Synthetic fuels and chemical from biomass by the bioliq-process

Size: px
Start display at page:

Download "Synthetic fuels and chemical from biomass by the bioliq-process"

Transcription

1 Synthetic fuels and chemical from biomass by the bioliq-process Nicolaus Dahmen Institute for Catalysis Research and Technology KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

2 Opening statements Biomass is the only renewable carbon resource and has to be used primarily for chemistry including carbon based fuels bioliq explores the possible use of biomass in large scale conversion processes Syngas is a useful switch between chemical & energy as well as between fossil fuels and biomass In any case there is polygeneration: heat and power are important by-products enabling high CO 2 reduction potentials

3 Chemical pathways to synthetic products Gases CH 3 -(CH 2 ) n -CH 3 LPG C 6 H 9 O 4 Fischer- Tropschsynthesis Refining Naphta Cerosene Diesel. Biomass Syngas H 2 + CO Hydrogen Methane (SNG) Propylene Direct use (Fuel cell, PME production, Methanolsynthesis CH 3 OH Dimethylether DME Ethylene Gasoline Acrylic acid Oxygenates

4 Potential feedstocks Agriculture Forestry Straw, hay,. Energy crops Residues (brash, tops, stumps) Thinnings Short rotation plantation Trackside vegetation clearance Streets, railway tracks Power transmission lines Organic residues Recovered waste wood Organic waste fractions Omnivores required allowing for broad feed stock and fuel properties range fitted to industrial production size and standards

5 De-central / centralized concept Energy densification of biomass in regional distributed plants by bioliqsyncrude production Economic conversion in large scale to syngas and further refining into fuels & chemicals Energy density: 2 GJ/m 3 25 GJ/m 3 36 GJ/m

6 Effect of energy densification by fast pyrolysis 250 km Transport costs /t (waf) km Truck Tractor Straw BioSyncrude Truck Rail Rail Transport distance / km Source: Leible et al., ITAS

7 Technology scheme biosyncrude O 2 (Steam) Gas cleaning and conditioning Biomass Pre-treatment High pressure entrained flow gasification Filter Sorption Catalyst CO 2 and water separation Syngas Slag Synfuel Fast pyrolysis biosyncrude De-central Fuel synthesis Centralized DME synthesis

8 Pilot plant targets Demonstration Reliable m&e balances Representative products Practicability and operation Cost estimates Scale-up... Research & Development Feed and fuel flexibility Metrology/diagnostics Process control and understanding Optimization and spin-offs.. As small as possible, as large as necessary

9 State of the project Stage 1 Stage 2 Stage 3 Stage 4 Process Fast pyrolysis High pressure entrained flow gasification Gas cieaning and Synthesis I Synthesis II Product BioSyncrude Synthesis gas Dimethylether Gasoline Capacity 2 MW (500 kg/h) 5 MW (1 t/h) 150 kg/h < 100 l/h Realization State In operation In operation Performance test successful, start of operation 2014 Partners Lurgi, MAT Lurgi MUT, CAC

10 The bioliq pilot plant at KIT October

11 Fast pyrolysis Twin screw mixer reactor for mechanical fluidization Heat transfer by sand, recycled by a heat carrier loop Reaction temperature 500 C, gas retention time ~3 sec Current feed material: wheat straw R&D fuel flexibility process (component) optimization towards long term operation modeling, simulation online monitoring of slurry properties alternative product utilization Pyrolysis oils, char, slurries, pastes

12 Pyrolysis pilot plant scheme In cooperation with:

13 Pilot test campaigns 14 Test campaigns since 2009 Operation time of heat carrier loop > 1000 h Product distribution in agreement with PDU findings Heat carrier 10:1 Water Aqueous condensate 85-90% energy conservation! Straw (waf) Pyrolysis gas Tar condensate Solids Ash Abrasives Char for internal combustion

