sandstone reservoirs in China

Evaluation and prevention of formation damage in offshore sandstone reservoirs in China Pet.Sci.():- DOI./s--- Evaluation and prevention of formation damage in offshore sandstone reservoirs in China Yang Shenglai, Sheng Zhichao, Liu Wenhui, Song Zhixue, Wu Ming and Zhang Jianwei Key Laboratory

More information

MB for Oil Reservoirs

MB for Oil Reservoirs Koya University Faculty of Engineering Petroleum Engineering Department MB for Oil Reservoirs Lecture 8 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Reservoir Engineering Tasks Be

More information

Adjustment to Oil Saturation Estimate Due to Various Reservoir Drive Mechanisms

Adjustment to Oil Saturation Estimate Due to Various Reservoir Drive Mechanisms Cloud Publications International Journal of Advanced Petroleum Engineering and Technology 2014, Volume 1, Issue 1, pp. 17-26, Tech-316 Research Article Open Access Adjustment to Oil Saturation Estimate

More information

Improved Waterfloods: From Laboratory to Field

Improved Waterfloods: From Laboratory to Field Improved Waterfloods: From Laboratory to Field Norman Morrow Chemical & Petroleum Engineering University of Wyoming Enhanced Oil Recovery Institute 3 rd Annual Wyoming IOR/EOR Conference Jackson, WY September

More information

Porosity and permeability for the Berea sandstone exhibiting large interfacial tensions Lab 3 and lab 4 by Group 38

Porosity and permeability for the Berea sandstone exhibiting large interfacial tensions Lab 3 and lab 4 by Group 38 Porosity and permeability for the Berea sandstone exhibiting large interfacial tensions Lab 3 and lab 4 by Group 38 Losoi, Henri Henri( a )Losoi.com Sigvathsen, Christoffer Sigvaths( a )Stud.NTNU.No March

More information

A CASE STUDY OF SATURATION EXPONENT MEASUREMENT ON SOME CARBONATE CORES AT FULL RESERVOIR CONDITIONS

A CASE STUDY OF SATURATION EXPONENT MEASUREMENT ON SOME CARBONATE CORES AT FULL RESERVOIR CONDITIONS SCA2011-42 1/6 A CASE STUDY OF SATURATION EXPONENT MEASUREMENT ON SOME CARBONATE CORES AT FULL RESERVOIR CONDITIONS Hamid Sharifi Galiuk 1, Kazem Saadat 2 and Ezatollah Kazemzadeh 3 1, 2 and 3 Research

More information

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir:

More information

CORE ANALYSIS REPORT Conventional Core. Vecta Oil & Gas, Ltd.

CORE ANALYSIS REPORT Conventional Core. Vecta Oil & Gas, Ltd. CORE ANALYSIS REPORT Conventional Core FINAL REPORT Performed for: 575 Union Blvd., Suite 208 Lakewood, Colorado 80228 Report issued: February 9, 2010 Performed by: Weatherford Laboratories 16161 Table

More information

Geological CO 2 storage: how is CO 2 trapped?

Geological CO 2 storage: how is CO 2 trapped? Geological CO 2 storage: how is CO 2 trapped? Martin Blunt Department of Earth Science and Engineering Imperial College London Carbon capture and storage How much can be stored? 920 Gt 45% of emissions

More information

Hydrate Formation and Gas Production from Hydrates by CO 2 Injection

Hydrate Formation and Gas Production from Hydrates by CO 2 Injection U N I V E R S I T Y O F B E R G E N Institute of Physics and Technology Hydrate Formation and Gas Production from Hydrates by CO 2 Injection By Lars Petter Øren Hauge Natural gas hydrate Crystalized structure

More information

The Use of Advanced Downhole Geophysical Tools for Detailed Aquifer Characterization. By Shawky, I., Labaky, W. and Delhomme, J.P.

The Use of Advanced Downhole Geophysical Tools for Detailed Aquifer Characterization. By Shawky, I., Labaky, W. and Delhomme, J.P. The Use of Advanced Downhole Geophysical Tools for Detailed Aquifer Characterization Abstract By Shawky, I., Labaky, W. and Delhomme, J.P. Aquifer storage and recovery (ASR), passive groundwater remediation

More information

at low concentrations

at low concentrations This power point presentation is intended to address the issues of ion exchange transformation of brines, and what it means regarding brine selection. The proper selection of brines for matrix and stimulation

