A COMPARISON OF PASSIVE SOLAR AND MECHANICALLY DRIVEN EARTH-TO-AIR HEAT EXCHANGERS FOR COOLING BUILDINGS

Size: px
Start display at page:

Download "A COMPARISON OF PASSIVE SOLAR AND MECHANICALLY DRIVEN EARTH-TO-AIR HEAT EXCHANGERS FOR COOLING BUILDINGS"

Transcription

1 A COMPARISON OF PASSIVE SOLAR AND MECHANICALLY DRIVEN EARTH-TO-AIR HEAT EXCHANGERS FOR COOLING BUILDINGS Michel Shafik Building System Solutions Inc Pine St C-11 Omaha, NE James Devaney Department Computer & Electronics Engineering University of Nebraska Lincoln - Omaha Campus 1110 South 67th Street Omaha, NE jdevaney2@unl.edu Dr. Bing Chen Department Computer & Electronics Engineering University of Nebraska Lincoln - Omaha Campus 1110 South 67th Street Omaha, NE bchen1@unl.edu ABSTRACT The research presented compares a fully passive solar driven geothermal air-conditioning strategy to an active forced air driven geothermal air-conditioning system; in either case ambient air propagates tough the Earth-to-Air Heat Exchanger (EAHE) for the purpose of chilling our Solar Energy Research Testing Facility (SERTF) building, located in Bennington Nebraska. The all passive system employs two techniques namely EAHE and solar chimney. This full scale demonstration is then used to evaluate the performance of the coupled system (i.e. EAHE coupled with solar chimney) for the two cases, first: passive solar driven air flow, second: mechanically driven forced air flow, 24 hours per day. The system performance is evaluated tough assessing the maximum air flow rate (CFM) and cooling (in /, kwatts, and tons) that the system can provide to the building during hot summer time for each case study. Total Cooling Capacity of the system under these two scenarios have been calculated using standardized equations which account for latent and sensible cooling achieved. The experimental results are then compared to building cooling load coefficients generated with a simulation using the TRACE 700 software package. Thermal environmental comfort conditions for human occupancy are also evaluated using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standard INTRODUCTION The main objective of the current research is to study and compare the passive solar driven system to a mechanically driven forced air system for a feasibility and efficiency analysis. Thermal environmental conditions for human occupancy are evaluated using ASHRAE standard All in pursuit of developing an optimal perforg full scale demonstration of an all passive cooling and ventilation system coupled at the SERTF at the University of Nebraska [1]. 1.1 Cooling a Building with an EAHE The EAHE is simply a culvert pipe buried at a certain depth underground [2] in which hot ambient summer air is drawn tough one end of the pipe (inlet) and migrates to the other end (outlet) which is connected to the building to be cooled. While the hot air migrates from the inlet side to the outlet side of the EAHE, heat is dissipated from the air to the earth due to the low earth temperature [3] and thermal conductivity of the loess clay soil. Previous research conducted at the SERTF only considered the sensible heat transfer of air to the soil without taking into account the latent heat transfer [4]. Many researchers have studied the EAHE from different points of view, some focused on developing 1

2 mathematical models to predict the performance on an EAHE, and others conducted different types of experiments to evaluate the heating/cooling potential of an EAHE, as well as understanding the main parameters that affects its design [5, 6]. Hollmuller has modeled the inlet air temperature (i.e. ambient temperature) to the EAHE as a harmonic periodic sinusoidal input [7]. He has also developed a tee diesonal heat transfer model which account for sensible and latent heat exchanges [8, 9]. 1.2 Moving Air with a Solar Chimney The solar chimney is a vertical or inclined air channel; the bottom end is connected to the building for cooling and ventilation. This air channel generates air movement by buoyancy forces and stack ventilation, drawing cooler air tough the building in a continuous cycle in which hot air rises and exits from the top of the chimney [10]. In other words, a solar chimney is a natural draft device which utilizes energy produced by solar radiation to build up stack pressure, consequently, driving airflow tough the chimney [11]. Nugroho realized the the solar chimney problem involves both fluid movement as well as heat transfer, it was found that the computational fluid dynamics (CFD) is a good tool to describe the system numerically [12]. Thermal performance of the solar chimney is greatly impacted by the chimney gap (width). In an experimental study on a solar chimney of 6.6 ft (2 m) height and variable gap width ranging 3.9 inches - 3 ft (0.1-1 m), it was found that when the chimney gap is small 7.9 inches (0.2 m) the flow is upward. However, when the gap is large 1.6 ft (0.5 m), air flows upwards near the heated walls due to the buoyancy effect but near the center of the chimney air flows downwards. In other words, the mass flow rate inside the chimney increases as the chimney gap increase to a certain level (about one-tenth of the chimney height) then decreases as the gap further increases [13]. This phenomenon was also observed in a numerical study showing that there is an optimum chimney width at which a maximum ventilation flow rate can be achieved. This phenomenon was attributed to the occurrence of back flow at the outlet of the chimney [14]. 1.3 Coupled system (EAHE & Solar Chimney) These two techniques are further investigated in this research to study the capability of developing an environmentally friendly and energy saving system that could provide cooling for residential buildings during hot summer days to reduce the current summer electrical peak loads experienced the Midwestern portion of the United States. The most current research presented involves estimating the cooling load of the SERTF with a software simulation. The results of this simulation are used in a parametric comfort zone analysis based on monitoring system installed at the site. Introducing mechanically driven forced air increases the performance of the EAHE by forcing air tough; this pushes the limits of the previously researched passive air system and reveals the limitations of the demonstration. The system is monitored under various scenarios over the course of four cooling seasons. A sensor array containing 81 Thermocouples, 20 Moisture Sensors, four Humidity Sensors, tee air flow meters, and two Pyranometers logs data every 15 utes. An analysis of two scenarios: Passive Solar Driven and 24 hour Forced Air have been performed during this time and will be discussed. 2. BACKGROUND A full scale experimental setup was installed at the SERTF; utilizing an EAHE by burying a 188 ft (57 m) culvert steel pipe, which creates a cool draft tough the test facility when coupled to a solar chimney [11]. Heat from the ambient air is dissipated into the soil surrounding the EAHE during the migration from the outside into the testing facility. The EAHE enters the floor of the SERTF, for the purpose of chilling the testing facility. Fig. 1: The undisturbed underground soil temperature profiles over the course of the year 2008 [1]. Tee thermocouples have been buried on the property away from the EAHE for the purpose of analyzing the ground temperature behaviors of undisturbed soil. These thermocouples are buried at the testing facility two, five, and 9.5 feet underground and are observed for an entire year as the team prepares the rest of the site for testing. Results of this test are very promising. 2