14 Controlled thermal aging of bio-oil Stability of the pyrolysis oil according to composition after solvent fractionation mass fraction (wt%) ,2 13,9 5,9 6,7 33,5 33,3 6,1 5,5 23,3 21,3 17,6 18, ; :00: months Data on an ash free basis sa m ple Water DDS DDIS Extractives DS DIS Controlled Thermal Aging in the tar loop keeping bio-oil under controlled conditions Optimization of tar quench temperature in regard to viscosity (water and volatiles) and heat transfer properties

15 BioSyncrude preparation Free flowing suspension High particle content up to 40wt.% Stable for storage and transport Easy to produce by colloidal mixing Heating value up to 25 MJ/kg Colloidal mixed char Distribution sum Original char Particle diameter / m

16 R&D on BioSyncrudes Wasser M Flow properties of slurries Varying heating values Equipment testing (Pumping, stirring, heating.) New metrology devices Materials selection and testing Vergaser M Meßstutzen Wasser Slurry

17 High pressure entrained flow gasification Suitable for feeds rich of ash Gasification with oxygen Temp. >1200 C, up to 80 bar Tar free, low methane syngas Proof at the 3-5 MW th gasifier of Future Energy (today Siemens FGT) Fuel Oxygen Cooling screen Syngas Slag

18 High pressure entrained flow gasification Dip tube quench, free quench for hot gas abstraction later

19 Test Run / Load Natural gas Slurry feed Q screen

20 Earlier gasification test campaigns Cold gas efficiency / % Typical syngas composition Component Vol.% H CO CO CH H 2 O O 2 0 BioSyncrude heating value (MJ/kg) N Pilot gasifier in Freiberg, Germany

21 R&D on gasification Fuel conditioning Atomization of slurries (PAT) Synthesis gas quality Chemical quenching Slag behavior and re-use Inline diagnostics Scale-up considerations Hot gas abstraction.. Knowledge based simulation tool for design and scale-up of technical EFG for a wide range of feedstock Test rig REGA Optical access to the reaction chamber EBI-VBT, ITC Test rig PAT

22 High temperature high pressure hot gas cleaning Hot gas filter for particle removal Dry sorption for separation of sour gases and alkali salts Catalytic decomposition of organic and nitrogen containing compounds CO 2 -separation later max Nm 3 /h synthesis gas (45 m³/h at 80 bar, C) Successfully verified in bench scale Raw syngas Ceramic particle filter Fixed bed sorption Syngas Catalytic reactor Entrained flow adsorbens Potential of savings in energy, operation and construction efforts Raw syngas Catalytic ceramic filter Syngas

23 HT-HP gas cleaning Commissioning November

24 DME and fuel synthesis DME synthesis optimal for CO/H 2 ratios around 1:1 One step DME synthesis Innovative isothermal reactor Temp. of 250 C, pressure 60 bar Two Stage Synthesis Methanol Synthesis Direct Synthesis DtG-synthesis Zeolithe catalyzed dehydratization, oligomerization and isomerization Temp C, pressure 25 bar Recycling of unconverted gas Gasoline stabilization Source: Ogawa et al., J. Nat. Gas Chem. 2003,12, Selective synthesis of value added fuel components and chemicals

25 Synthesis plant scheme Cycle gas Flare DMEreactor WGSreactor CO2-Absorber Gasoline reactor Distillation Air Gasoline Syngas CO 2 -Absorber Separator Heavy fraction Process water CO 2 Desorber

26 Commissioning July 2013 Production of first 100 l gasoline, but

27 R&D activities on syngas chemistry Methanol route: high product variability Actual focus on gasoline Methanol based kerosene and diesel Oxygenates (fuel components and chemicals) EtOH + higher alcohols Ottokraftstoff (DIN EN 228) MLV1-14 MKL01-11 Syngas-To-Alcohols (STA) Dimethylether-To-Olefins (DTO) Syngas MeOH DME Olefins Fuels Syngas-To-DME (STD) DME-To-Gasoline (DTG) Catalyst preparation Catalyst characterization Screening in lab scale Process development units Reactor design