More information

Evaluation of Intelligent Dual-Lateral Well in Multi-Layered Reservoirs

Evaluation of Intelligent Dual-Lateral Well in Multi-Layered Reservoirs Paper ID 56 Evaluation of Intelligent Dual-Lateral Well in Multi-Layered Reservoirs R.Charoengosan 1 *, F. Srisuriyachai 1, S. Athichanagorn 1 1 Department of Mining and Petroleum Engineering, Chulalongkorn

More information

RESERVOIR CONDITION EXPERIMENTAL STUDY TO INVESTIGATE MICROBIAL ENHANCED OIL RECOVERY (MEOR) IN THE DEEP RESERVOIR ENVIRONMENT

RESERVOIR CONDITION EXPERIMENTAL STUDY TO INVESTIGATE MICROBIAL ENHANCED OIL RECOVERY (MEOR) IN THE DEEP RESERVOIR ENVIRONMENT SCA2011-17 1/12 RESERVOIR CONDITION EXPERIMENTAL STUDY TO INVESTIGATE MICROBIAL ENHANCED OIL RECOVERY (MEOR) IN THE DEEP RESERVOIR ENVIRONMENT Andrew Davies, Dave Thrasher, Dave Puckett BP This paper was

More information

Oil and Natural Gas Natural oil seeps Underwater Oil Seeps (natural) Distribution of sedimentary basins showing location of major oil and natural gas fields (reserves shown for oil in Billions of

More information

Reducing Mechanical Formation Damage by Minimizing Interfacial Tension and Capillary Pressure in Tight Gas

Reducing Mechanical Formation Damage by Minimizing Interfacial Tension and Capillary Pressure in Tight Gas IOP Conference Series: Materials Science and Engineering OPEN ACCESS Reducing Mechanical Formation Damage by Minimizing Interfacial Tension and Capillary Pressure in Tight Gas To cite this article: Arshad

More information

Latest Developments at the EERC and CO 2 Enhanced Oil Recovery (EOR) in Bakken Shale

Latest Developments at the EERC and CO 2 Enhanced Oil Recovery (EOR) in Bakken Shale Latest Developments at the EERC and CO 2 Enhanced Oil Recovery (EOR) in Bakken Shale 12th Annual EOR Carbon Management Workshop, Session I Midland, Texas December 9, 2014 John Harju Associate Director

More information

EVALUATE HORIZONTAL WELL PRODUCTION PERFORMANCE IN HEAVY OIL RESERVOIRS

EVALUATE HORIZONTAL WELL PRODUCTION PERFORMANCE IN HEAVY OIL RESERVOIRS EVALUATE HORIZONTAL WELL PRODUCTION PERFORMANCE IN HEAVY OIL RESERVOIRS Hisham Kh. Ben Mahmud 1, Ian H. Sheng 2 and Mian U. Shafiq 1 1 Department of Petroleum Engineering, Curtin University, Sarawak, Malaysia

More information

CE 240 Soil Mechanics & Foundations Lecture 4.3. Permeability I (Das, Ch. 6)

CE 240 Soil Mechanics & Foundations Lecture 4.3. Permeability I (Das, Ch. 6) CE 240 Soil Mechanics & Foundations Lecture 4.3 Permeability I (Das, Ch. 6) Outline of this Lecture 1. Permeability in Soils 2. Bernoulli s Equation 3. Darcy s Law 4. Hydraulic Conductivity 5. Hydraulic

More information

Permeability, Flow Rate, and Hydraulic Conductivity Determination for Variant Pressures and Grain Size Distributions

Permeability, Flow Rate, and Hydraulic Conductivity Determination for Variant Pressures and Grain Size Distributions Permeability, Flow Rate, and Hydraulic Conductivity Determination for Variant Pressures and Grain Size Distributions Nick Desiderio, npd5050@psu.edu, February 18, 2014 Abstract Carbon capture and storage

More information

Quick and Simple Porosity Measurement at the Well Site Abstract Introduction

Quick and Simple Porosity Measurement at the Well Site Abstract Introduction SCA2017-013 1/10 Quick and Simple Porosity Measurement at the Well Site M.J. Dick 1, D. Green 1, T. Kenney 1, D. Veselinovic 1, J. Tallarita 2, and M.A. Smith 2 1 Green Imaging Technologies, Fredericton,

More information

INVESTIGATION OF CO- AND COUNTER CURRENT FLOW BEHAVIOR IN CARBONATE ROCK CORES

INVESTIGATION OF CO- AND COUNTER CURRENT FLOW BEHAVIOR IN CARBONATE ROCK CORES SCA2017-061 1/8 INVESTIGATION OF CO- AND COUNTER CURRENT FLOW BEHAVIOR IN CARBONATE ROCK CORES Pouyan Ahmadi 1, Masoud Riazi 1, Mohammad Reza Malayeri 1 1 EOR Research Center, School of Chemical and Petroleum