3 Figure 1 depicts a dampening effect as the temperature measurements are observed further into the ground, centering around 51 F - 54 F. This information infers if the team dug deep enough; a depth exists where temperature is 51 F - 54 F year round (noal change in amplitude with 0 phase change) [8]. The two foot location reflects trends comparable to ambient temperature (maximum in summer and imum during winter). A phase shift of approximately 90 is observed for the sensor monitoring 9.5 underground (maximum in fall and imum in spring). 3. SYSTEM OVERVIEW Figure 2 shows the diagram of the coupled system. An EAHE is coupled with a solar chimney and solar collector to provide cooling and ventilation for the SERTF. The cooling and ventilation process can be illustrated as follows: the air inside the solar collector is heated up as the solar radiation strikes the solar collector; hence, the hot air migrates from the solar collector to the bottom of the chimney and then rises to the top, otherwise known as the stack effect. [11] As the system components are connected as tight as possible, this hot air migration draws the ambient air tough the EAHE; as the warm ambient air travels tough the length of the EAHE tube it cools down due to the heat exchange process that occurs with the underground soil, providing a fresh nice cool air draft tough the test facility building. The SERTF is sealed as much as possible to reduce air leaks. In this way a low cost and environmentally friendly passive cooling and ventilation is achieved [1]. It should also be mentioned weep holes are drilled along the bottom of the EAHE which sits on a layer of crushed rock to prevent accumulation of condensation. Table 1: Building Design Load Calculated Values Design Component Total Cooling Load Sensible Cooling Load Latent Cooling Load Fan Size Calculated Value 9,389 5,583 3,805 (0.8 Tons) (0.47 Tons) (0.32 Tons) 3/4 HP motor 2,000 ft3 flow pressure in H 2 O Table 2: Building Design Load Parameters Design Parameter Indoor Design Temperature Outdoor Design Temperature Value 75 F 93.4 F Relative Humidity (RH) 50 % Floor Area 740 ft 2 Wall R-Value Roof R-Value Slab R-Value ft2 F ft2 F ft2 F Windows U-Value ft 2 F 4. BUILDING COOLING LOAD SIMULATION Table 2 shows the main design calculated cooling load values calculated by the TRACE 700 software package to be compared with the actual measured coupled system cooling capacities. It should be mentioned that the test facility building is a one story building and the test room dimensions are ft (15.2m) length, 14.83ft (4.52m) width, and 7.75ft (2.36m) height with a floor area of 740ft 2 (68.75m 2 ). It should also be pointed out that it is an unoccupied space with no internal loads. Moreover, all the windows were covered with R-5 Styrofoam insulation during the 2008 and 2009 testing periods to imize the solar gain. This explains why the calculated design cooling load and airflow rate are relatively small compared to the floor area [1]. 5. MATHEMATICAL REPRESENTATION There are two heat transfer modes involved in the cooling process: the sensible heat transfer mode, which is involved exclusively in reducing or maintaining the temperature of the air; and the latent heat transfer mode, which involves moisture removal from the air stream during the cooling process. Consequently, the total cooling capacity is divided into two portions: the sensible cooling capacity and the latent cooling capacity, this is represented mathematically as follows: The following equations are used to quantify the total amount of air conditioning achieved while perforg the two test scenarios [15]. 3

4 Fig. 2: System overview of the cooling process by the coupled system [1]. Where: EAHE = Earth-to-Air-Heat-Exchanger The coupled system total cooling capacity is formulated as: Q system,t = 60ρ air CF M EAHE (h RA h SA ) (1) ρ air = specific density of air, lbm ft 3 CF M EAHE = EAHE supply air mass flow rate, ft 3 h RA =room air enthalpy, lbm The coupled system sensible cooling capacity is formulated as: Q system,s = 60ρ air CF M EAHE C Pair (T RAT T SAT ) (2) h SA =supply air enthalpy, lbm C pair = constant pressure specific heat of air, lbm F T RAT = average room air temperature, F And the latent cooling capacity is formulated as: Q system,l = 60ρ air h fg CF M EAHE (ω RA ω SA ) (3) T SAT = supply air temperature, F h fg = air enthalpy of vaporization, lbm ω RA = average room air humidity ratio, grains ω SA = supply air humidity ratio, grains 4

5 Variable ρ air Table 3: Constants Value lbm ft C pair 0.24 lbm F h fg lbm 1 ton of cooling 12, Passive Mode Analysis The purely passive solar cooling method mates of the cooling potential of the EAHE and with the natural air movement of a solar chimney. The coupled system provides cooling to the SERTF building without any external inputs. From Figure 3 and 4 it is clear that the coupled system reached a maximum total cooling capacity of about 7,450 / (0.63 tons of cooling), A maximum sensible cooling capacity of 4,860 / (0.41 tons of cooling ). Comparing these values with the design cooling load, measured data verifies the coupled system almost satisfied the test facility building design cooling load 0.8 tons of cooling, which is an extreme condition which rarely happens. This implies the feasibility of the coupled system performance during the natural airflow mode and its ability to provide a sufficient amount of cooling during standard operating conditions for the Midwestern United States. It is clear from both figures that the cooling capacities reach their maximum peak during the day time due to the increase in the solar gain inside of the solar collector, see figure 2. Fig. 3: Coupled System Total Cooling Capacity (2008 Passive Air Test) [1]. Fig. 4: Coupled System Sensible Cooling Capacity (2008 Passive Air Test) [1]. Figure 5 shows that the latent cooling capacity has some negative values during a few nights of the 2008 natural airflow test. It was found that during these few nights the outdoor environmental conditions were stormy and windy, leading to an increase in the outdoor air humidity ratio. Otherwise under standard peak cooling conditions experienced in the daytime hours; the coupled system does provide consistent contributions to latent cooling load. From Figure 3, 4 and Figure 5 it is clear that the outdoor environmental conditions impact the performance of the coupled system. Furthermore, when the solar radiation increases, the coupled system cooling capacity increases, which could potentially prove a natural controllability of the coupled system [1]. Fig. 5: Coupled System Latent Cooling Capacity (2008 Passive Air Test) [1]. 5

6 5.2 Forced Air Analysis, 24 hours/day The forced air test occurred during the summer of A 2,000 CFM, 3/4 HP, H 2 O fan was turned on at 3:15 PM 8/6/2009 and was left on continuously until 11:45 AM 8/15/2009, a 9 day test. Length of time of this test was detered by local weather patterns of Bennington, NE. Drawing in cool night air gave the soil surrounding this EAHE a recharging effect. Our system was left in a passive cooling mode before and after the 9 day test. Passive Cooling mode means the air was allowed to propagate tough the system by naturally creating a suction with the solar collector and solar chimney on the buried tube. Passive mode extracts about 1/4 1/2 ton of cooling during daylight hours of hot sunny days. Fig. 6: Coupled System Total Cooling Capacity (2009 Forced Air Test) [1]. Fig. 8: Coupled System Latent Cooling Capacity (2009 Forced Air Test) [1]. 6. COMFORT ZONE ANALYSIS The coupled system thermal comfort analysis starts with presenting the environmental thermal comfort conditions recommended by ASHRAE standard 55 of the year 2004 for thermal comfort (the most current). Thereafter, a comparison of the coupled system, testing facility building, indoor and outdoor environmental conditions is carried out. In this comparison the indoor and the outdoor temperatures, relative humidity, and humidity ratios of the natural and forced airflow modes of the coupled system are plotted as time series on spreadsheets. Empirical data (ie. enthalpy and humidity ratio) are generated with the Engineering Equation Solver (EES) software package. Consequently, the compliance of the indoor environmental conditions, of the testing facility building, with ASHRAE standard [16] during the natural and forced airflow modes. Fig. 7: Coupled System Sensible Cooling Capacity (2009 Forced Air Test) [1]. Fig. 9: Acceptable Range Of Indoor Thermal Environmental Conditions [16]. 6