28 Systems analysis Crucial for biomass logistics and value chain assessment Technology assessment Process variants Sensitivity analysis Biomass potential and supply Integrated model for regional scenarios Optimization of site number, capacity, and location Extension to EU scene Definition of reasonable base case Variation of transportation, investment and energy costs Cost estimates (1 1.8 /ltr.) Sustainable supply, ILUC, acceptance. ITAS, IIP Source: Diss. F. Trippe, 2012 straw plus wood Source: Diss. F. Schwaderer,

29 The world wide demand on personal vehicles will not exceed 1 Million cars. only because there are not enough chauffeurs Gottlieb Daimler 1901 Thanks for your attention!

bioliq - BtL pilot plant

bioliq - BtL pilot plant bioliq - BtL pilot plant Aviation Biofuels through Biomass Gasification, IEA Task 33 Engler-Bunte-Institut, Chemische Energieträger Brennstofftechnologie, EBI ceb Institut für Technische Chemie, Vergasungstechnologie,

More information

BtL the bioliq process

BtL the bioliq process BtL the bioliq process Thomas Kolb, Mark Eberhard Engler-Bunte-Institut, Chemische Energieträger Brennstofftechnologie, EBI ceb Institut für Technische Chemie, Vergasungstechnologie, ITC vgt DVGW Forschungsstelle

More information

Biomass to fuels! R.Stahl Institut für Technische Chemie IFC 2010 Mai 3 rd 6 th 2009 Dresden, Germany

Biomass to fuels! R.Stahl Institut für Technische Chemie IFC 2010 Mai 3 rd 6 th 2009 Dresden, Germany Biomass to fuels! Pressurised Entrained Flow Gasification of Slurries from Biomass Thermo chemical biomass conversion to Fuels, Chemicals and Energy R.Stahl, E.Henrich, K.Raffelt M.Schingnitz KIT, Institut

More information

Status and Outlook for bioliq-project Syngas Platform for High Performance Fuels

Status and Outlook for bioliq-project Syngas Platform for High Performance Fuels Status and Outlook for bioliq-project Syngas Platform for High Performance Fuels Nicolaus Dahmen EBTP 7th stakeholder Meeting, Brussels, June 21, 2016 Institut für Katalyseforschung und technologie IKFT

More information

Country Activities GERMANY

Country Activities GERMANY Country Activities GERMANY Engler-Bunte-Institute, Fuel Technology Thomas Kolb IEA Bioenergy: Task 33 Thermal Gasification of Biomass Task meeting, November 21th, 2013, Gothenburg KIT Universität des Landes

More information

Status of the bioliq-process

Status of the bioliq-process Status of the bioliq-process Prof. Eckhard Dinjus 2nd International BtL-Congress Synthetic Biofuels Techniques, Potentials, Perpsectives Berlin, 12.-13. October 2006 Motivation Biomass is the only renewable

More information

Gasification of Renewable Feedstocks for the Production of Synfuels and 2nd Generation Biofuels

Gasification of Renewable Feedstocks for the Production of Synfuels and 2nd Generation Biofuels Gasification of Renewable Feedstocks for the Production of Synfuels and 2nd Generation Biofuels Dr. A. Günther, Lurgi GmbH Congresso ECOGERMA 2011 AHK Brazil Sao Paulo, Brazil, 30.6.-1.7.2011 Time scale

More information

Electronic Press Kit English

Electronic Press Kit English Electronic Press Kit English In our electronic Press Kit you will find further information on bioliq process technology KIT University of the state of Baden-Württemberg and National Research Center of

More information

The Entrained Flow Gasifier in the KIT bioliq process

The Entrained Flow Gasifier in the KIT bioliq process The Entrained Flow Gasifier in the KIT bioliq process Thomas Kolb, Bernd Zimmerlin Engler-Bunte-Institut, Chemische Energieträger Brennstofftechnologie, EBI ceb Institut für Technische Chemie, Vergasungstechnologie,

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Entrained-flow gasification to convert biomass into synthesis gas

Entrained-flow gasification to convert biomass into synthesis gas Entrained-flow gasification to convert biomass into synthesis gas CCT, Dresden, May 2009 Matthias Rudloff, Marketing and Sales Manager CHOREN Industries GmbH Frauensteiner Str. 59 09599 Freiberg Tel./Fax:

More information

Techno-economic Optimization Potential of High Temperature Syngas Treatment in Gasification Processes

Techno-economic Optimization Potential of High Temperature Syngas Treatment in Gasification Processes Techno-economic Optimization Potential of High Temperature Syngas Treatment in Gasification Processes Robert Mai, Manuel Meßmer, Hans Leibold, Dieter Stapf, Prof. Dr.-Ing. Dieter Stapf Pyrolysis Storage

More information

CHOREN USA. Coal Gasification in Indiana. Solutions for a Low Carbon Footprint Environment. December Christopher Peters CHOREN USA, Houston, TX

CHOREN USA. Coal Gasification in Indiana. Solutions for a Low Carbon Footprint Environment. December Christopher Peters CHOREN USA, Houston, TX CHOREN USA Coal Gasification in Indiana Solutions for a Low Carbon Footprint Environment December 2008 Christopher Peters CHOREN USA, Houston, TX Trademarks SUNDIESEL and SUNDIESEL -Logo are registered

More information

Biofuels Research Opportunities in Thermochemical Conversion of Biomass

Biofuels Research Opportunities in Thermochemical Conversion of Biomass University of Massachusetts Amherst ScholarWorks@UMass Amherst Conference on Cellulosic Biofuels September 2008 Biofuels Research Opportunities in Thermochemical Conversion of Biomass Douglas Elliott PNL,

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

On the Challenges of Coal Gasification Based Syngas Conversion Systems

On the Challenges of Coal Gasification Based Syngas Conversion Systems On the Challenges of Coal Gasification Based Syngas Conversion Systems Yong-Wang Li Synfuels Americas, Inc (Leesburg, VA ) Synfuels China LTD (Beijing) ywl@sxicc.ac.cn Global Energy Supply System Upstream

More information

Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot. Esben Lauge Sørensen, May 2009

Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot. Esben Lauge Sørensen, May 2009 Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot Esben Lauge Sørensen, May 2009 Contents Presentation of Haldor Topsøe A/S Presentation of Chemrec AB The BioDME Project Lay-out of DME pilot

More information

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal Fluidised Bed Methanation Technology for Improved Production of SNG from Coal International Conference on Clean Coal Technologies, Dresden, 18 May 2009 T.J. Schildhauer, S. Biollaz Paul Scherrer Institut

More information

Carbon To X. Processes

Carbon To X. Processes World CTX Carbon To X Processes Processes and Commercial Operations World CTX: let s Optimize the Use of Carbon Resource Carbon To X Processes Carbon To X technologies are operated in more than 50 plants

More information

»New Products made of Synthesis Gas derived from Biomass«

»New Products made of Synthesis Gas derived from Biomass« Fraunhofer UMSICHT»New Products made of Synthesis Gas derived from Biomass«3-6 May 2010 Presentation at Freiberg Conference on IGCC & XtL Technologies, Dresden Dipl.-Ing. Kai Girod Folie 1 Outline 1. Introduction

More information

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS ECN-RX--04-119 LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS Optimal gasification and gas cleaning systems H. Boerrigter A. van der Drift Presented at Congress on Synthetic Biofuels - Technologies,

More information

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass Pyrolysis Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Aston University Bioenergy Research Group IEA Bioenergy, York, 12 October 2010 2 What is pyrolysis? Biomass

More information

The CCG Technology of CHOREN

The CCG Technology of CHOREN The CCG Technology of CHOREN Entrained flow carbon gasification concepts of CHOREN Industries Dr. Christoph Kiener Dresden, 18 May 2009 CHOREN Industries GmbH Business Development Phone: +49 3731 266 220

More information

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Gasification 2010 Feedstock, Pretreatment and Bed Material 28-29 October, Gothenburg, Sweden Anja Oasmaa, Kai Sipilä, Yrjö Solantausta VTT

