UK Fuel Cell Research & Development

Size: px
Start display at page:

Download "UK Fuel Cell Research & Development"

Transcription

1 UK Fuel Cell Research & Development John Kilner Department of Materials Imperial College, London SW7 2AZ, UK And UK Energy Research Centre (UKERC)

2 United Kingdom Energy Research Centre UKERC Headquartered at Imperial Imperial, Oxford, Edinburgh, Manchester, Lancaster, Policy Studies Institute UKERC aims to take a whole systems view. Multidisciplinary team mix of scientist, engineers, social scientists, economists. Three vertical themes Three cross cutting themes

3 UKERC THREE VERTICAL THEMES Demand Reduction Brenda Boardman, Environmental Change Institute, Oxford Future Sources of Energy Robin Wallace, Edinburgh Infrastructure and Supply Nick Jenkins, UMIST

4 UKERC THREE X-CUTTING THEMES Energy Systems and Modelling Paul Ekins, Policy Studies Institute Environmental Sustainability David Howard, Lancaster Environment Centre Material for Advanced Energy Systems John Kilner, Imperial College

5 UKERC Research Themes Materials For Advanced Energy Systems (JAK) For hydrogen economy High temp electrolysers (Materials) Oxygen ion and protonic Bio inspired generation (Chemistry) Storage (Chemistry) Materials for CCS systems Mixed Conducting membranes for oxygen separation Materials for Nuclear Energy Radiation hard (Materials) Materials for 3 rd Gen PV s Materials processing (Physics) UK Energy Research Centre

6 Future sources of Energy Theme Fuel cells a component of this activity run by Nigel Brandon (IC) UKERC Compiling a Research Atlas of the UK research into energy related R & D. Fuel cell Landscape complied by Nigel Brandon Published on the UKERC Web site Roadmaps Research register of research grants in the energy sector

7 Fuel Cells powering a greener future

8 Supergen Consortium Fuel Cells Powering A Greener Future EPSRC funding 1.9M DSTL funding 0.2M 4 years from October 2005 Industry Rolls-Royce Fuel Cell Systems (Dr. Stephen Pyke) Johnson-Matthey (Dr. Dave Thompsett) Ceres Power (Dr. Ahmet Selcuk) DSTL (Dr. Barry Lakeman) Academia Engineering (Prof. Nigel Brandon) University of Newcastle (Prof. Keith Scott) Materials (Prof. Alan Atkinson) University of Nottingham (Prof. Kwang-Leong Choy) University of St. Andrews (Prof. John Irvine, Dr. Richard Baker)

9 Supergen consortium aims To bring together a world-class multidisciplinary UK team across the academic and industrial sectors to address key technical barriers facing the realisation of a UK fuel cell industry. To exploit synergies in our work addressing three (traditionally distinct) fuel cell technologies; High-Temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs), High-Temperature Solid Oxide Fuel Cells (HT-SOFCs) Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). To develop high quality researchers trained in fuel cell technology. To communicate our research to the academic, industrial and general communities.

10 Supergen consortium activities (1) WP1 Zero Leakage SOFC To reduce ceramic electrolyte leakage to equivalent of <1% efficiency loss green layer processing and characterisation, constrained sintering, novel processing, nano-powders process optimisation, lower sintering temperature, co-sintering mechanical properties. WP2 Significantly Improved Fuel Cell Durability Improve durability from state-of-the-art by a factor of >2 durable SOFC anodes, resistance to coking and sulphur ageing tests, phase analysis, electron microscopy thermal and redox cycling (particularly SOFCs) cell and stack modelling, stack design tools control strategies to improve durability lifetime prediction.