7 Table 4: Results Fig. 10: Indoor Outdoor Temp Passive Air 2008 [1]. Result Passive 2008 Forced 2009 Max Cooling Capacity Airflow Ambient Temp Avg Indoor Temp Ambient Humidity Ratio Indoor Humidity Ratio 7,437 15, tons 1.27 tons kwatts 4.47 kwatts : 0 ft3 max: 440 ft3 : 0 m3 sec max: 0.21 m3 sec : 51.8 F max: 92.1 F : 11 C max: 33.4 C : 70.4 F max: 77.2 F : 21.3 C max: 25.1 C : 1652 ft3 max: 1803 ft3 : 0.78 m3 sec max: 0.85 m3 sec : 59.9 F max: 96.6 F : 15.5 C max: 35.9 C : 67.6 F max: 82.4 F : 19.8 C max: 28 C : : max: max: : : max: max: CONCLUSION Fig. 11: Indoor Outdoor Temp Forced Air 2009 [1]. Figure 9 shows the acceptable range of indoor environmental conditions recommended by ASHRAE standard [16]. It is clear that the thermal comfort zone limits are between 71 F (21.7 C) and 82.5 F (28.1 C). Moreover, it shows that the upper recommended humidity ratio limit is 0.012, with no recommendation for the lower humidity limit. Based on ASHRAE recommended comfort zone limits, the indoor environmental conditions of the coupled system have been evaluated as shown in Figure 10 [17, 18]. 7. RESULTS Table 4 shows a comparison of the results achieved during the passive solar and mechanically driven EAHE tests of 2008 and 2009 respectively. The results show forcing air tough the EAHE increases the overall cooling capacity and increased airflow to the SERTF for ventilation. On the other hand the passive solar driven test of 2008 provided overall lower average indoor temperatures and humidity. Test results generated within the University of Nebraska in 2004 show that the coupled system can provide an effective form of air-conditioning [19]. The system was then evaluated to detere if the system is capable of providing acceptable indoor thermal environmental comfort conditions. During the natural airflow test of 2008, the indoor environmental conditions recorded and monitored within the SERTF complied with the ASHRAE standard for thermal comfort [16]. Moreover, it provided 0.63 tons of cooling, which almost covered the simulated building design cooling load (0.8 tons, extreme design condition estimation from TRANE 700 software package). With additional reduction of building air infiltration, the airflow of the coupled system (i.e. EAHE and solar chimney) would increase; which would also increase the overall cooling capacity for the passive solar mode. During the forced air test of 2009 the fan extracted much more cooling than required based on the design parameters established in section 4. Therefore, the system could not comply with humidity and sensible temperature requirements of ASHRAE standard under the forced airflow, although it provided 1.27 tons of cooling which is even more than the simulated building load requirements (0.8 tons, extreme 7

8 condition estimation from TRANE 700 software package). The indigenous loess clay soil proved to be a good heat sink at a depth of 9.5ft where its temperature fluctuates in the range of 46.5 F F (8.1 C C), see figure 1. The systems ability to dissipate heat into the underground soil for heat absorption is a future research topic of interest. In conclusion, the coupled system proved to be a feasible cooling system which complied with ASHRAE standard for Thermal Environmental Conditions for Human Occupancy under the passive solar chilling strategy, with room for improvement. 9. ACKNOWLEDGMENTS Nebraska Center for Energy Sciences Research (NCESR). Gang Wang, Ph.D., P.E. - Assistant Professor of the Department of Civil, Architectural and Environmental Engineering at University of Miami. Joerg Henkel - Project Manager of SERTF. Haorong Li, Ph.D. - Associate Professor, The Durham School, Department of Architectural Engineering. Suat Irmak, Ph.D. - Associate Professor of Biological Systems Engineering and Interim Director of UNL Water Center, University of Nebraska - Lincoln, Department of Biological Systems Engineering. 10. REFERENCES (1) Shafik, M., Feasibility Study of Solar Driven Underground Cooling System, Master s thesis, University of Nebraska - Lincoln., 2010 (2) Bojic, M., N. Trifunovic, G. Papadakis, and S. Kyritsis, Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building, Energy, 22(12), pp , 1997 (3) Bansal, V., R. Misa, G. D. Agarwal, and J. Mathur, Performance Analysis of Earth-pipe-air-heat-exchanger for summer cooling, Enegry and buildings, 2009 (4) Newman, B. C. T. W., M.A. and J. Maloney., Analysis of the performance of earth contact cooling tubes, Master s thesis, University of Nebraska - Lincoln, 1983 (5) Al-Ajmi, F. F. and D. L. Loveday, The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate, Building and Environment, 41(3), pp , 2006 (6) Pfafferott J, H. S. and J. M., Design of passive cooling by night ventilation: evaluation of a parametric model and building simulation with measurements, pp , 2003 (7) Hollmuller, P. and B. Lachal, Cooling and preheating with buried pipe systems: monitoring, simulation and economic aspects, Energy and Buildings, 33(5), pp , 2001 (8) Hollmuller, P., Analytical characterization of amplitude-dampening and phase-shifting in air/soil heat-exchangers, International Journal of Heat and Mass Transfer, 46(22), pp , 2003 (9) Hollmuller, P. and B. Lachal., Buried pipe systems with sensible and latent heat exchange: validation of numerical simulation against analytical solution and longterm monitoring, pp , 2005 (10) Bacharoudis, E., M. G. Vrachopoulos, M. K. Koukou, D. Margaris, A. E. Filios, and S. A. Mavrommatis, Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux, 27., 2007 (11) Wang, G., B. Chen, M. Liu, J. Henkel, and R. S., Analysis, design, and preliary testing of solar chimney for residential air-conditioning applications, in A Solar Harvest: Growing Opportunities., 2004 (12) Nugroho, A. M., M. H. Ahmad, and H. T. Jit, Evaluation of parametrics for the development of vertical solar chimney ventilation in hot and humid climate, in 2nd International Network for Tropical Architecture conference, at Cistian Wacana, 2006 (13) Bouchair A., Solar chimney for promoting cooling ventilation in southern Algeria., Building Service Engineering, Research and Technology, 15(2), pp , 1994 (14) Gan, G. and S. B. Riffat, A numerical study of solar chimney for natural ventilation of buildings with heat recovery, Applied Thermal Engineering, 18(12), pp , 1998 (15) McQuiston, F., P. J.D., and S. J.D., The Heating, ventilating, And Air Conditioning: Analysis and Design. 6th Edition, John Wiley & Sons, Inc., 2005 (16) American Society of Heating, Refrigerating and Air-Conditioning Engineers, Thermal environmental conditions for human occupancy, ASHRAE, Atlanta, supresedes ANSI-ASHRAE-55, 1992., 2004 (17) American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1999 ASHRAE Handbook: HVAC Applications., 1999 (18) American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2001 ASHRAE Handbook Fundementals., 2001 (19) Wang, G., B. Chen, M. Liu, and J. Henkel, Analysis, design, and preliary testing of an earth contact cooling tube for fresh air conditioning, in A Senior project.,

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 November 14, 2017 Heating load calculations Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter:

More information

FULL YEAR PERFORMANCE SIMULATION OF A DIRECT-COOLED THERMAL STORAGE ROOF (DCTSR) IN THE MIDWEST

FULL YEAR PERFORMANCE SIMULATION OF A DIRECT-COOLED THERMAL STORAGE ROOF (DCTSR) IN THE MIDWEST FULL YEAR PERFORMANCE SIMULATION OF A DIRECT-COOLED THERMAL STORAGE ROOF (DCTSR) IN THE MIDWEST Richard C. Bourne Davis Energy Group, Inc. 123 C Street Davis, CA 95616 and Dr. Bing Chen Passive Solar Research

More information

Mechanical Redesign. Existing System: The following schematic was devised below.