More information

Biosyngas from forest product industry by-products and residues

Biosyngas from forest product industry by-products and residues Biosyngas from forest product industry by-products and residues 1 Presentation at the VETAANI Conference 9 April 2014 Prof Rikard Gebart Luleå University of Technology Feedstock use in the forest product

More information

PROCESS DEVELOPMENT AND SIMULATION FOR PRODUCTION OF FISCHER-TROPSCH LIQUIDS AND POWER VIA BIOMASS GASIFICATION

PROCESS DEVELOPMENT AND SIMULATION FOR PRODUCTION OF FISCHER-TROPSCH LIQUIDS AND POWER VIA BIOMASS GASIFICATION Commissariat à L Énergie Atomique Institut Français de Pétrole PROCESS DEVELOPMENT AND SIMULATION FOR PRODUCTION OF FISCHER-TROPSCH LIQUIDS AND POWER VIA BIOMASS GASIFICATION Guillaume Boissonnet - CEA

More information

Advanced Biofuels in Sweden

Advanced Biofuels in Sweden Advanced Biofuels in Sweden Klas Engvall, Chemical Technology kengvall@kth.se Biogas from Biomass 20-21 January 2010 Outline R&D Universities/Institutes in Sweden Demonstration Projects National Centre

More information

State of the Gasification Industry: Commercial Applications & Research and Development

State of the Gasification Industry: Commercial Applications & Research and Development State of the Gasification Industry: Commercial Applications & Research and Development ECUST OMB Technology Conference Nanjing, 7 th November, 2016 Chris Higman Overview Introduction Gasification database

More information

RESEARCH GROUP: Future Energy Technology

RESEARCH GROUP: Future Energy Technology RESEARCH GROUP: Email: hermann.hofbauer@tuwien.ac.at Web: http://www.vt.tuwien.ac.at Phone: +43 1 58801 166300 Fax: +43 1 58801 16699 Institute of Chemical Engineering page 1 Project Groups of : Univ.Prof.

More information

The Role of Solid Fuel Conversion in Future Power Generation

The Role of Solid Fuel Conversion in Future Power Generation The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content

More information

Research Activities in the Field of Second Generation Biofuels

Research Activities in the Field of Second Generation Biofuels Research Activities in the Field of Second Generation Biofuels Hermann Hofbauer Transport Fuels: Crucial factor and driver towards sustainable mobility R&Dprojects, research institutions and funding programs

More information

Noell Entrained-Flow Gasification

Noell Entrained-Flow Gasification Noell Entrained-Flow Gasification Industrial and chemical wastes Conventional fuels Industrial and chemical wastes high-salt ash-free ash-free ash-containing ash-containing Reactor with special cooling

More information

MILENA gasification technology for high efficient SNG production from biomass

MILENA gasification technology for high efficient SNG production from biomass ECN-RX--05-183 MILENA ification technology for high efficient SNG production from biomass A. van der Drift C.M. van der Meijden H. Boerrigter Published at 14th European Biomass Conference & Exhibition,

More information

Coal and Wood to Liquid Fuels Randall Harris

Coal and Wood to Liquid Fuels Randall Harris Coal and Wood to Liquid Fuels Randall Harris randall.j.harris@verizon.net Planning for a brighter future Woody Biomass Utilization Routes Adopted from Fischer-Tropsch Technology, Steynberg & Dry Biomass

More information

Biobased materials and fuels via methanol The role of integration

Biobased materials and fuels via methanol The role of integration Biobased materials and fuels via methanol The role of integration Joint Task 33 & IETS workshop at Göteborg, Nov2013 Ilkka Hannula VTT Technical Research Centre of Finland 2 Gasification and Gas Cleaning

More information

Electricity and heat generation by combustion and gasification of wood residues and straw a strategic assessment

Electricity and heat generation by combustion and gasification of wood residues and straw a strategic assessment Electricity and heat generation by combustion and gasification of and straw a strategic assessment S. Kälber, L. Leible, G. Kappler, S. Lange, E. Nieke, D. Wintzer, and B. Fürniss Institute for Technology

