Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Size: px
Start display at page:

Download "Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017"

Transcription

1 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen: An Emissions Free Hydrocarbon Economy, International Journal of Hydrogen (2017), 1

2 Modern Economy: Thermal Hydrogen Economy: Service Source Conversion Electricity/Power Heat Chem. Carrier Oxygen CO 2 Hydrocarbons 2

3 Thermal Hydrogen: Load Following Supply and Demand #1 Dispatchable demand at most oversupplied time and place -> #2 Self-subsidize the arbitrage with oxygen value #3 Dispatchable supply at most undersupplied time and place -> Why? To maximize the utilization of: 1) Copper (Transmission and distribution) 2) Iron (Power plant capacity) 3) Lithium (Batteries)

4 Productivity of Oxygen for Creating Different Carriers kwh Required or Yielded per kg of Oxygen Yielded: Syngas (H 2 + CO) kwh / kg O Required: from Electrolysis Yielded: Heat Yielded: Hydrogen (SOFC/MCFC) 0 jared@meridianenergypolicy.com Water Splitting Full Combustion Auto Thermal Reforming -> H2 Auto Thermal Reforming -> Syngas 4

5 Oxyfuel for Natural Gas Combined Cycle (NGCC) H 2 O + N 2 + CO 2 Steam Turbine Hydrocarbon Combined Cycle Air Cooling Compressor Gas Turbine HX Pump H 2 O/ CO 2 CO 2 Steam Turbine Oxyfuel NGCC Allam Cycle jared@meridianenergypolicy.com O 2 CO 2 Hydrocarbon Compressor CO 2 Turbine (Supercritical) HX Pump Cooling 5

6 Universal Plant : Load Following and Demand Following Power Plant Chemical <--> Heat / Electricity Long: Electricity Supply Short: Idle Power Plant Max Max H 2 O/CO 2 Electrolysis Idle Electricity H 2 O/CO 2 Electrolyser Max H 2 /CO O 2 Electrolyser Idle Nuclear/CSP Heat Nuclear/CSP Heat Idle CH 4 + O 2 Max Electricity CO 2 Turbine CO 2 Turbine CO 2 Sequestration 6

7 Thermal Hydrogen Economy: (where Methanol replaces Gasoline) Batteries Electricity/Power Stationary Power Mobile Power Wind/PV H 2 O/CO 2 Recycling SOFC Nuclear /CSP H 2 O CO 2 Electrolyser H 2 /CO CH 3 OH Heat Oxyfuel Power Plant O 2 CO 2 Sequestration EOR Hydrocarbons (CH x ) Coal Gasifier or Gas Reformer Service Source Conversion Electricity/Power Heat Chem. Carrier Oxygen CO 2 Hydrocarbons Liquid Storage 7

8 How to Distribute Hydrogen as Methanol and Recycle H 2 O and CO 2 from Solid Oxid Fuel Cells 1) Tank filled With Methanol (CH 3 OH) CH 3 OH (Methanol) 2 H 2 O + CO 2 (Exhaust) 4) Exhaust, carbonated water, can be stored on empty side of tank and recollected at gas station. Waste Heat 2) Methanol converted to Syngas via catalyst and waste heat (2 H 2 + CO) Solid Oxide Fuel Cell Electricity 11.3 N 2 3) Air enters solid oxide fuel cell. Oxygen crosses electrolyte to meet syngas. jared@meridianenergypolicy.com 8

9 kwh / 100 miles Efficiency and Battery Size of Select Mid-Size Automobile Options Plug-in Fuel Cell Hybrid operating in electric mode 70% of the time. Small fuel cell (~10 kw) required to extend range. Consumption (Left Axis) Battery Capacity (Right Axis) Pure electric outweighs PHEV by ~700 lbs., has ~20 to 30% lower efficiency kwh of Battery Capacity Honda Accord Standard (Gasoline) 2014 Honda Accord Hybrid (Gasoline) 2017 Honda Clarity Fuel Cell (Hydrogen) 2014 Honda Accord Plug-in Hybrid (Electric) 2017 Tesla Model S P90D (Electric) 0 jared@meridianenergypolicy.com 9