Mechanical Redesign. Existing System: The following schematic was devised below. Mechanical Redesign Existing System: The mechanical system explained in the existing conditions was simulated on an energy modeling system call equest. This program was used because of its strong detailed

More information

OUTDOOR AIR, HEAT WHEELS AND JCPENNEY: A NEW APPROACH TO RETAIL VENTILATION

OUTDOOR AIR, HEAT WHEELS AND JCPENNEY: A NEW APPROACH TO RETAIL VENTILATION OUTDOOR AIR, HEAT WHEELS AND JCPENNEY: A NEW APPROACH TO RETAIL VENTILATION Christopher S. Smith, E.I.T. and Thomas A. Bartlett, P.E. JCPenney Company, Inc. Construction Services Mechanical Engineering

More information

Study on the heat transfer model and the application of the underground pipe system

Study on the heat transfer model and the application of the underground pipe system Study on the heat transfer model and the application of the underground pipe system Xiang ZHOU 1, Yingxin ZHU 1, Chunhai XIA 1 1 Tsinghua University, Beijing, P.R.China Corresponding email: zhuyx@tsinghua.edu.cn

More information

Georgetown University New Science Center

Georgetown University New Science Center Georgetown University New Science Center Final Thesis Proposal PENN STATE UNIVERSITY Prepared For: Dr. William P. Bahnfleth Department of Architectural Engineering Prepared By: Kevin M Edstrom Mechanical

More information

Demonstration of Load Shifting and Peak Load Reduction with Control of Building Thermal Mass

Demonstration of Load Shifting and Peak Load Reduction with Control of Building Thermal Mass Demonstration of Load Shifting and Peak Load Reduction with Control of Building Thermal Mass J. E. Braun and T. M. Lawrence, Ray W. Herrick Laboratories, Purdue University C. J. Klaassen and John M. House,

More information

A Solar Wall System Utilized in Rural Houses of Northeast China

A Solar Wall System Utilized in Rural Houses of Northeast China A Solar Wall System Utilized in Rural Houses of Northeast China Tiantian Zhang and Yufei Tan in rural buildings, for instance, only 16.4% of the investigated houses employ solar energy to produce hot water

More information

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya (vahid.vakiloroaya@engineer.com) ABSTRACT: The overall attainable reduction in energy consumption and enhancement of

More information

Energy Analysis of Using Thermal Mass in a Hot Humid climate

Energy Analysis of Using Thermal Mass in a Hot Humid climate Energy Analysis of Using Thermal in a Hot Humid climate SARA MOTAMEDI Architecture Department University of Texas at Austin 1 University Station B7500 Austin, Texas, U.S.A, 787us2-0222 s.motamedi@mail.utexas.edu

More information

BUILDING INTEGRATED VENTILATION SYSTEMS MODELLING AND DESIGN CHALLENGES

BUILDING INTEGRATED VENTILATION SYSTEMS MODELLING AND DESIGN CHALLENGES BUILDING INTEGRATED VENTILATION SYSTEMS MODELLING AND DESIGN CHALLENGES P. Heiselberg Ph.D. 1 ABSTRACT Today, attention has turned towards optimal use of sustainable technologies like natural ventilation.

More information

Experimental Study to Evaluate the Performance of Iraqi Passive House in Summer Season

Experimental Study to Evaluate the Performance of Iraqi Passive House in Summer Season Journal of Energy and Power Engineering 9 (2015) 386-392 doi: 10.17265/1934-8975/2015.04.008 D DAVID PUBLISHING Experimental Study to Evaluate the Performance of Iraqi Passive House in Summer Season Ghanim

More information

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS Daeho Kang 1, Richard K. Strand 2 1 Department of Environmental Control Technology, New York

More information

Interdisciplinary Science and Engineering Building

Interdisciplinary Science and Engineering Building 1 1 Senior Thesis Capstone Project Treado Thesis Proposal Interdisciplinary Science and Engineering Building University of Delaware Newark, DE 19716 2 2 Table of Contents Executive Summary 3-4 Building

More information

A Basic Ventilation Concept: People Cooling versus Structural Cooling

A Basic Ventilation Concept: People Cooling versus Structural Cooling PASSIVE COOLING ANALYSIS www.tmt.org/ an example of CFD (computational fluid dynamics) analysis results Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 A Basic Ventilation Concept: People Cooling

More information

FAST EVALUATION OF SUSTAINABLE HEATING AND COOLING STRATEGIES FOR SOLAR HOMES WITH INTEGRATED ENERGY AND CFD MODELING

FAST EVALUATION OF SUSTAINABLE HEATING AND COOLING STRATEGIES FOR SOLAR HOMES WITH INTEGRATED ENERGY AND CFD MODELING FAST EVALUATION OF SUSTAINABLE HEATING AND COOLING STRATEGIES FOR SOLAR HOMES WITH INTEGRATED ENERGY AND CFD MODELING Justin Spencer 1 and Zhiqiang Zhai 1, * 1 Department of Civil, Environmental, and Architectural

More information

South Jefferson High School Huyett Road Charles Town, WV 25414

South Jefferson High School Huyett Road Charles Town, WV 25414 Thesis Proposal Mechanical System Redesign Report Charles Town, WV 25414 Prepared for Dr. Jelena Srebric The Pennsylvania State University By Jonathon Gridley Friday, December 15, 2006 1.0 Table of Contents

More information

CFD Modelling and Analysis of Different Plate Heat Exchangers

CFD Modelling and Analysis of Different Plate Heat Exchangers CFD Modelling and Analysis of Different Plate Heat Exchangers Ahmed Y Taha Al-Zubaydi a *, Guang Hong b and W. John Dartnall c Faculty of Engineering and Information Technology, UTS, Sydney, Australia

More information

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1 BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY Dr Mirek Piechowski 1, Adrian Rowe 1 Meinhardt Building Science Group, Meinhardt Australia 1 Level 12, 501

More information

Mechanical Depth. Redesign and Analysis

Mechanical Depth. Redesign and Analysis Depth Redesign and Analysis 14 Analysis Scope The scope of my mechanical redesign will include the 2 nd and 3 rd floors of the SW hospital wing which includes Semi-Private, Private and Isolations rooms.

More information

Mechanical Systems Redesign Proposal. Thesis Proposal. Morton Hospital Expansion

Mechanical Systems Redesign Proposal. Thesis Proposal. Morton Hospital Expansion Mechanical Systems Redesign Proposal Thesis Proposal Morton Hospital Expansion Taunton, MA Courtney Millett Mechanical Option Advisor: Dr. Bahnfleth December 12, 2014 Revised: January 16, 2015 Revised:

More information

The case for building-integrated hydroponics

The case for building-integrated hydroponics International Conference Passive and Low Energy Cooling 537 The case for building-integrated hydroponics T. Caplow Columbia University, USA Fish Navy, Inc., USA ABSTRACT Cultivation of crops such as tomatoes

More information

Improving the Energy Performance of HVAC Systems in Operating Theatres by Using Heat Recovery Devices

Improving the Energy Performance of HVAC Systems in Operating Theatres by Using Heat Recovery Devices Improving the Performance of HVAC Systems in Operating Theatres by Using Heat Recovery Devices Mohammad Ahmadzadehtalatapeh* *Department of Mechanical Engineering, Chabahar Maritime University, Iran. (m_ahmadzadeh56@yahoo.com)

More information

DISPLACEMENT VENTILATION

DISPLACEMENT VENTILATION DISPLACEMENT VENTILATION D3 OVERVIEW The fundamental approach to displacement ventilation utilizes the natural buoyancy forces created by the convective flows from heat sources in the space. As supply

More information

The bitterness of poor quality is remembered long after the sweetness of low price is forgotten!