11 Supergen consortium activities (2) WP3 Significantly Improved Fuel Cell Performance extend PEM to 130 C (automotive) and 200 C (stationary) reduce SOFC to 500 C MEAs for HT-PEMFCs, cathodes for HT-PEMFCs (resistant to deactivation) and IT-SOFCs, electrode modelling, novel routes to powders and components. WP4 Enhanced Fuel Flexibility Liquid hydrocarbons, alcohols, biofuels direct hydrocarbons in SOFC, reforming resistance to sulphur and other impurities less clean fuels, biogas ethanol in SOFC and PEM. WP5 Dissemination, Outreach and Training Workshops and seminars, website, UK and overseas links, UKERC.

12 SOFC Cell Design Tubular Siemens-Westinghouse Planar Global Metal supported thin film Ceres Power HT-SOFC 1000 C Advantages sealing durability IT-SOFC 550 C

13 Materials Issues for SOFC and ITSOFC High temperature SOFC s Durability Sealants ITSOFC s (5-600 C) Activity at low temperatures Oxygen ion conductivity in electrolytes and mixed conductors (cathodes) Generic Redox and sulphur tolerant Anodes (St.Andrews) Fundamental understanding of electrode processes (Imperial) Characterisation of porous electrodes Modelling of whole cells

14 Low temperature Cathodes for ITSOFC s Research theme in UKERC, Supergen, SOFC 600 (EU) Major cause of loss at the lowest temperatures due to cathode polarisation Need more active cathode materials for reduction of oxygen molecule Mixed conducting perovskites Oxygen diffusion and electronic conductivity Mixed conducting composites Electrolyte and electronic conducting material Cermets Ceramic-ceramic composites

15 Perovskite materials A 3+ B 3+ O 3 Rare Earth ions La 3+, Ce 3+, Pr 3+, Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Yb 3+, Lu 3+ Al 3+, Cr 3+, Fe 3+, Ga 3+, Co 3+, Mn 3+, In 3+, Sc 3+

16 Combinatorial searching for new perovskite mixed conductors y x Arrays of inkjet printed dots Changing compositions La 1-x Sr x Co 1-y Fe y O 3

17 High throughput screening system

18 Discovery of new functional oxides by combinatorial methods (EPSRC) Prof. Kilner Projects

19 Neural network predictor Performance of the neural network used to predict the diffusion coefficient of an unseen dataset Rossiny et al Proc SOFC 7 Lucerne 2006

20 Critical issues in electrode modelling Fundamental understanding of electrochemistry E.g for cathodes what is the rate limiting step? How does this related to bulk and surface structure of the electrode material Electrode microstructure Quantitative microstructural characterisation Single phase and composites

21 Adler Model R chem Figure: Schematic representation of the ALS model [S.B. Adler, limitations of charge transfer models for mixedconducting oxygen electrodes, solid state ionics 135 (2000) ] = RT τ F ac D k ( ε ) 2 0 D Oxygen self-diffusion coefficient k Oxygen surface exchange coefficient τ Tortuosity ε Fractional porosity a Internal surface area/unit volume C O Molar concentration of oxygen ions For Low R chem need Dk product > cm 3 sec -2

22 FIB Secondary Electron Image Following Milling

23 Isotope exchanged sample 500 C 5 mins

24 Isotopic Fraction Map of Ion Polished Edge Line y= 4µm Line y= 8 µm Line y= 9µm

25 Composite Cathodes Porous composite materials Used as electrodes in both High temp and ITSOFC Understanding and characterisation a problem

26 FIB sectioned porous anode structure Reconstruction of the 3-D structure of an SOFC anode from dual beam FIB sectioning. Ni green, YSZ grey and pores blue Wilson et al Nature Materials, (7): p

27 Commercialisation Ceres Power Targets RRFCS GT-SOFC 1MW pressurised Hybrid system

28 Main Industrial Organisations Solid Oxide Ceres Power Fuel Cells Scotland Ltd Quinetic Rolls Royce Fuel Cell Systems St Andrews Fuel Cells Ltd Alkaline Alternative Fuel Systems Ltd. Eneco ltd PEM CMR Fuel Cells Ltd Dart Sensors Ltd. Intelligent Energy ITM Power PLC JM Fuel Cells Quinetic Voller Energy Govt. Labs Defence Science and technology Laboratory [DSTL] National Physical Laboratory (NPL)