More information

P-163. Rajesh Kumar, ONGC. Summary. Introduction. 417, Vasudhara Bhavan, MH Asset, ONGC, Bandra(E), Mumbai

P-163. Rajesh Kumar, ONGC. Summary. Introduction. 417, Vasudhara Bhavan, MH Asset, ONGC, Bandra(E), Mumbai P-163 Summary Rajesh Kumar, ONGC In oil industry throughout the world, the prime objective is to improve recovery of oil from known reservoirs using different techniques. Water injection is one such technique,

More information

Characterization and Modeling to Examine the Potential for CO 2 Storage and Enhanced Oil Recovery in the Bakken Petroleum System

Characterization and Modeling to Examine the Potential for CO 2 Storage and Enhanced Oil Recovery in the Bakken Petroleum System Characterization and Modeling to Examine the Potential for CO 2 Storage and Enhanced Oil Recovery in the Bakken Petroleum System Williston Basin Petroleum Conference Regina, Saskatchewan April 29, 2015

More information

NEW METHOD TO PREPARE OUTCROP CHALK CORES FOR WETTABILITY AND OIL RECOVERY STUDIES AT LOW INITIAL WATER SATURATION

NEW METHOD TO PREPARE OUTCROP CHALK CORES FOR WETTABILITY AND OIL RECOVERY STUDIES AT LOW INITIAL WATER SATURATION SCA2007-37 1/12 NEW METHOD TO PREPARE OUTCROP CHALK CORES FOR WETTABILITY AND OIL RECOVERY STUDIES AT LOW INITIAL WATER SATURATION Tina Puntervold, Skule Strand and Tor Austad University of Stavanger,

More information

Feasibility of Gas Drive in Fang-48 Fault Block Oil Reservoir

Feasibility of Gas Drive in Fang-48 Fault Block Oil Reservoir 2007 Petroleum Science Vol.4 No.3 Feasibility of Gas Drive in Fang-48 Fault Block Oil Reservoir Cui Lining 1, 2, Hou Jirui 1, 2 and Yin Xiangwen 1, 2 (1. Key Laboratory of Petroleum Engineering under Ministry

More information

Recent Advances in the Analytical Methods Used for Shale Gas Reservoir Gas-in-Place Assessment*

Recent Advances in the Analytical Methods Used for Shale Gas Reservoir Gas-in-Place Assessment* Recent Advances in the Analytical Methods Used for Shale Gas Reservoir Gas-in-Place Assessment* By Robert C. Hartman 1, Pat Lasswell 2, and Nimesh Bhatta 1 Search and Discovery Article #40317 (2008) Posted

More information

LNAPL Volume and Mobility Estimation to Assess When to Stop Active Recovery. by Louis Sabourin, P.Eng. and David Tarnocai, P.Geo.

LNAPL Volume and Mobility Estimation to Assess When to Stop Active Recovery. by Louis Sabourin, P.Eng. and David Tarnocai, P.Geo. LNAPL Volume and Mobility Estimation to Assess When to Stop Active Recovery by Louis Sabourin, P.Eng. and David Tarnocai, P.Geo. Presentation Outline Introduction, Issue and Importance LNAPL Migration

More information

CORE ANALYSIS AS A KEY TO UNDERSTANDING FORMATION DAMAGE AFTER HYDRAULIC FRACTURING TREATMENT

CORE ANALYSIS AS A KEY TO UNDERSTANDING FORMATION DAMAGE AFTER HYDRAULIC FRACTURING TREATMENT SCA2016-062 1/6 CORE ANALYSIS AS A KEY TO UNDERSTANDING FORMATION DAMAGE AFTER HYDRAULIC FRACTURING TREATMENT Wilk, K. 1, Kasza, P. 1, Labus, K. 2 1 Oil and Gas Institute National Research Institute, Poland,

More information

MECHANISMS OF WATER IMBIBITION IN CARBONATE-RICH UNCONVENTIONAL RESERVOIRS

MECHANISMS OF WATER IMBIBITION IN CARBONATE-RICH UNCONVENTIONAL RESERVOIRS SCA2017-027 1/9 MECHANISMS OF WATER IMBIBITION IN CARBONATE-RICH UNCONVENTIONAL RESERVOIRS Robert L. Krumm and James J. Howard Premier Oilfield Laboratory This paper was prepared for presentation at the

More information

Viscosity Standards for High-Pressure, High- Temperature, and High- Viscosity Conditions. Kurt Schmidt Houston, Texas, USA January 22, 2010