10 Thermal Hydrogen Economy: (where Methanol replaces Gasoline and Ammonia replaces Nat. Gas) Batteries Electricity/Power Stationary Power Mobile Power Wind/PV H 2 O/CO 2 Recycling SOFC Engine Nuclear /CSP H 2 O CO 2 Electrolyser H 2 /CO CH 3 OH NH 3 H 2 N 2 Heat Oxyfuel Power Plant O 2 Coal Gasifier or Gas Reformer ASU CO 2 Sequestration Air/Electricity EOR Hydrocarbons (CH x ) Service Source Conversion Electricity/Power Heat Chem. Carrier Nitrogen Oxygen CO 2 Hydrocarbons Liquid Storage 10

11 Thermal Hydrogen Economy using Methanol (CH 3 OH) and Ammonia (NH 3 ) as H 2 Carriers U.S. System in Quads (Services Demanded 2014) 11

12 Estimated Cost per kg of Hydrogen $3.00 $2.50 O&M $/kg H2 $2.00 $1.50 $1.00 $0.50 $0.00 Capacity Value of Net kw (e) -year* Value of O 2 Value of O 2 Electrolysis 50% utilization, $400/kW H2 ($135/kW H2 -year) $28/MWh Cost of O 2 Auto Thermal Reformer O&M Reformer $4/MMBTU jared@meridianenergypolicy.com 12

13 P Dispatchable demand and Dispatchable supply Assumes NH $1.2/kg H 2 e (~$0.04/kWh H2 ), CH 3 $1.80/kg H 2 > $110/MWh, PHEV s stop charging, begins relying on SOFC range Distribution ~$100/MWh, Electric heat w COP 2.5 or less replaced w ~$55/MWh, PHEV s begin valuing SOFC waste heat, stop charging in cold ~$65/MWh, CHP displaces electric heat with COP 2.5 or ~$40/MWh, Combustion replaces direct electric > $110/MWh, SOFC s supply power S Transmission ~$20-30/MWh CCS / MCFC s ~$35/MWh Allam cycle plants ~$38/MWh Heat-Assisted Electrolysis (Valued O 2 ~$40/MWh, 1) All Nuclear/CSP is dispatched and heat stops assisting electrolysis 2) CHP dispatched to replaces direct electric ~$28/MWh Electrolysis (Valued O 2 ~$22/MWh Electrolysis (No O 2 Value) meridianenergypolicy.com 13 D Q

14 Supply and Demand in Thermal Hydrogen: #1 Dispatchable demand at most oversupplied time and place -> Heat assisted electrolysis on the transmission (supply) side #2 Self-subsidize the storage (arbitrage) with the value of oxygen Electricity: Allam Cycle or Oxyfuel NGCC Syngas/Hydrogen: Auto-thermal Reforming Use longest hydrocarbon supply while renewing the shortest supply via EOR/EGR. #3 Dispatchable supply at most undersupplied time and place -> Fuel cells enable EV s by providing electric range and direct heat H 2 (or NH 3 ) combustion for timely, distributed heat and/or power Why? To maximize the utilization of: 1) Copper (Transmission and distribution) 2) Iron (Low marginal cost power plant capacity) 3) Lithium (Batteries)

15 Vision for Interior-to-Coast Distribution NH 3 / CH 3 OH H 2 /CO Hydrocarbon (Coal) ATR ASU O 2 (Wind) CO 2 /H 2 O O 2 H 2 /CO Hydrocarbon (Gas) Oil Exports EOR CO 2 (CSP) UEP e - (PV) e - #1 H 2 /CO #2 #3 UEP O 2 ATR NH 3 / +ASU (Nuclear) CH 3 OH CO 2 e - (PV) 15

Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco

Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco World Green Energy Forum 2010: Hydrogen and Fuel Cells Gyeoungju, South Korea November 17-20, 2010

More information

Fuel Cells For a More Sustainable Energy Future

Fuel Cells For a More Sustainable Energy Future Fuel Cells For a More Sustainable Energy Future Calit2 - Clean Energy Challenge: Illuminating Environmentally Progressive Technologies Jack Brouwer, Ph.D. Associate Director May 14, 2009 National Fuel

More information

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete

To Hydrogen or not to Hydrogen. Potential as a Ship Fuel. Dr. John Emmanuel Kokarakis. Emmanuel John Kokarakis University of Crete To Hydrogen or not to Hydrogen. Potential as a Ship Fuel Dr. John Emmanuel Kokarakis Emmanuel John Kokarakis University of Crete THE VISION "I believe that water will one day be employed as fuel, that

More information

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines?