29 Rolls-Royce SOFC-GT pressurised hybrid Predictions: electricity SOFC T air C electricity 70% SOFC, 30% GT η e = 60-70% LHV on natural gas at 5 MW Needs high T SOFC de-s HEX exhaust Segmented-in-series flat tube design fuel Achieved multi-kw pressurised operation

30 RRFCS Development Programme Objective 1MW SOFC Unit

31

32 Ceres Power Metal-supported SOFC Ce 0.9 Gd 0.1 O 2-x electrolyte. La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ + CGO cathode, µm thick. Cr ferritic stainless steel foil support, µm thick. Ni + CGO anode, µm thick. Stainless steel Stainless steel-supported

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Alternative Energy Task Group

Alternative Energy Task Group Source: Marine Current Turbines Alternative Energy Task Group - Scope Biomass and Biofuels Fuel Cells Hydrogen Solar Wave/tidal Wind Co-chairs Brian Cane (TWI) John Oakey (Cranfield University) Biomass

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

SOFC Cathodes, Supports and Contact Layers. Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK

SOFC Cathodes, Supports and Contact Layers. Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK SOFC Cathodes, Supports and Contact Layers Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK alan.atkinson@imperial.ac.uk Contents for cathodes Requirements for application in SOFCs

More information

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 478~482, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.478 Review A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

Case Study of Fuel Cell Development in the UK 2003

Case Study of Fuel Cell Development in the UK 2003 Innovation in the Energy Sector Case Study of Fuel Cell Development in the UK 2003 Roy Williamson Key Business Technologies Directorate Coverage The Drivers from a UK perspective The UK Fuel Cell Industry

More information

STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING SOLID OXIDE FUEL CELLS USING STAINLESS STEEL INTERCONNECTS AND ANODE-SUPPORTED SINGLE CELLS

STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING SOLID OXIDE FUEL CELLS USING STAINLESS STEEL INTERCONNECTS AND ANODE-SUPPORTED SINGLE CELLS Proceedings of FUELCELL25 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 25, Ypsilanti, Michigan FUELCELL25-715 STACK PERFORMANCE OF INTERMEDIATE TEMPERATURE-OPERATING

More information

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

New materials for AFC anodes

New materials for AFC anodes New materials for AFC anodes Application of Novel Electrode structures developed for SOFC technologies into AFC systems to increase anode performance and cycling durability. Alkaline fuel cells background

More information

Imperial College London

Imperial College London Imperial College London John A Kilner BCH Steele Chair in Energy Materials Dept. of Materials, Faculty of Engineering Imperial College, London, UK j.kilner@imperial.ac.uk Imperial College London Imperial

More information

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria IEA Workshop Advanced Fuel Cells, TU Graz,

More information

Rune Bredesen Vice President Research

Rune Bredesen Vice President Research Hydrogen related R&D at SINTEF Materials and Chemistry Rune Bredesen Vice President Research SINTEF Materials and Chemistry SINTEF Materials and Chemistry Who we are SINTEF is a non profit polytechnic

More information

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Venkatesan V. Krishnan Department of Chemical Engineering IIT Delhi Barriers to the hydrogen

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

THE GLOBAL CHALLENGE NETWORK IN BATTERIES AND ELECTROCHEMICAL ENERGY DEVICES

THE GLOBAL CHALLENGE NETWORK IN BATTERIES AND ELECTROCHEMICAL ENERGY DEVICES THE GLOBAL CHALLENGE NETWORK IN BATTERIES AND ELECTROCHEMICAL ENERGY DEVICES Peter Lee, Manchester X-ray Imaging Facility CLASP Meeting July 2013 For Paul Shearing UCL Chemical Engineering THE NETWORK!