More information

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Sudhakar Sagi 23 rd Nov 2010 Aston University Birmingham The scale of the UK CO 2 challenge Pyrolysis is a thermochemical decomposition

More information

Task 33 Gasification: Biomassevergasung, ein Grundprozess für Bioraffinerien Praktische Entwicklungserfahrungen

Task 33 Gasification: Biomassevergasung, ein Grundprozess für Bioraffinerien Praktische Entwicklungserfahrungen Task 33 Gasification: Biomassevergasung, ein Grundprozess für Bioraffinerien Praktische Entwicklungserfahrungen Highlights der Bioenergieforschung 2. Dezember 2010, Wien Dr. Reinhard Rauch Vienna, University

More information

Optimal design of coal gasifiers in combination with sour shift

Optimal design of coal gasifiers in combination with sour shift Optimal design of coal gasifiers in combination with sour shift 6 th International Freiberg Conference on IGCC & XtL technologies, Dresden, 19-22 May 2014 Speaker: Rasmus Trane-Restrup Agenda Gasifier

More information

Sustainable resources and energy from organic waste

Sustainable resources and energy from organic waste Sustainable resources and energy from organic waste Thermo-Catalytic Reforming TCR November 2017 www.susteen-tech.com Fraunhofer UMSICHT Susteen Technologies is a spin-off venture from Fraunhofer-Gesellschaft

More information

Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren

Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren Dr. Reinhard Rauch Vienna, University of Technology Bioenergy 2020+ 1 CNG/LNG as transportation fuel 2 Problem: fuelling stations 179

More information

Synthesis of DME and Gasoline from Biomass-Derived Synthesis Gas

Synthesis of DME and Gasoline from Biomass-Derived Synthesis Gas Synthesis of DME and Gasoline from Biomass-Derived Synthesis Gas 7 th ASIAN DME CONFERENCE November 16-18, 2011 Niigata, Japan Ulrich Arnold, Miriam Stiefel, Ruaa Ahmad, Herbert Lam, Manfred Döring Karlsruhe

More information

Gasification Research at OSU

Gasification Research at OSU Gasification Research at OSU Ajay Kumar, Assistant Professor Biobased Products and Energy Center (BioPEC), Biosystems and Agricultural Engineering, Oklahoma State University OK EPSCoR Annual State Conference

More information

MEGA-GSP GSP PROCESS. International Freiberg Conference on IGCC & XtL Technologies June 16-18, FUTURE ENERGY GmbH, Germany.

MEGA-GSP GSP PROCESS. International Freiberg Conference on IGCC & XtL Technologies June 16-18, FUTURE ENERGY GmbH, Germany. FUTURE ENERGY GmbH, Germany International Freiberg Conference on IGCC & XtL Technologies June 16-18, 2005 MEGA-GSP GSP PROCESS Entrained-Flow Gasification of Coal, Biomass and Waste Dr. Manfred Schingnitz,,

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining G. Jungmeier 1, R. Van Ree 2, E. de Jong 3, H. Jørgensen 4, P. Walsh 4, M. Wellisch

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

Biomass to Energy Conversions -Thermochemical Processes-

Biomass to Energy Conversions -Thermochemical Processes- King Saud University Sustainable Energy Technologies Center (SET) BIOMASS GROUP Biomass to Energy Conversions -Thermochemical Processes- by Dr. Salim Mokraoui PhD Chemical Eng. MS. Mechanical Eng. E-mail:

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Hydrothermal Biomass Conversion

Hydrothermal Biomass Conversion Hydrothermal Biomass Conversion Andrea Kruse, Eckhard Dinjus Institute for Technical Chemistry, Division of Chemical-Physical Processing KIT University of the State of Baden-Württemberg and National Large-scale

More information

Waste as a valuable resource for making high-grade biofuels

Waste as a valuable resource for making high-grade biofuels Advanced Biofuels Gothenburg, September 2018 Alex Miles Director, Commercial Development (Europe) Waste as a valuable resource for making high-grade biofuels Enerkem at a glance Biofuels and renewable