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? What if carbon-capture was an integral part of a power cycle? Oxy-FC is a novel

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

4 th U.S.-China CO2 Emissions Control Science & Technology Symposium

4 th U.S.-China CO2 Emissions Control Science & Technology Symposium www.inl.gov Enhanced Carbon Capture and Utilization in Power Plants through Hybridization with Grid Dynamics 4 th U.S.-China CO2 Emissions Control Science & Technology Symposium Richard D. Boardman, Ph.D.

More information

Renewable Energy for Industry

Renewable Energy for Industry Download the report: www.iea.org/publications/insights Renewable Energy for Industry Cédric Philibert, Renewable Energy Division, International Energy Agency Nordic Pavillion, COP23, Fidji - Bonn, 15 November

More information

Energy storage in hydrogen. Mascha Smit KIvI symposium Energieopslag 12 april 2017

Energy storage in hydrogen. Mascha Smit KIvI symposium Energieopslag 12 april 2017 Energy storage in hydrogen Mascha Smit KIvI symposium Energieopslag 12 april 2017 Technology Roadmap Hydrogen and Fuel cells; IEA, 2015 Changing energy system today: lineair system from producer to consumer,

More information

Nuon Magnum as a super-battery Flexible power and storage from CO 2 neutral fuel

Nuon Magnum as a super-battery Flexible power and storage from CO 2 neutral fuel Nuon Magnum as a super-battery Flexible power and storage from CO 2 neutral fuel Symposium Wind-meets-Gas Alexander van Ofwegen 14 September 2017 Paris Climate Agreement Ambition: globale average temperature

More information

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 SOEC: Key enabling Technology for sustainable Fuels and Feedstocks John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 +

More information

Fremtidens (Bio)brændstoffer

Fremtidens (Bio)brændstoffer Fremtidens (Bio)brændstoffer John Bøgild Hansen 1 Haldor Topsøe A/S We have been committed to catalytic process technology for more than 78 years Founded in 1940 by Dr. Haldor Topsøe Revenue: 700 million

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Energy Overview From NREL

Energy Overview From NREL Energy Overview From NREL This document has no connection to cold fusion, but it is valuable public domain information, it is no longer in print, and it does not appear to be available elsewhere on the

More information

DME as a carrier of Renewable Energy

DME as a carrier of Renewable Energy Annual Conference of Japan Institute of Energy, 6 August 2013 DME as a carrier of Renewable Energy Yotaro Ohno Corporation 1 Contents Introduction Comparison of Physical properties of Energy carriers Conversion

More information

Jason C. Ganley. Howard University Department of Chemical Engineering Washington, DC

Jason C. Ganley. Howard University Department of Chemical Engineering Washington, DC Intermediate Temperature Direct Ammonia Fuel Cells Jason C. Ganley Howard University Department of Chemical Engineering Washington, DC 1 Ammonia for Fuel Cells CH4 103 (1.5 H2)! Very mild enthalpy of reforming!

More information

Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications

Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications Preliminary Assessment of Energy and GHG Emissions of Ammonia to H2 for Fuel Cell Vehicle Applications Michael Wang, Ye Wu, and May Wu Center for Transportation Research Argonne National Laboratory Argonne

More information

Coupling of power, fuels, chemicals: perspective for e-fuels production

Coupling of power, fuels, chemicals: perspective for e-fuels production Coupling of power, fuels, chemicals: perspective for e-fuels production HANNOVER MESSE - Life needs Power April 25 th, 2018 Dr. Ireneusz Pyc, Dr. Gerhard Zimmermann Siemens Power and Gas, Technology and

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Download the report:

Download the report: Download the report: www.iea.org/publications/insights Outlook for Hydrogen Cédric Philibert, Renewable Energy Division, International Energy Agency Green Hydrogen for the Chilean Energy Transition, Santiago

More information

Smart Energy Denmark - without nuclear and fossil fuels

Smart Energy Denmark - without nuclear and fossil fuels Energy Union without Nuclear Power - Utopia or Perspective? Scientific Symposium, Austrian Energy Agency Vienna 19 March 2015 Smart Energy Denmark - without nuclear and fossil fuels Henrik Lund Professor

More information

Electro fuels an introduction

Electro fuels an introduction Electro fuels an introduction Cédric Philibert, Renewable Energy Division, International Energy Agency EC-IEA Workshop on Electro fuels, Brussels, 10 Sept 2018 IEA Industry and transports: the hard-to-abate