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes

A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes A Study of the Impact of Sulphur on the Performance of Intermediate Temperature Solid Oxide Fuel Cells with Nickel Gadolinium Doped Ceria Anodes Dan Brett 1&2, Pattaraporn Lohsoontorn 2, Nigel Brandon

More information

Delivery of Sustainable Hydrogen

Delivery of Sustainable Hydrogen Delivery of Sustainable Hydrogen John Irvine UK EPSRC Supergen Consortium XIV 1 st October 2008-2012 Hydrogen Production HDelivery Mission HDelivery The hydrogen economy needs large volumes of hydrogen

More information

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components Joint Technology Initiatives Collaborative Project (FCH) FCH-JU-2010-1 WP4 - Development of lab-scale cell components DELIVERABLE 4.3- Prepared by: HOGANAS Document control data Document ref. : METPROCELL-WP4-

More information

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO)

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) EFFIPRO Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) FP7-Energy-NMP-2008-1 227560 Truls Norby University of Oslo 1. Project achievements EFFIPRO partnership

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

The Integrated Project SOFC600

The Integrated Project SOFC600 The Integrated Project SOFC600 Low-Temperature SOFC development Bert Rietveld Energy Research centre of the Netherlands (ECN) General Assembly FCH-JU, Brussels, 26/27 October 2009 Project data FW6 Integrated

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC

Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC Mitglied der Helmholtz-Gemeinschaft Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC AMPEA Workshop Materials for membranes in energy applications: gas separation membranes,

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009)

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Florence LEFEBVRE-JOUD CEA LITEN/Program Manager 1 RelHy Partnership & Budget 4 years collaboration project:

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Polymer Electrolyte Fuel Cell RESEARCH at NEWCASTLE

Polymer Electrolyte Fuel Cell RESEARCH at NEWCASTLE Polymer Electrolyte Fuel Cell RESEARCH at NEWCASTLE Professor Keith Scott School of Chemical Engineering and Advanced Materials CONTENT Polymer Electrolyte Membrane Fuel Cells (PEMFC) ISSUES Intermediate

More information

SOLID OXIDE FUEL CELLS (SOFC)

SOLID OXIDE FUEL CELLS (SOFC) SOLID OXIDE FUEL CELLS (SOFC) Customized Solutions Innovation in Environmental Technology and Power Generation Product Overview SOFC SOFC Products Electrolyte Supported Cells Kerafol offers SOFCs with

More information

Microtubular SOFCs for power generation, steam electrolysis and syngas production

Microtubular SOFCs for power generation, steam electrolysis and syngas production Microtubular SOFCs for power generation, steam electrolysis and syngas production M.A. Laguna-Bercero*, H. Monzón, A. Larrea, V.M. Orera Instituto de Ciencia de Materiales de Aragón (ICMA) Zaragoza, Spain

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells Sivaprakash Sengodan 1, Sihyuk Choi 1, Areum Jun 1, Tae Ho Shin 2, Young-Wan Ju

More information

Alternative Energy Technologies

Alternative Energy Technologies Alternative Energy Technologies John Oakey Chris Bagley Scope Wave and tidal Wind Biomass Hydrogen Fuel Cells Solar (PV) Wave and Tidal Energy Capable of delivering significant amounts of power Many variants

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

and Fuel Cells and Solid State Chemistry Division

and Fuel Cells and Solid State Chemistry Division Solid Oxide Fuel Cells and Gas Separation Membranes A.Hagen, P.V. Hendriksen, M. Søgaard Fuel Cells and Solid State Chemistry Division Risø DTU Outline Background Motivation Combination of Energy Conversion

More information

Fuel cell gas turbine hybrids a key part of a clean future

Fuel cell gas turbine hybrids a key part of a clean future Fuel cell gas turbine hybrids a key part of a clean future The Rolls-Royce development programme for pressurised hybrid fuel cell systems Robert Cunningham Fuel Cells Group 2001 Rolls-Royce plc The information

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Review day 2011 Brussels, 22 November

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Core Research on Solid Oxide Fuel Cells, plus flexible funding project Application of 3D imaging and analysis to