Viscosity Standards for High-Pressure, High- Temperature, and High- Viscosity Conditions. Kurt Schmidt Houston, Texas, USA January 22, 2010 Viscosity Standards for High-Pressure, High- Temperature, and High- Viscosity Conditions Kurt Schmidt Houston, Texas, USA January 22, 2010 Viscosity in Reservoir Applications Ultradeep GOM (Gulf of Mexico)

More information

CIV E Geotechnical Engineering I Consolidation

CIV E Geotechnical Engineering I Consolidation Purpose Determine the magnitude and time rate of settlement for a compressible cohesive soil. Required reading Das 2006 Sections 10.4 to 10.16 (pages 312 to 358). Theory Bringing soil samples into the

More information

Historic IOR/EOR practices in the Minnelusa

Historic IOR/EOR practices in the Minnelusa Historic IOR/EOR practices in the Minnelusa Jim Mack & Mike Lantz EORI Minnelusa Workshop Gillette, WY, May 6-7, 2013 Outline Introduction: Why EOR in the Minnelusa? Historical Development of Minnelusa

More information

Improvement of Fracturing for Gas Shales

Improvement of Fracturing for Gas Shales Improvement of Fracturing for Gas Shales RPSEA Subcontract Number: 07122-38 Topical Progress Report Students: Abhishek Gaurav & Ming Gu Principal Investigator: Dr. Kishore Mohanty Department of Petroleum

More information

PORE STRUCTURE OF VUGGY CARBONATES AND RATE DEPENDENT DISPLACEMENT IN CARBONATE ROCKS

PORE STRUCTURE OF VUGGY CARBONATES AND RATE DEPENDENT DISPLACEMENT IN CARBONATE ROCKS SCA2011-21 1/12 PORE STRUCTURE OF VUGGY CARBONATES AND RATE DEPENDENT DISPLACEMENT IN CARBONATE ROCKS Neeraj Rohilla, Dr. George J. Hirasaki Dept. of Chemical and Biomolecular Engineering, Rice University,

More information

IMPERIAL COLLEGE, LONDON

IMPERIAL COLLEGE, LONDON IMPERIAL COLLEGE, LONDON Department of Earth Science and Engineering Centre for Petroleum Studies CAPILLARY TRAPPING IN CARBONATE CORES AGED IN ORGANIC ACIDS By NCHEDONNA AJULU A report submitted in partial

More information

NOTE: BIDDERS MUST BID ON ALL ITEMS IN ORDER TO BE RESPONSIVE. ITEM QTY DESCRIPTION UNIT OF UNIT PRICE TOTAL GAMMA LOG PER FOOT $

NOTE: BIDDERS MUST BID ON ALL ITEMS IN ORDER TO BE RESPONSIVE. ITEM QTY DESCRIPTION UNIT OF UNIT PRICE TOTAL GAMMA LOG PER FOOT $ AMENDMENT 2, ATTACHMENT 1, TO ITB 160000078 IV. REVISED BID SCHEDULE. NOTE: BIDDERS MUST BID ON ALL ITEMS IN ORDER TO BE RESPONSIVE. ITEM QTY DESCRIPTION UNIT OF UNIT PRICE 1. 500 TOTAL GAMMA LOG FOOT

More information

Gas-water steady-state relative permeability determination with two approaches; experimental and digital rock analysis, strengths and weaknesses

Gas-water steady-state relative permeability determination with two approaches; experimental and digital rock analysis, strengths and weaknesses SCA2016-012 1/12 Gas-water steady-state relative permeability determination with two approaches; experimental and digital rock analysis, strengths and weaknesses R. Farokhpoor 1, E. Westphal 1, N. Idowu

More information

A Comparison Study between the Newly Developed Vertical Wells Steam Assisted Gravity Drainage and the Conventional SAGD Process

A Comparison Study between the Newly Developed Vertical Wells Steam Assisted Gravity Drainage and the Conventional SAGD Process Engineering, 217, 9, 575-59 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 A Comparison Study between the Newly Developed Vertical Wells Steam Assisted Gravity Drainage and

More information

Well Stimulation and Sand Production Management (PGE 489 ) Sandstone Acidizing. By Dr. Mohammed A. Khamis

Well Stimulation and Sand Production Management (PGE 489 ) Sandstone Acidizing. By Dr. Mohammed A. Khamis Well Stimulation and Sand Production Management (PGE 489 ) Sandstone Acidizing By Dr. Mohammed A. Khamis 23-02-2016 Sandstones Acidizing The goal of sandstone matrix acidizing is to remove siliceous particles