More information

Renewable Electricity Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation Mix Model

Renewable Electricity Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation Mix Model USAEE/IAEE 35th North American Conference, Concurrent Session 19, Royal Sonesta Hotel, Houston TX USA, November 14, 217 Renewable Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Justin Beck Ryan Johnson Tomoki Naya

Justin Beck Ryan Johnson Tomoki Naya Justin Beck Ryan Johnson Tomoki Naya Propose electrochemical system for converting CO2 to portable fuels Perform economic analysis for process Compare results and potential to some storage alternatives

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

U.S Department of Energy Fuel Cell Technologies Office Overview

U.S Department of Energy Fuel Cell Technologies Office Overview U.S Department of Energy Fuel Cell Technologies Office Overview Fuel Cell Technologies Office 1 IEA Electrolysis Meeting Herten, Germany April 21-22, 2015 Bryan Pivovar National Renewable Energy Lab Hydrogen

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Energy Storage Solutions Alstom Approach

Energy Storage Solutions Alstom Approach Energy Storage Solutions Alstom Approach G.L. Agostinelli, D. Pezzella Milano July 2 nd, 2015 Agenda Alstom approach Definition and role of Energy Storage Alstom solutions Conclusion P 2 Opportunity of

More information

Future sustainable EU energy systems and the case of Cyprus

Future sustainable EU energy systems and the case of Cyprus Future sustainable EU energy systems and the case of Cyprus Dr. Andreas Poullikkas Ph.D, D.Tech, FIET Chairman, Cyprus Energy Regulatory Authority Chairman, Cyprus Energy Strategy Council apoullikkas@cera.org.cy

More information

Basic Hydrogen Strategy (key points)

Basic Hydrogen Strategy (key points) This strategy lays out the vision for the common target that public and private sectors should pursue together with an eye on 2050. 1. Structural challenges involving Japan s energy supply and demand (1)

More information

Smart Energy Systems and the Danish Plans for Renewable Energy

Smart Energy Systems and the Danish Plans for Renewable Energy Twente University, Enschede, Thursday 18 May 2017 Smart Energy Systems and the Danish Plans for Renewable Energy Henrik Lund Professor in Energy Planning Aalborg University Aalborg University, Denmark

More information

Direct Ammonia Fuel Cells for Distributed Power Generation and CHP Andrew McFarlan, Nicola Maffei, Luc Pelletier

Direct Ammonia Fuel Cells for Distributed Power Generation and CHP Andrew McFarlan, Nicola Maffei, Luc Pelletier Direct Ammonia Fuel Cells for Distributed Power Generation and CHP Andrew McFarlan, Nicola Maffei, Luc Pelletier Presented at: Ammonia The Key to a Hydrogen Economy Argonne National Laboratories Oct 13-14,

More information

Demonstration of CO 2 -free Ammonia Synthesis using Renewable Energy-Generated Hydrogen

Demonstration of CO 2 -free Ammonia Synthesis using Renewable Energy-Generated Hydrogen NH3 Fuel Conference 2018 NH3 Energy+ Topical Conference in AIChE Annual Meeting Demonstration of CO 2 -free Ammonia Synthesis using Renewable Energy-Generated Hydrogen Oct. 31st, 2018 (JGC Corporation)

More information

Beyond LCOE: The Value of CSP with Thermal Energy Storage

Beyond LCOE: The Value of CSP with Thermal Energy Storage CSP Beyond LCOE: The Value of CSP with Thermal Energy Storage energy.gov/sunshot Mark S. Mehos, Program Manager, CSP NREL Discussion SunShot and LCOE Understanding the Value of CSP with Thermal Energy

More information

Smart Energy Systems The Design of 100% Renewable Energy Solutions. Henrik Lund Professor in Energy Planning Aalborg University

Smart Energy Systems The Design of 100% Renewable Energy Solutions. Henrik Lund Professor in Energy Planning Aalborg University Smart Energy Systems The Design of 100% Renewable Energy Solutions Henrik Lund Professor in Energy Planning Aalborg University Renewable Energy Systems A Smart Energy Systems Approach to the Choice and

More information

Hydrogen & Renewable Energy

Hydrogen & Renewable Energy HELION HELION HYDROGEN POWER Hydrogen & Renewable Energy DERBI 2009 Conference, Perpignan, June 11th 2009 Jean-Christophe HOGUET HELION HELION Subsidiary of AREVA R, renewable energy Business Unit Wind