Core Research on Solid Oxide Fuel Cells, plus flexible funding project Application of 3D imaging and analysis to Core Research on Solid Oxide Fuel Cells, plus flexible funding project Application of 3D imaging and analysis to the design of improved current collectors for SOFCs. Professor gel Brandon OBE FREng BG

More information

Electrolytes: Stabilized Zirconia

Electrolytes: Stabilized Zirconia Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Stabilized Zirconia Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography

More information

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering R. Costa *, R. Spotorno, Z. Ilhan, A. Ansar German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Development of innovative metal-supported IT-SOFC technology

Development of innovative metal-supported IT-SOFC technology PROJECT SUMMARY NO PS210 Development of innovative metal-supported IT-SOFC technology OBJECTIVES The aim of this project was to develop and demonstrate cells and stacks based on the innovative metal supported

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498 Glass in energy Glasses for fuel cells and H 2 storage MAT 498 Lehigh University Rui M. Almeida Glass in energy Spring 2012 1 Fuel cells Rui M. Almeida Glass in energy Spring 2012 2 Fuel cells and the

More information

Industries. Hydrogen in France: & Universities. "IFHY" network. Prof. Olivier Joubert

Industries. Hydrogen in France: & Universities. IFHY network. Prof. Olivier Joubert Hydrogen in France: & Universities "IFHY" network Industries Prof. Olivier Joubert olivier.joubert@cnrs-imn.fr www.gdr-hyspac.cnrs.fr FRANCO-GERMAN CONFERENCE ON HYDROGEN, 22nd October 2018, Paris Hydrogen

More information

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER NATIONAL FUEL CELL RESEARCH CENTER (NFCRC) UNIVERSITY OF CALIFORNIA IRVINE, CA 92697-3550 http://www.nfcrc.uci.edu OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER (2) FUEL CELL RESEARCH CHALLENGES NATIONAL

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009 Fuel cell products for global energy markets Introduction to Ceres Power September 2009 bob.flint@cerespower.com Contents Overview of Ceres Power Product programmes Product development and manufacturing

More information

An Electricity and Value-added Gases Co-generation via Solid Oxide Fuel Cells

An Electricity and Value-added Gases Co-generation via Solid Oxide Fuel Cells Paper # 070MI-0012 Topic: Microcombustion and New Combustion Devices 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme. Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi

Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme. Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku,

More information

Degradation of (La 0.6 Sr 0.4 ) 0.95 (Co 0.2 Fe 0.8 )O 3-δ Solid Oxide Fuel Cell Cathodes at the Nanometre Scale and Below

Degradation of (La 0.6 Sr 0.4 ) 0.95 (Co 0.2 Fe 0.8 )O 3-δ Solid Oxide Fuel Cell Cathodes at the Nanometre Scale and Below SUPPORTING INFORMATION Degradation of (La 0.6 Sr 0.4 ) 0.95 (Co 0.2 Fe 0.8 )O 3-δ Solid Oxide Fuel Cell Cathodes at the Nanometre Scale and Below Na Ni 1*, Samuel J. Cooper 1, Robert Williams 2, Nils Kemen

More information

Final publishable summary report Executive Summary

Final publishable summary report Executive Summary Final publishable summary report Executive Summary Beyond the state of the art, the EVOLVE cell concept aims at combining the beneficial characteristics of the previous cell generations, the so called

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Programme Review Day 2012 Brussels,

More information

p-rich beams for SPES-α

p-rich beams for SPES-α p-rich beams for SPES-α LNL-INFN The SPES TIS complex ion source 1+ transfer line proton beam SPES production target The Target: ready for irradiation ITarget= 700A -> 1200A max ILine= 200A -> 600A max

More information

Centre for Hydrogen and Fuel Cells Research

Centre for Hydrogen and Fuel Cells Research Centre for Hydrogen and Fuel Cells Research University of Birmingham College of Engineering and Physical Sciences School of Chemical Engineering Overview of Portfolio & Strategy Dr Ahmad El-kharouf CDT