The bitterness of poor quality is remembered long after the sweetness of low price is forgotten! Heat Pump Sizing Using ACCA Manual J8 It s s a Building Code Requirement Size the Equipment BEFORE You Build The bitterness of poor quality is remembered long after the sweetness of low price is forgotten!

More information

CFD Analysis of Earth-Air Heat Exchanger to Evaluate the Effect of Parameters on Its Performance

CFD Analysis of Earth-Air Heat Exchanger to Evaluate the Effect of Parameters on Its Performance PP 14-19 CFD Analysis of Earth-Air Heat Exchanger to Evaluate the Effect of Parameters on Its Performance Arpit Thakur 1, Aashish Sharma 2 1,2 (Department of Mechanical Engineering, Lovely Professional

More information

Comparative Heating Performances of Ground Source and Air Source Heat. Pump Systems for Residential Buildings in Shanghai

Comparative Heating Performances of Ground Source and Air Source Heat. Pump Systems for Residential Buildings in Shanghai Comparative Heating Performances of Ground Source and Air Source Heat Pump Systems for Residential Buildings in Shanghai Zhaohui Liu 1,2, Hongwei Tan 1,2,3* 1 School of Mechanical Engineering, Tongji University,

More information

Senior Design Project for UNO. Design of the International Studies Building: An Environmental Analysis

Senior Design Project for UNO. Design of the International Studies Building: An Environmental Analysis Senior Design Project for UNO Design of the International Studies Building: An Environmental Analysis Design Intent Implement Passive & Active design strategies in order to make the building: More Energy

More information

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building J. Zuo, L. Daniel, V. Soebarto (eds.), Fifty years later: Revisiting the role of architectural science in design and practice: 50 th International Conference of the Architectural Science Association 2016,

More information

CFD Simulation Studies on Integrated Approach of Solar Chimney and Earth Air Tunnel Heat Exchanger for Building Space Conditioning

CFD Simulation Studies on Integrated Approach of Solar Chimney and Earth Air Tunnel Heat Exchanger for Building Space Conditioning International Journal of Economy, Energy and Environment 2017; 2(3): 32-39 http://www.sciencepublishinggroup.com/j/ijeee doi: 10.11648/j.ijeee.20170203.11 CFD Simulation Studies on Integrated Approach

More information

Demonstration of modeling of radiant cooling system in design builder. Prashant Bhanware & Bharath Reddy

Demonstration of modeling of radiant cooling system in design builder. Prashant Bhanware & Bharath Reddy Demonstration of modeling of radiant cooling system in design builder Prashant Bhanware & Bharath Reddy CONTENTS Introduction to Design Builder Building Energy Simulation Modeling procedure Making a model

More information

Geothermal Heating & Cooling in Health Care Applications

Geothermal Heating & Cooling in Health Care Applications Geothermal Heating & Cooling in Health Care Applications Sergio Almeida, P.Eng. sergio@geoxergy.com (204) 255 5959 May 18, 2017 Intro to Geo Why Geothermal? Future outlook for Geothermal in Ontario What

More information

CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION

CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION CHAPTER 3. BUILDING THERMAL LOAD ESTIMATION 3.1 Purpose of Thermal Load Estimation 3.2 Heating Load versus Cooling Load 3.3 Critical Conditions for Design 3.4 Manual versus Computer Calculations 3.5 Heating

More information

Mechanical Systems Project Proposal

Mechanical Systems Project Proposal Mechanical Systems Project Proposal December 15, 2006 Table of Contents 1.0 Executive Summary... 2 2.0 Building Background... 3 3.0 Proposal Objectives... 5 4.0 Initial Considerations... 6 5.0 Proposed

More information

SHIYUN CHEN ADVISOR: DR. BAHNFLETH. 1 Executive Summary Building Summary 3. 3 Existing Mechanical System. 4

SHIYUN CHEN ADVISOR: DR. BAHNFLETH. 1 Executive Summary Building Summary 3. 3 Existing Mechanical System. 4 Table of Contents 1 Executive Summary... 1 2 Building Summary 3 3 Existing Mechanical System. 4 4 Mechanical Design Objectives..... 4 5 Mechanical System Evaluation. 5 5.1 Air Distribution System Evaluation....

More information

Experimental investigation of zero energy office under natural and forced ventilation

Experimental investigation of zero energy office under natural and forced ventilation Experimental investigation of zero energy office under natural and forced ventilation Hussain H. Al-Kayiem 1, Syed I. U. Gilani 1, * and Mahmoud S. Abdalfatah 2 1 Mech. Eng. Dept., Universiti Teknologi

More information

Analysis of Uniformity and Energy Consumption in. Supermarket installed DurkeeSox Air Dispersion System. with PE Air Dispersion Model

Analysis of Uniformity and Energy Consumption in. Supermarket installed DurkeeSox Air Dispersion System. with PE Air Dispersion Model Analysis of Uniformity and Energy Consumption in Supermarket installed DurkeeSox Air Dispersion System with PE Air Dispersion Model Summary: Taking partial area of a large supermarket for example, to simulate

More information

Due Date: January 18, 2011

Due Date: January 18, 2011 prepared by: Zachary Heilman MECHANICAL OPTION prepared for: James Freihaut, PhD THESIS PROPOSAL [REVISED] Due Date: January 18, 2011 The Mirenda Center for Sports, Spirituality, and Character Development

More information

Design and development of an Earth Air Tube Heat Exchanger

Design and development of an Earth Air Tube Heat Exchanger Design and development of an Earth Air Tube Heat Exchanger Kunj M. Chauhan 1, Jaykumar G. Prajapati 2, Nikunjgiri Y. Goswami 3, Sunny N. Patel 4 and Krunal N. Patel 123 Bechlor of Mechanical Engineering

More information

Nocturnal radiation cooling tests

Nocturnal radiation cooling tests Available online at www.sciencedirect.com Energy Procedia 30 (2012 ) 930 936 SHC 2012 Nocturnal radiation cooling tests John Hollick Conserval Engineering Inc., 200 Wildcat Road, Toronto Ontario Canada.