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

Current gas consumption

Current gas consumption 4/3/217 GAS SUPPLY AND DEMAND CHALLENGES NOW AND IN 1% RENEWABLE ENERGY SYSTEMS IDA S ENERGY VISION 25 BRIAN VAD MATHIESEN bvm@plan.aau.dk Joint Gas Workshop FutureGasDK and CITIES DTU, Lyngby, April3

More information

A Hydrogen Economy. Dr. Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine

A Hydrogen Economy. Dr. Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine A Hydrogen Economy Dr. Mazen Abualtayef Environmental Engineering Department Islamic University of Gaza, Palestine Adapted from a presentation by Professor S.R. Lawrence, Leeds School of Business, Environmental

More information

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute

Ronald L. Schoff Parsons Corporation George Booras Electric Power Research Institute Pre-Investment of IGCC for CO 2 Capture with the Potential for Hydrogen Co-Production Gasification Technologies 2003 - San Francisco, California - October 12-15, 2003 Michael D. Rutkowski, PE Parsons Corporation

More information

Renewable Energy for Industry: Offshore wind in Northern Europe

Renewable Energy for Industry: Offshore wind in Northern Europe Renewable Energy for Industry: Offshore wind in Northern Europe Cédric Philibert, Renewable Energy Division, International Energy Agency ETIP WIND, 21 February 2019 IEA Industry and transports: the hard-to-abate

More information

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Christopher Graves Closing the Carbon Cycle: Fuels from Air conference at Arizona State

More information

Large-Scale Hydrogen Production and Liquefaction for Regional and Global Export

Large-Scale Hydrogen Production and Liquefaction for Regional and Global Export Large-Scale Hydrogen Production and Liquefaction for Regional and Global Export David Berstad (david.berstad@sintef.no), Rahul Anantharaman, Øivind Wilhelmsen, Vidar Skjervold, Petter Nekså SINTEF Energy

More information

LIQUID AIR ENERGY STORAGE (LAES) Pumped Hydro Capability No Geographical Constraints

LIQUID AIR ENERGY STORAGE (LAES) Pumped Hydro Capability No Geographical Constraints LIQUID AIR ENERGY STORAGE Large scale, Long duration LIQUID AIR ENERGY STORAGE (LAES) Pumped Hydro Capability No Geographical Constraints Stuart Nelmes Engineering Director Copyright of Highview Power

More information

4th Generation District Heating and Smart Energy Systems Insights from the 4DH Research Centre

4th Generation District Heating and Smart Energy Systems Insights from the 4DH Research Centre 4th Generation District Heating and Smart Energy Systems Insights from the 4DH Research Centre Henrik Lund Professor in Energy Planning Aalborg Universitet Smart Energy Europe Publication www.energyplan.eu/smartenergyeurope

More information

Costs of Decarbonization. Geoffrey Heal

Costs of Decarbonization. Geoffrey Heal Costs of Decarbonization Geoffrey Heal Introduction In its submission to COP 21, the US expressed a desire to reduce its greenhouse gas emissions by 80% by mid century. Not a formal goal, rather an aspiration

More information

R&D on Hydrogen Energy Carriers toward Low Carbon Society

R&D on Hydrogen Energy Carriers toward Low Carbon Society R&D on Hydrogen Energy Carriers toward Low Carbon Society Clean Coal Day in Japan 2018 International Symposium September 10, 2018 Shigeru Muraki Program Director for SIP Energy Carriers 1 Policies and

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

California Independent System Operator. Variable Operations and Maintenance Costs January 8, 2019

California Independent System Operator. Variable Operations and Maintenance Costs January 8, 2019 California Independent System Operator Variable Operations and Maintenance Costs January 8, 2019 Agenda Introduction and Background Cost Definitions Methodology Data Sources Variable O&M Cost Information

More information

Nel Group. Jon André Løkke Chief Executive Officer

Nel Group. Jon André Løkke Chief Executive Officer Nel Group Jon André Løkke Chief Executive Officer Three business segments Nel ASA Global pure-play hydrogen company facilities in Norway, Denmark and the U.S. Significant foothold in fast-growing markets

More information

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Presented at 9 th Annual NH3 Fuel Conference San Antonio, TX Andrew McFarlan, Ph.D. October 1 2012 CanmetENERGY