More information

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells

The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells The mechanical and electrical properties of Ni/YSZ anode support for solid oxide fuel cells Changrong He, Tao Chen, Wei Guo Wang Ningbo Institute of Material Technology and Engineering (NIMTE), Chinese

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

Solid Oxide Fuel Cells for CO2 reduction

Solid Oxide Fuel Cells for CO2 reduction Solid Oxide Fuel Cells for CO2 reduction Carbon Capture and U.lisa.on1 22/2/2017 Energy Materials Group at St Andrews Prof. John Irvine Well known in SOFC research Leads established group with long track

More information

SOFC advances and perspectives

SOFC advances and perspectives SOFC advances and perspectives John T. S. Irvine University of St Andrews Warwick 31st January 2019 Applications Transport Stationary Residential Distributed Cogeneration Portable Premium UPS Military

More information

PEMICAN. PEM with Innovative low cost Core for Automotive application (256798) Start date 01/04/2011; duration 36 months

PEMICAN. PEM with Innovative low cost Core for Automotive application (256798) Start date 01/04/2011; duration 36 months PEM with Innovative low cost Core for Automotive application (256798) Start date 01/04/2011; duration 36 months Joël PAUCHET/CEA (French Atomic and Alternative Energy Commission) 1. General overview Reduce

More information

An overview of the UK Energy Storage Research Network and Supergen Energy Storage Hub Professor Nigel Brandon OBE FREng

An overview of the UK Energy Storage Research Network and Supergen Energy Storage Hub Professor Nigel Brandon OBE FREng An overview of the UK Energy Storage Research Network and Supergen Energy Storage Hub Professor Nigel Brandon OBE FREng Director, Sustainable Gas Institute Co-Director, ENERGY SuperStore Director, H2FC

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage Project Overview General Overview Sulphur, Carbon, and re-oxidation Tolerant Anodes and

More information

ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy

ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy Truls Norby University of Oslo Project website: http://www.mn.uio.no/smn/english/research/projects/chemistry/electra/

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Application of advanced and non destructive testing in solid oxide fuel cells

Application of advanced and non destructive testing in solid oxide fuel cells Materials Science & Technology Application of advanced and non destructive testing in solid oxide fuel cells Peter Wyss, Erwin Hack Laboratory for Electronics/Metrology/Reliability Artur Braun, Lorenz

More information

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides (La 0.8 Sr 0.2 )(Mn 1-y Fe y )O 3±δ Oxides for ITSOFC Cathode Materials? Electrical and Ionic Transport Properties M. Petitjean (1), G. Caboche (1), E. Siebert (2), L. Dessemond (2), L.-C. Dufour (1) (1)

More information

The Role of Hydrogen and Fuel Cell Technologies in Low Carbon Energy Systems

The Role of Hydrogen and Fuel Cell Technologies in Low Carbon Energy Systems The Role of Hydrogen and Fuel Cell Technologies in Low Carbon Energy Systems Professor Nigel Brandon OBE FREng Director, H2FC SUPERGEN Chair, Sustainable Development in Energy RCUK Energy Senior Research

More information

ITM Power plc High Power Density Fuel Cells Dr Simon Bourne, Technology Director Technical Forum, Hannover Messe 2011

ITM Power plc High Power Density Fuel Cells Dr Simon Bourne, Technology Director Technical Forum, Hannover Messe 2011 ITM Power plc High Power Density Fuel Cells Dr Simon Bourne, Technology Director Technical Forum, Hannover Messe 2011 ITM ITM POWER Final Hannover Results Messe, Presentation, 2011 30 July 2010 ITM Power

More information

Element diffusion in SOFCs: multi-technique characterization approach

Element diffusion in SOFCs: multi-technique characterization approach Degradation mechanisms and advanced characterization and testing (II) Element diffusion in SOFCs: multi-technique characterization approach M. Morales 1, A. Slodczyk 1, A. Pesce 2, A. Tarancón 1, M. Torrell