More information

Part 1 Review Questions on material covered in Midterms I & II

Part 1 Review Questions on material covered in Midterms I & II 1 Arch 463 ECS Fall 2001 Name FINAL 40 Multiple Choice Questions Part 1 Review Questions on material covered in Midterms I & II 1. Passive systems for environmental control A. can enhance human comfort

More information

Introduction to Geothermal Comfort Systems in INDIA

Introduction to Geothermal Comfort Systems in INDIA Introduction to Geothermal Comfort Systems in INDIA History Ancient earth sheltered homes 1912 Swiss Patent 1945 - First GSHP operating in North America in Indianapolis 1949 Canada s first GSHP installation

More information

LAHU Heat Recovery System Optimal Operation and Control Schedules

LAHU Heat Recovery System Optimal Operation and Control Schedules Yujie Cui Nexant, Inc., 44 South Broadway, 5th Floor, White Plains, NY 10601 e-mail: ycui@nexant.com Mingsheng Liu Architectural Engineering, University of Nebraska Lincoln, 206C, PKI, 1110 S. 67th St.,

More information

A Case Study of Energy Demand in Housing Units

A Case Study of Energy Demand in Housing Units A Case Study of Energy Demand in Housing Units Contributors: Niket Kumar 1, Former Graduate Student Dr. Sudhir Misra 1, Professor Dr. Naveen Tiwari 2, Associate Professor 1 Department of Civil Engineering,

More information

ARPAN JOHARI. Architect. 13/08/10 AW Design. Ahmedabad

ARPAN JOHARI. Architect. 13/08/10 AW Design. Ahmedabad ARPAN JOHARI. Architect THERMAL MASS Thermal mass (or thermal capacitance) is defined as the ability of a body to store heat THERMAL MASS Thermal mass is also known as Fabric Energy Storage, FES (The Concrete

More information

The Elithis Tower is an experimental and demonstration. Elithis Tower in Dijon, France. nzeb case studies

The Elithis Tower is an experimental and demonstration. Elithis Tower in Dijon, France. nzeb case studies COM Elithis Tower in Dijon, France Elithis Tower, located in Dijon, France, provides strong evidence that net zero energy office buildings are achievable in near future. The building, which was designed

More information

Depth: Mechanical Redesign

Depth: Mechanical Redesign Depth: Mechanical Redesign Redesign Objectives The most important objective of the mechanical redesign is to provide Greenbriar East with ventilation that meets the requirements of ASHRAE Standard 62-2001.

More information

Project Proposal Proposal for Investigation of Alternative Systems

Project Proposal Proposal for Investigation of Alternative Systems Project Proposal Proposal for Investigation of Alternative Systems 01.15.2010 Defense Media Activity Building Fort George G. Meade Penn State University Architectural Engineering Faculty Advisor: Dr. Treado

More information

HVAC SYSTEM CONFIGURATIONS, AN ENERGY ASPECT

HVAC SYSTEM CONFIGURATIONS, AN ENERGY ASPECT HVAC SYSTEM CONFIGURATIONS, AN ENERGY ASPECT Y Zhang 1,*, JA Wright 2 and VI Hanby 1 1 Institute of Energy and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK 2 Department of Civil

More information

CoolVent Workshop Alejandra Menchaca, PhD, Payette Associates Alonso Dominguez, MIT

CoolVent Workshop Alejandra Menchaca, PhD, Payette Associates Alonso Dominguez, MIT CoolVent Workshop Alejandra Menchaca, PhD, Payette Associates Alonso Dominguez, MIT Outline Part I: Introduction to CoolVent Multi-zone models Interface Assumptions Demo Future improvements Part II: Using

More information

Thermal Comfort Measurements in a Hybrid Ventilated Office Room

Thermal Comfort Measurements in a Hybrid Ventilated Office Room Eawag 5237 Thermal Comfort Measurements in a Hybrid Ventilated Office Room Thomas Frank 1), Herbert Güttinger 2) and Stefan van Velsen 3) 1 Swiss Federal Laboratories for Materials Testing and Research

More information

A Basic Ventilation Concept: People Cooling versus Structural Cooling

A Basic Ventilation Concept: People Cooling versus Structural Cooling PASSIVE COOLING ANALYSIS www.tmt.org/ an example of CFD (computational fluid dynamics) analysis results Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 A Basic Ventilation Concept: People Cooling

More information

Analysis of Night Ventilation Potential for Residential Buildings in Hot-Humid Climate of Malaysia

Analysis of Night Ventilation Potential for Residential Buildings in Hot-Humid Climate of Malaysia PLEA2009 - th Conference on Passive and Low Energy Architecture, Quebec City, Canada, 22- June 2009 Analysis of Ventilation Potential for Residential Buildings in Hot-Humid Climate of Malaysia DORIS TOE

More information

ENERGY EFFICIENT TECHNIQUES AND SIMULATION OF ENERGY CONSUMPTION FOR THE SHANGHAI ECOLOGICAL BUILDING

ENERGY EFFICIENT TECHNIQUES AND SIMULATION OF ENERGY CONSUMPTION FOR THE SHANGHAI ECOLOGICAL BUILDING 01-155 The 2005 World Sustainable Building Conference, ENERGY EFFICIENT TECHNIQUES AND SIMULATION OF ENERGY CONSUMPTION FOR THE SHANGHAI ECOLOGICAL BUILDING BU Zhen M.Sc 1 LU Shanhou Ph.D 2 ZHU Weifeng

More information

Chapter 6. Space heating load

Chapter 6. Space heating load Chapter 6 Space heating load 1 Outdoor Design Conditions Heating systems should provide just enough heat to match the heat loss from the structure. Local knowledge should be obtained for design conditions.

More information

PASSIVE COOLING OF BUILDINGS. Ath. Argiriou Dept. of Physics, University of Patras

PASSIVE COOLING OF BUILDINGS. Ath. Argiriou Dept. of Physics, University of Patras PASSIVE COOLING OF BUILDINGS Ath. Argiriou Dept. of Physics, University of Patras PASSIVE COOLING WHY TO PASSIVE COOLING The world trade in A/C equipment has been tripled during the last decade. Annual

More information

Causes of Urban Heat Island in Singapore: An investigation using computational fluid dynamics (CFD)

Causes of Urban Heat Island in Singapore: An investigation using computational fluid dynamics (CFD) Causes of Urban Heat Island in Singapore: An investigation using computational fluid dynamics (CFD) RAJAGOPALAN PRIYADARSINI 1, WONG NYUK HIEN 2 1 School of Architecture & Building, Deakin University,

More information

Chilled Water Plant Redesign

Chilled Water Plant Redesign 17 Chilled Water Plant Redesign OVERVIEW The chilled water plant redesign includes the addition of a thermal energy storage system. This allows for economic and operational benefits for the facility by

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7): pages 910-918 Open Access Journal Analysis Of Ventilation

More information

THERMAL ENVIRONMENT OF OUTDOOR UNITS OF VRV SYSTEM IN HIGH- RISE BUILDING. Gang Wang, Yafeng Hu, and Songtao Hu

THERMAL ENVIRONMENT OF OUTDOOR UNITS OF VRV SYSTEM IN HIGH- RISE BUILDING. Gang Wang, Yafeng Hu, and Songtao Hu THERMAL ENVIRONMENT OF OUTDOOR UNITS OF VRV SYSTEM IN HIGH- RISE BUILDING Gang Wang, Yafeng Hu, and Songtao Hu School of Environmental & Municipal Engineering, Qingdao Technological University, Qingdao

More information

ENERGY PERFORMANCE OF DIFFERENT TYPES OF DOUBLE SKIN FACADES IN VARIOUS CLIMATES

ENERGY PERFORMANCE OF DIFFERENT TYPES OF DOUBLE SKIN FACADES IN VARIOUS CLIMATES ENERGY PERFORMANCE OF DIFFERENT TYPES OF DOUBLE SKIN FACADES IN VARIOUS CLIMATES Ajla Aksamija, PhD, LEED AP BD+C, CDT1 1Department of Architecture, University Of Massachusetts Amherst, Amherst, Massachusetts

More information

Thermal performance of a closed wet cooling tower for chilled ceilings: measurement and CFD simulation

Thermal performance of a closed wet cooling tower for chilled ceilings: measurement and CFD simulation INTERNATIONAL JOURNAL OF ENERGY RESEARCH Int. J. Energy Res. 2000; 24:1171}1179 Thermal performance of a closed wet cooling tower for chilled ceilings: measurement and CFD simulation Sa!a Ri!at*, Armando