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts -

Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts - Improving Flexibility of IGCC for Harmonizing with Renewable Energy - Osaki CoolGen s Efforts - Table of Contents 1. Project Background 2. Progress of Osaki CoolGen Project (1) Outline of Osaki CoolGen

More information

Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols

Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols Advent of the practical coal-fired fuel cell John M. Pope, Ph.D. Chairman NDC Power Cheyenne,

More information

Optimal Break-Even Distance for Design of Microgrids

Optimal Break-Even Distance for Design of Microgrids Optimal Break-Even Distance for Design of Microgrids Omar Hafez and Kankar Bhattacharya Department of Electrical & Computer Engineering University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 Eng.omar.h@gmail.com

More information

Towards the development of low cost non-platinum based catalysts for catalytic water splitting

Towards the development of low cost non-platinum based catalysts for catalytic water splitting Towards the development of low cost non-platinum based catalysts for catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Dr. Usman Ali Rana What

More information

Fuel Cell Technologies in the Japanese National Innovation System

Fuel Cell Technologies in the Japanese National Innovation System Fuel Cell Technologies in the Japanese National Innovation System A Talk at International Conference on Innovation in Energy Technologies September 29-30, 2003. Washington, DC. Akira Maeda Keio University,

More information

Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant

Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant Performance Evaluation of a Supercritical CO 2 Power Cycle Coal Gasification Plant Scott Hume Principal Technical Leader The 5th International Symposium - Supercritical CO 2 Power Cycles March 28-31, 2016,

More information

Fossil Energy. Fossil Energy Technologies. Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor)

Fossil Energy. Fossil Energy Technologies.  Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor) Fossil Energy Technologies Coal steam power Gasification Power Access (clean HH fuel) Coal Direct Liquefaction Gasification liquids Air quality (outdoor) Natural Gas Biomass Power/liquids Co-production

More information

Performance Improvements for Oxy-Coal Combustion Technology

Performance Improvements for Oxy-Coal Combustion Technology Performance Improvements for Oxy-Coal Combustion Technology John Wheeldon Technical Executive, Electric Power Research Institute Second Oxy-Combustion Conference Yeppoon, Queensland 12 th to 15 th September

More information

Dynamis SP2: Power plant & capture technologies

Dynamis SP2: Power plant & capture technologies H 2 Coal Natural Gas Chemical conversion C x H y H 2 + CO 2 Integration? Thermal conversion C x H y Power + CO 2 Electricity Dynamis SP2: CO 2 capture Power plant & capture technologies Castor-Encap-Cachet-Dynamis

More information

Pathways & industrial approaches for utilization of CO 2

Pathways & industrial approaches for utilization of CO 2 Pathways & industrial approaches for utilization of CO 2 - by Dr. S. Sakthivel Background: CO 2 is a greenhouse gas and to reduce greenhouse effect, the CO 2 emissions need to be controlled. Large scale

More information

Plenary Talk EU 2050 energy strategy towards sustainable energy systems Dr. Andreas Poullikkas Ph.D, D.Tech, FIET

Plenary Talk EU 2050 energy strategy towards sustainable energy systems Dr. Andreas Poullikkas Ph.D, D.Tech, FIET Plenary Talk EU 2050 energy strategy towards sustainable energy systems Dr. Andreas Poullikkas Ph.D, D.Tech, FIET Chairman, Cyprus Energy Regulatory Authority Chairman, Cyprus Energy Strategy Council andreas.poullikkas@eecei.cut.ac.cy

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

An Industrial Perspective on Hydrogen Energy

An Industrial Perspective on Hydrogen Energy Fourth Annual EPRI-IEA Expert Workshop on Electricity Decarbonisation An Industrial Perspective on Hydrogen Energy OECD Conference Centre October 10th, 2017 Ayako MATSUMOTO Mitsui Global Strategic Studies

More information

a) Environment b) Finite supply of fossil fuels c) Lack of substitutes d) Good for economy Why Energy from Alternative Sources? Why Wind Energy?

a) Environment b) Finite supply of fossil fuels c) Lack of substitutes d) Good for economy Why Energy from Alternative Sources? Why Wind Energy? Why Energy from Alternative Sources? Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, Iowa 52242 1527 andrew kusiak@uiowa.edu Tel: 319 335 5934 Fax: 319