More information

Proton Ceramic Steam Electrolysers

Proton Ceramic Steam Electrolysers Proton Ceramic Steam Electrolysers Einar Vøllestad 1, R. Strandbakke 1, Dustin Beeaff 2 and T. Norby 1 1 University of Oslo, Department of Chemistry, 2 CoorsTek Membrane Sciences AS Theoretical considerations

More information

i ~4 applications WTP Functional materials for sustainable energy Edited by

i ~4 applications WTP Functional materials for sustainable energy Edited by Woodhead Publishing Series in Energy: Number 35 Functional materials for sustainable energy applications Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards WTP WOODHEAD

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell 212 International Conference on Clean and Green Energy IPCBEE vol.27 (212) (212) IACSIT Press, Singapore Maximizing Hydrogen Production of A Solid xide Electrolyser Cell Qiong Cai 1+, Claire S. Adjiman

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

V.0 Fuel Cells Program Overview

V.0 Fuel Cells Program Overview V.0 Fuel Cells Program Overview Introduction The Fuel Cells program supports research, development, and demonstration of fuel cell technologies for a variety of transportation, stationary, and portable

More information

Fuelling a greener economy

Fuelling a greener economy Materials Foresight Making the future work for you Fuelling a greener economy The importance of materials for fuel cells and related technologies Foresight Fuel Cells Taskforce Members of the Foresight

More information

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD KAZUHISA SATO 1), TOSHIYUKI HASHIDA 2), HIROO YUGAMI 3), KEIJI YASHIRO 1),

More information

Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP

Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP Korea-America nano forum Effect of Starting Materials on the Characteristics of (La 1-x Sr x ) Mn 1+y O 3-δ Powder Synthesized by GNP 2007. 04. 26 orea nstitute of eramic ngineering & echnology MI-Jai

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 18, No. 4, pp. 336~340 (2017) J O U R N A L O F Ceramic Processing Research Electrochemical properties of Ca 1-x La x TiO 3 anode materials for solid oxide

More information

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS Can Ozgur Colpan cocolpan@connect.carleton.ca Ibrahim Dincer, PhD Ibrahim.Dincer@uoit.ca Feridun Hamdullahpur, PhD Feridun_Hamdullahpur@carleton.ca

More information

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems 2.4M funding for an EPSRC Networking Centre + 1.4M Matching from Industry Joint Centre involving Cambridge, Newcastle, Queen Mary and UCL. 400k earmarked for networking activities Start Date: 1 December

More information

Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure

Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure Hydrogen Session Bipolar plates for PEM fuel cells and electrolyzers Emile Tabu Ojong 1, Eric Mayousse 2,

More information

Cost reduction and performance increase of PEM electrolysers NOVEL: New materials & components. Programme Review Days 2016 Brussels, November

Cost reduction and performance increase of PEM electrolysers NOVEL: New materials & components. Programme Review Days 2016 Brussels, November Cost reduction and performance increase of PEM electrolysers NOVEL: New materials & components MEGASTACK: Manufacturing Click and to upscale add title Programme Review Days 2016 Brussels, 21-22 November

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee School of Materials Science and Engineering Gyeongsang National University, Jinju, Republic of Korea 2 Research

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Zacharie Wuillemin, Antonin Faes, Stefan Diethelm, Arata Nakajo, Nordahl Autissier, Jan Van

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 How do Solid Oxide Fuel Cells Work? O 2 O 2 O 2 O 2 Cathode Electrolyte O 2- O 2- O 2- Porous cathode reduces

More information

1. Introduction. 2. Objectives

1. Introduction. 2. Objectives FUEL CELL Strategic Research Programme School of Mechanical and Production Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Republic of Singapore. Contact person: Associate

More information

Advanced Analytical Chemistry Lecture 16. Chem 4631

Advanced Analytical Chemistry Lecture 16. Chem 4631 Advanced Analytical Chemistry Lecture 16 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information