More information

RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM

RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM - 1 - RESEARCH ON THE ADVANCED USE OF MULTI-SPLIT TYPE AIR-CONDITIONING SYSTEM Yoshinori Suzuki, Master course Student, Masaya Hiraoka, Kajima Corporation, Shin-ichi Tanabe, Professor, Waseda University,

More information

Prepared. r William. 10 th, Mechanical. Option. Architectural Engineering. Bachelor of. The

Prepared. r William. 10 th, Mechanical. Option. Architectural Engineering. Bachelor of. The Architectural Engineering Mechanical Option 2011 Thesiss Proposal Prepared for: Professor r William Bahnfleth, PhD, PE Date: December 10 th, 20100 Mechanical Option Senior Thesis 2010-2011 The Pennsylvania

More information

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE S447 THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM, AND HEAVY MASS BUILDING IN BELGRADE by Bojan V. ANDJELKOVIĆ *,a, Branislav V. STOJANOVIĆ b, Mladen M. STOJILJKOVIĆ b, Jelena N. JANEVSKI

More information

FIRST LARGE-SCALE SOLAR SEASONAL BOREHOLE THERMAL ENERGY STORAGE IN CANADA

FIRST LARGE-SCALE SOLAR SEASONAL BOREHOLE THERMAL ENERGY STORAGE IN CANADA FIRST LARGE-SCALE SOLAR SEASONAL BOREHOLE THERMAL ENERGY STORAGE IN CANADA W.P. Wong, J.L. McClung Science Applications International Corporation (SAIC Canada) Ottawa, ON Canada Tel: 1-613-563-7242 bill.wong@saiccanada.com

More information

Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation

Volume 2, Issue 2 (2014) ISSN International Journal of Advance Research and Innovation Simulation of single slope solar still at different inclinations using CFD Amrik Singh *, M. K Mittal Department of Mechanical Engineering, Thapar University Patiala Punjab, India Article Info Article

More information

POST OCCUPANCY DESIGN INERVENTION TO IMPROVE COMFORT AND ENERGY PERFORMANCE IN A DESERT HOUSE

POST OCCUPANCY DESIGN INERVENTION TO IMPROVE COMFORT AND ENERGY PERFORMANCE IN A DESERT HOUSE POST OCCUPANCY DESIGN INERVENTION TO IMPROVE COMFORT AND ENERGY PERFORMANCE IN A DESERT HOUSE Vidar Lerum Arizona State University P O Box 871605, Tempe, AZ, 85287-1605, USA vidar.lerum@asu.edu Venkata

More information

LOW CARBON HEATING FOR COMMERCIAL BUILDINGS USING GRID SUPPLIED ELECTRCITY DURING-OFF PEAK PERIODS

LOW CARBON HEATING FOR COMMERCIAL BUILDINGS USING GRID SUPPLIED ELECTRCITY DURING-OFF PEAK PERIODS LOW CARBON HEATING FOR COMMERCIAL BUILDINGS USING GRID SUPPLIED ELECTRCITY DURING-OFF PEAK PERIODS R. Hutcheson, P.Eng. LEED AP, CxA, S. Jorens B.Eng., D. Knapp, PhD., P.Phys., LEED AP Arborus Consulting

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION In the past, researchers were interested in reducing the cost of energy and save the depleting fossil fuels. However, recently, the motivation has changed from these goals towards

More information

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE

THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE Andjelković, V., B.et. al.: Thermal Mass Impact on Energy Performance of A Low, Medium and Heavy S507 THERMAL MASS IMPACT ON ENERGY PERFORMANCE OF A LOW, MEDIUM AND HEAVY MASS BUILDING IN BELGRADE by Bojan

More information

EXPERIMENT FOR VERIFICATION OF GROUND SOURCE HEAT PUMP USING THE DIRECT EXPANSION METHOD

EXPERIMENT FOR VERIFICATION OF GROUND SOURCE HEAT PUMP USING THE DIRECT EXPANSION METHOD EXPERIMENT FOR VERIFICATION OF GROUND SOURCE HEAT PUMP USING THE DIRECT EXPANSION METHOD S. ISHIGURO 1 and T. TAKEDA 2 1 Graduate School of Medicine and Engineering, Univ. of Yamanashi, Takeda 4-3-11,

More information

IN THIS ISSUE INTRODUCTION BACKGROUND. March 2018 High Humidity in Winter: Analysis for Multi-Family Passive House Projects

IN THIS ISSUE INTRODUCTION BACKGROUND. March 2018 High Humidity in Winter: Analysis for Multi-Family Passive House Projects Page 1 High Humidity in Winter: Analysis for Multi-Family Passive House Projects IN THIS ISSUE Passive House for multi-family residential applications Analysis of high humidity levels in winter Impact

More information

Simulation Studies on Performance of Solar Cooling System in UAE Conditions

Simulation Studies on Performance of Solar Cooling System in UAE Conditions Available online at www.sciencedirect.com Energy Procedia 00 (2014) 000 000 www.elsevier.com/locate/procedia SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September

More information

COOLING LOAD ESTIMATION OF A ROOM

COOLING LOAD ESTIMATION OF A ROOM COOLING LOAD ESTIMATION OF A ROOM Prof. Deepak Kumar Yadav 1, Aviral Srivastava 2, Ayush Chauhan 3, Gaurang Tripathi 4, Ankur Kumar 5 1Assistant Professor, Mechanical Engineering, IMS Engineering College,

More information

Mechanical Systems Proposal

Mechanical Systems Proposal Mechanical Systems Proposal Prepared for: Dr. William Bahnfleth, Professor The Pennsylvania State University, Department of Architectural Engineering Prepared by: Chris Nicolais Mechanical Option December

More information

Applications of ECOTECT and HEED in building energy analysis - Case study: A typical tube house in Hanoi

Applications of ECOTECT and HEED in building energy analysis - Case study: A typical tube house in Hanoi Applications of ECOTECT and HEED in building energy analysis - Case study: A typical tube house in Hanoi (1) Wei-Hwa Chiang (2) Nguyen Ngoc Tu (3) Jian Sheng Huang (1)whch@mail.ntust.edu.tw (2)M9602806@mail.ntust.edu.tw

More information

REPORT ON THE BENEFITS OF ICE- BASED THERMAL STORAGE FOR DISTRICT COOLING IN THE UAE MARKETS

REPORT ON THE BENEFITS OF ICE- BASED THERMAL STORAGE FOR DISTRICT COOLING IN THE UAE MARKETS REPORT ON THE BENEFITS OF ICE- BASED THERMAL STORAGE FOR DISTRICT COOLING IN THE UAE MARKETS Prepared by: Brady Consulting Services, Inc. SUMMARY ADVANTAGES OF THERMAL STORAGE WITH 1.1ºC WATER SUPPLY 1)

More information

Holistic Design Approach For Energy Efficiency ASHRAE TECHNOLOGY AWARD CASE STUDIES

Holistic Design Approach For Energy Efficiency ASHRAE TECHNOLOGY AWARD CASE STUDIES ASHRAE TECHNOLOGY AWARD CASE STUDIES This article was published in ASHRAE Journal, June 2018. Copyright 2018 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically

More information

Technical Report Two: Building and Plant Energy Analysis Report

Technical Report Two: Building and Plant Energy Analysis Report The American Swedish Institute Minneapolis, MN Technical Report Two: Building and Plant Energy Analysis Report Name: Option: Mechanical Advisor: Stephen Treado Date: 10.19.11 Table of Contents Executive

More information

EXPERIMENTAL AND NUMERICAL STUDY OF AN EARTH-TO-AIR HEAT EXCHANGER FOR BUILDINGS AIR REFRESHMENT IN MARRAKECH. Ayyad University, Marrakech.