More information

greenfuel project 17th IERE General Meeting & Canada Forum 17 th May 2017 Thorsten Miltkau innogy SE Strategy & Technology Corporate Technology

greenfuel project 17th IERE General Meeting & Canada Forum 17 th May 2017 Thorsten Miltkau innogy SE Strategy & Technology Corporate Technology greenfuel project 17th IERE General Meeting & Canada Forum 17 th May 2017 Thorsten Miltkau innogy SE Strategy & Technology Corporate Technology The following slides provide... information about: German

More information

Session V Market Driven ES Existing Business Cases give an Insight to their Revenue Streams. Business Cases for large Capacity Storage Projects

Session V Market Driven ES Existing Business Cases give an Insight to their Revenue Streams. Business Cases for large Capacity Storage Projects Session V Market Driven ES Existing Business Cases give an Insight to their Revenue Streams. Business Cases for large Capacity Storage Projects (4x4) by clicking on icon T. Buddenberg Mitsubishi Hitachi

More information

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E.

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E. Combined Heat and Power Applications and Guidelines Jeffrey Ihnen, P.E. Portions of this Presentation Brought to you by: Views, opinions and bad ideas are mine alone 2 Content CHP Perspectives Status Quo

More information

Renewable. Affordable. Energy Everywhere

Renewable. Affordable. Energy Everywhere Renewable. Affordable. Energy Everywhere Company Presentation Investors Company Presentation Sunfire 20.09.2017 2 Company facts Knowhow ~90 Employees Skills in Ceramics, Stack + System Production, Engineering,

More information

Exploring the role of hydrogen in the future energy mix

Exploring the role of hydrogen in the future energy mix Exploring the role of hydrogen in the future energy mix A brief overview of Gasunie's hydrogen projects Wim Groenendijk #2 The changing role of gas in Northwest Europe Paris Agreement Fuel Integration

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University

Alternatives to Alternative Energy - FUEL CELLS. C.J. Kobus Oakland University Alternatives to Alternative Energy - FUEL CELLS C.J. Kobus Oakland University Take Home Lesson Fuel cells can help us generate cleaner power from conventional sources more efficiently and can be conveniently

More information

Economic and Environmental Barriers to Implementing Coal-to-Liquid Energy Clean Energy Workshop

Economic and Environmental Barriers to Implementing Coal-to-Liquid Energy Clean Energy Workshop www.inl.gov Economic and Environmental Barriers to Implementing Coal-to-Liquid Energy 2014 Clean Energy Workshop Richard D. Boardman, Ph.D. Chem. Eng. Manager, Energy Systems Integration September 14-15,

More information

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant J.-M. Amann 1, M. Kanniche 2, C. Bouallou 1 1 Centre Énergétique et Procédés (CEP), Ecole Nationale Supérieure des Mines

More information

Public Workshops on Carbon Capture and Sequestration

Public Workshops on Carbon Capture and Sequestration Carbon Capture & Sequestration Economics Public Workshops on Carbon Capture and Sequestration Howard Herzog MIT February 13-14, 14, 2008 Overview Capture primer Costs CCS as part of a mitigation portfolio

More information

Hydrogen Workshop for Fleet Operators

Hydrogen Workshop for Fleet Operators Hydrogen Workshop for Fleet Operators Module 2, Hydrogen Production, Distribution and Delivery Hydrogen Production, Distribution, & Delivery Outline 1. Hydrogen Production 2. Hydrogen Delivery Pipeline

More information

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g FUEL CELL ENERGY POWERS THE CAR! Electrical Current ELECTRONS The movement of electrons generates electricity to power the motor. OXYGEN

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Toyota Environmental Challenge 2050

Toyota Environmental Challenge 2050 Toyota Environmental Challenge 2050 Koichi Kojima R&D and Engineering Management Division/Advanced R&D and Engineering Company TOYOTA MOTOR CORPORATION Toyota's six challenges Society where people coexist

More information

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES THE CATALYST GROUP RESOURCES INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion

More information

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium

Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium RMEL Meeting Darlene M. Steward National Renewable Energy Laboratory darlene.steward@nrel.gov Denver, CO June 10, 2009

More information

Renewable Energy Today

Renewable Energy Today Chapter 18 Renewable Energy Today Renewable Energy energy from a source that is constantly being reformed. Many governments are planning to increase their use of renewable energy resources. This will reduce