More information

CESSFORD, ALBERTA ASSET DISPOSITION CESSFORD, ALBERTA

CESSFORD, ALBERTA ASSET DISPOSITION CESSFORD, ALBERTA CESSFORD, LERT SSET DISPOSITION CESSFORD, LERT INTRODUCTION Convega Energy Ltd. wishes to sell % operated working interest in its Cessford property. Cessford is located approximately km east of Calgary,

More information

CO 2 Foam for Enhanced Oil Recovery and CO 2 Storage

CO 2 Foam for Enhanced Oil Recovery and CO 2 Storage Department of Physics and Technology CO 2 Foam for Enhanced Oil Recovery and CO 2 Storage Field Pilots in Texas Zachary Paul Alcorn, Sunniva B. Fredriksen, Mohan Sharma, Tore Føyen, Michael Jian, and Arthur

More information

A PETROPHYSCIAL MODEL TO ESTIMATE FREE GAS IN ORGANIC SHALES

A PETROPHYSCIAL MODEL TO ESTIMATE FREE GAS IN ORGANIC SHALES A PETROPHYSCIAL MODEL TO ESTIMATE FREE GAS IN ORGANIC ALES Michael Holmes, Digital Formation, Inc. Dominic Holmes, Digital Formation, Inc. Antony Holmes, Digital Formation, Inc. Copyright 2011, held by

More information

ACIDIZING DOLOMITE RESERVOIRS USING HCL ACID PREPARED WITH SEAWATER: PROBLEMS AND SOLUTIONS. A Thesis DENNIS GEORGE ARENSMAN

ACIDIZING DOLOMITE RESERVOIRS USING HCL ACID PREPARED WITH SEAWATER: PROBLEMS AND SOLUTIONS. A Thesis DENNIS GEORGE ARENSMAN ACIDIZING DOLOMITE RESERVOIRS USING HCL ACID PREPARED WITH SEAWATER: PROBLEMS AND SOLUTIONS A Thesis by DENNIS GEORGE ARENSMAN Submitted to the Office of Graduate and Professional Studies of Texas A&M

More information

Q: Do you attribute the conductivity difference to the proppant size variability of the West Texas sand?

Q: Do you attribute the conductivity difference to the proppant size variability of the West Texas sand? World Oil ShaleTech Hydraulic Fracturing Forum: Fall 2018 FAQ: "The Value Proposition of Regional Sand vs. Northern White Sand" Lia Sedillos, Vice President Technical Sales, Covia Q: Did you ramp straight

More information

Perforating Carbonates

Perforating Carbonates Perforating Carbonates Andy Martin & Alan Salsman Perforating Carbonates Carbonate Completion Sandstones vs Carbonates Case Studies (depending on time!) 3 December 2013, 2 Carbonates Completion 3 December

More information

Figure (12.1) Foundation Grouting

Figure (12.1) Foundation Grouting Chapter 12 - Foundation Grouting 12. Foundation Grouting 12.1. Introduction: The construction of structures on weak ground often requires the soil to be improved in order to ensure the safety and the stability

More information

Soil Particle Density Protocol

Soil Particle Density Protocol Soil Particle Density Protocol Purpose To measure the soil particle density of each horizon in a soil profile Overview Students weigh a sample of dry, sieved soil from a horizon, mix it with distilled

More information

MEASUREMENTS OF REMAINING OIL SATURATION IN MIXED-WET CARBONATES

MEASUREMENTS OF REMAINING OIL SATURATION IN MIXED-WET CARBONATES SCA2013-050 1/6 MEASUREMENTS OF REMAINING OIL SATURATION IN MIXED-WET CARBONATES Nayef Al-Ansi and Martin J. Blunt, Imperial College London This paper was prepared for presentation at the International

More information

Complex Construction vs. Simple Deconstruction: Alternative Workflows and the Role of Ultimate Truth Models

Complex Construction vs. Simple Deconstruction: Alternative Workflows and the Role of Ultimate Truth Models Complex Construction vs. Simple Deconstruction: Alternative Workflows and the Role of Ultimate Truth Models Mark Bentley, Ed Stephens AGR TRACS Tom Buckle, Rhona Hutton Heriot-Watt Swanlake bay, Pembrokeshire

More information

Jerzy M. Rajtar* SHALE GAS HOW IS IT DEVELOPED?

Jerzy M. Rajtar* SHALE GAS HOW IS IT DEVELOPED? WIERTNICTWO NAFTA GAZ TOM 27 ZESZYT 1 2 2010 Jerzy M. Rajtar* SHALE GAS HOW IS IT DEVELOPED? 1. INTRODUCTION XTO Energy, Inc. has been engaged in development of major gas shale plays in the continental

More information