EXPERIMENTAL AND NUMERICAL STUDY OF AN EARTH-TO-AIR HEAT EXCHANGER FOR BUILDINGS AIR REFRESHMENT IN MARRAKECH. Ayyad University, Marrakech. EXPERIMENTAL AND NUMERICAL STUDY OF AN EARTH-TO-AIR HEAT EXCHANGER FOR BUILDINGS AIR REFRESHMENT IN MARRAKECH Mohamed Khabbaz 1, 2, 3, Brahim Benhamou 1, 2, Karim Limam 3, Hassan Hamdi 1, 2, Pierre Hollmuller

More information

1 Exam Prep Manual J Residential Load Calculation 8 th Edition Tabs and Highlights

1 Exam Prep Manual J Residential Load Calculation 8 th Edition Tabs and Highlights 1 Exam Prep Manual J Residential Load Calculation 8 th Edition Tabs and Highlights These 1 Exam Prep tabs are based on the Manual J Residential Load Calculation for Small Commercial Buildings, 8 th Edition.

More information

David H. Koch Institute for Integrative Cancer Research Senior Capstone Mechanical Option. Proposal

David H. Koch Institute for Integrative Cancer Research Senior Capstone Mechanical Option. Proposal 0 David H. Koch Institute for Integrative Cancer Research Senior Capstone Mechanical Option Proposal David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge,

More information

*Corresponding authors. Tel.: x415, address: (N. Zhu)

*Corresponding authors. Tel.: x415,  address: (N. Zhu) Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu *, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building

More information

Insulation in Low Profile Cross Ventilated Freestall Facilities TAKE HOME MESSAGES

Insulation in Low Profile Cross Ventilated Freestall Facilities TAKE HOME MESSAGES Insulation in Low Profile Cross Ventilated Freestall Facilities J. P. Harner and J. F. Smith, Kansas State University S. Pohl, South Dakota State University J. Zulovich, University of Missouri TAKE HOME

More information

Airflow and temperature modelling of sustainable buildings at the design stage can prevent unintended consequences of passive features

Airflow and temperature modelling of sustainable buildings at the design stage can prevent unintended consequences of passive features Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2017) 000 000 www.elsevier.com/locate/procedia International High- Performance Built Environment Conference A Sustainable

More information

COMFORT-PRODUCTIVITY Building costs COMFORT-PERFORMANCE. Radiant Heating and Cooling Systems for Better Comfort and Energy Efficiency INDOOR - OUTDOOR

COMFORT-PRODUCTIVITY Building costs COMFORT-PERFORMANCE. Radiant Heating and Cooling Systems for Better Comfort and Energy Efficiency INDOOR - OUTDOOR Radiant Heating and Cooling Systems for Better Comfort and Energy Efficiency Professor Bjarne W. Olesen, PhD Director International Centre for Indoor Environment and Energy Department of Civil Engineering

More information

SURNA Grow Facility: Systems Comparison - IEA

SURNA Grow Facility: Systems Comparison - IEA SURNA Grow Facility: Systems Comparison - IEA May 2016 SURNA Grow Facility This analysis provides the projected energy and associated cost comparison between the Surna proposed facility in comparison to

More information

Modelling Analysis of Thermal Performance of Internal Shading Devices for a Commercial Atrium Building in Tropical Climates

Modelling Analysis of Thermal Performance of Internal Shading Devices for a Commercial Atrium Building in Tropical Climates Modelling Analysis of Thermal Performance of Internal Shading Devices for a Commercial Atrium Building in Tropical Climates Kittitach Pichatwatana, and Fan Wang Abstract This paper examines the TAS computer

More information

AE 481W Thesis Proposal

AE 481W Thesis Proposal AE 481W Thesis Proposal I I Advisor: Dr. Treado UNIVERSITY OF CALIFORNIA SAN DIEGO RADY SCHOOL OF MANAGEMENT LA JOLLA, CA TABLE OF CONTENTS Executive Summary.3 Mechanical System Overview..4 Design Objectives,

More information

Energy Efficiency in Building Active Design Part II

Energy Efficiency in Building Active Design Part II Energy Efficiency in Building Active Design Part II Presented by: CK Tang BSEEP Component 4 Manager Veritas Enviornment Sdn Bhd ck.tang@veritas.com.my Air Conditioning System System Sizing 1 Current Industry

More information

Ceiling Radiant Cooling Panels

Ceiling Radiant Cooling Panels Copyright 2006, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc This posting is by permission from ASHE Journal This article may not be copied nor distributed in either paper

More information

Solar Heating in Commercial Buildings

Solar Heating in Commercial Buildings Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-19-2017 Solar Heating

More information

Chilled Beams. The new system of choice?

Chilled Beams. The new system of choice? Chilled Beams The new system of choice? Presented By: Kevin M. Pope P.E. Jason Leffingwell Hammel Green And Abrahamson, Inc. and Ken Bauer, P.E., LEED AP Butters-Fetting Co., Inc. History of Chilled Beams

More information

SIMULATION MODEL IN TRNSYS OF A SOLAR HOUSE FROM BRAŞOV, ROMANIA

SIMULATION MODEL IN TRNSYS OF A SOLAR HOUSE FROM BRAŞOV, ROMANIA SIMULATION MODEL IN TRNSYS OF A SOLAR HOUSE FROM BRAŞOV, ROMANIA C. Şerban 1, E. Eftimie 1 and L. Coste 1 1 Department of Renewable Energy Systems and Recycling Transilvania University of Braşov B-dul

More information

Thermal Thermal Applications Category Version 6.4. Integrated Environmental Solutions

Thermal Thermal Applications Category Version 6.4. Integrated Environmental Solutions Thermal Thermal Applications Category Version 6.4 Integrated Environmental Solutions Contents 1. What is the Thermal Applications Category?... 4 1.1. Compliance View... 4 1.2. Apache

More information

Ceiling Radiant Cooling Panels

Ceiling Radiant Cooling Panels 2006, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc (wwwashraeorg) Published in ASHE Journal Vol 48, Oct 2006 For personal use only Additional reproduction, distribution,

More information

COMPARISON OF DIFFERENT MECHANICAL SYSTEMS MODELS FOR A PASSIVE SOLAR GREENHOUSE WITH TWO THERMAL ZONES

COMPARISON OF DIFFERENT MECHANICAL SYSTEMS MODELS FOR A PASSIVE SOLAR GREENHOUSE WITH TWO THERMAL ZONES COMPARISON OF DIFFERENT MECHANICAL SYSTEMS MODELS FOR A PASSIVE SOLAR WITH TWO THERMAL ZONES Frédéric Léveillé-Guillemette and Danielle Monfet Department of Construction Engineering, École de technologie

More information

Infiltration simulation in a detached house empirical model validation

Infiltration simulation in a detached house empirical model validation Infiltration simulation in a detached house empirical model validation Juha Jokisalo¹, Targo Kalamees¹, Jarek Kurnitski¹, Lari Eskola¹, Kai Jokiranta¹ and Juha Vinha² ¹Helsinki University of Technology,

More information