More information

Part 2. Hydrogen and Related Topics

Part 2. Hydrogen and Related Topics Part 2. Hydrogen and Related Topics 1. Introduction and hydrogen economy 2. Production of hydrogen from water 3. Hydrogen storage 4. Usage of hydrogen 5. Safety aspects The objective of these lectures

More information

Dr. Martin Roeb International Conference: The renewable hydrogen, new opportunities for Chile, Santiago de Chile, 10th May 2017

Dr. Martin Roeb International Conference: The renewable hydrogen, new opportunities for Chile, Santiago de Chile, 10th May 2017 Solar Hydrogen Status and Trends Dr. Martin Roeb International Conference: The renewable hydrogen, new opportunities for Chile, Santiago de Chile, 10th May 2017 Outline International Goals for Decarbonisation

More information

Transportation in a Greenhouse Gas Constrained World

Transportation in a Greenhouse Gas Constrained World Transportation in a Greenhouse Gas Constrained World A Transition to Hydrogen? Rodney Allam Director of Technology Air Products PLC, Hersham, UK 3 4 The Problem: demand and cause People Prosperity Pollution

More information

Technologies for CO 2 Capture From Electric Power Plants

Technologies for CO 2 Capture From Electric Power Plants Technologies for CO 2 Capture From Electric Power Plants The Energy Center at Discovery Park Purdue University CCTR, Potter Center Suite 270 500 Central Avenue West Lafayette, IN 47907 http://discoverypark.purdue.edu/wps/portal/energy/cctr

More information

Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017

Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017 Waste Heat to Power (WHP) Technologies Eric Maxeiner, PhD. May 24, 2017 Presentation Outline of WHP WHP Market : Thermoelectric Steam Organic Rankine Cycle (ORC) sco 2 power cycle Overview of WHP: Definitions

More information

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة:

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة: Quiz 1 Model A (A) it is discovered since very long time (B) it can be generated by different power stations (C) it can be easy controlled 2. To install Nuclear Power plants it is required to have a very

More information

How can we create the sustainable hydrogen society?

How can we create the sustainable hydrogen society? How can we create the sustainable hydrogen society? Hydrogen Vision: 1) Hydrogen has to become a common commodity 2) Hydrogen has to be produced free of pollution and losses 3) Hydrogen has to be traded

More information

Learning objectives and outcomes

Learning objectives and outcomes Ene-59.4301 Energy Systems for Communities Micro-Cogeneration Kari Alanne Senior University Lecturer, D.Sc (Tech.) Learning objectives and outcomes After this lecture the student will know the definitions

More information

The Future of Energy with Agricultural Carbon Utilization

The Future of Energy with Agricultural Carbon Utilization The Future of Energy with Agricultural Carbon Utilization Energy & Agricultural Carbon Utilization Symposium (June 11, 2004) Athens, GA Danny Day, Eprida danny.day@eprida.com 716-316-1765 James Lee ORNL

More information

WITH CO2 SEQUESTRATION

WITH CO2 SEQUESTRATION PROJECT DESIGNS FOR IGCC & SNG WITH CO2 SEQUESTRATION Gasification Technologies Conference October 5, 2009 Ron Herbanek, Bill Mooneyhan ConocoPhillips Company Presentation Outline Introduction Design Premise

More information

Hydrogen as an Energy Carrier

Hydrogen as an Energy Carrier CH2356 Energy Engineering Hydrogen as an Energy Carrier Dr. M. Subramanian 28-Feb-2011 Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

INTEGRATION OF RENEWABLE ENERGY SOURCES AND HYDROGEN STORAGE IN PORTO SANTO. Neven Duić Maria da Graça Carvalho Instituto Superior Técnico

INTEGRATION OF RENEWABLE ENERGY SOURCES AND HYDROGEN STORAGE IN PORTO SANTO. Neven Duić Maria da Graça Carvalho Instituto Superior Técnico INTEGRATION OF RENEWABLE ENERGY SOURCES AND HYDROGEN STORAGE IN PORTO SANTO Neven Duić Maria da Graça Carvalho Instituto Superior Técnico OBJECTIVES To show a model optimising hydrogen storage integration

More information

Concept Model: A Regenerative Ammonia Fuel Cell System

Concept Model: A Regenerative Ammonia Fuel Cell System Concept Model: A Regenerative Ammonia Fuel Cell System Jason C. Ganley NHThree, LLC Ammonia Carbon-free Liquid Fuel October 13, 2009 1 The Hydrogen Economy The basis of any fuel-based energy economy: 1)

More information