More information

The project BioBoost Optimisation of biofuel production from residues and waste materials

The project BioBoost Optimisation of biofuel production from residues and waste materials The project BioBoost Optimisation of biofuel production from residues and waste materials A. Niebel, R. Stahl, A. Kruse January 22, 2013 Convention Kraftstoffe der Zukunft 2013 Institute of Catalysis Research

More information

GoBiGas a First-of-a-kind-plant

GoBiGas a First-of-a-kind-plant GoBiGas a First-of-a-kind-plant Forrest Biomass to Biomethane (SNG) Henrik Thunman Chalmers University of Technology Gothenburg, Sweden Short Facts of the GoBiGas Demonstration-Plant Built, owned and operated

More information

Indirect Coal Liquefaction Better Solution to Clean Energy System

Indirect Coal Liquefaction Better Solution to Clean Energy System Indirect Coal Liquefaction Better Solution to Clean Energy System Yong-Wang Li, Director, Chief Scientist State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences

More information

Tappi International Bioenergy and Biochemicals Conference

Tappi International Bioenergy and Biochemicals Conference Advanced Clean Technology for Biomass Conversion to Bioenergy, Fuels, and Chemicals Tappi International Bioenergy and Biochemicals Conference Memphis TN Agenda TRI Overview TRI Thermochemical Platform

More information

HOW PYROLYSIS WASTE TO ENERGY WORKS

HOW PYROLYSIS WASTE TO ENERGY WORKS HOW PYROLYSIS WASTE TO ENERGY WORKS The use of pyrolysis in the thermal processing of municipal solid waste is becoming more widespread in application due to the overall flexibility of the pyrolysis process.

More information

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula

Finnish Country Highlights Biomass Gasification in IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula Finnish Country Highlights Biomass Gasification in 2014 IEA Task 33 meeting, KIT Nov2014 Ilkka Hannula 04/11/2014 RECENT PROJECTS: Biomass and waste gasification for boilers and kilns 2 Model: Volter 30

More information

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Sanjeev K. Gajjela and Philip H. Steele Department of Forest Products College of Forest Resources Mississippi State University

More information

LURGI S HP-POX DEMONSTRATION UNIT A MILESTONE TO IMPROVED SYNGAS PRODUCTION

LURGI S HP-POX DEMONSTRATION UNIT A MILESTONE TO IMPROVED SYNGAS PRODUCTION LURGI S HP-POX DEMONSTRATION UNIT A MILESTONE TO IMPROVED SYNGAS PRODUCTION Gasification Technologies 2004 Washington, DC, October 3 6, 2004 Ulrich Wolf, Holger Schlichting - Lurgi Oel Gas Chemie GmbH,

More information

Plastic to Fuel Technologies

Plastic to Fuel Technologies Plastic to Fuel Technologies Author: Mauro Capocelli, Researcher, University UCBM Rome (Italy) 1. Theme description The growth of economy and consumes, combined with the modern models of production, have

More information

The Siemens Gasification Process and its Application in the Chinese Market

The Siemens Gasification Process and its Application in the Chinese Market The Siemens Gasification Process and its Application in the Chinese Market Dr.-lng. Klaus-Dieter Klemmer Director, Sales and Marketing, Fuel Gasification Engineering / R&D Center in Freiberg 5MW Office

More information

Questions. Downdraft biomass gasifier. Air. Air. Blower. Air. Syngas line Filter VFD. Gas analyzer(s) (vent)

Questions. Downdraft biomass gasifier. Air. Air. Blower. Air. Syngas line Filter VFD. Gas analyzer(s) (vent) Question 1 Questions Biomass gasification is a process where organic matter liberates flammable gases such as hydrogen (H 2 ) and carbon monoxide (CO) when heated to high temperatures. A gasifier is a

More information

Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production. December 8 th 2015 São Paulo, Brasil Martin van t Hoff

Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production. December 8 th 2015 São Paulo, Brasil Martin van t Hoff Brasil EU Workshop Gasification of bagasse to syngas and advanced liquid fuel production December 8 th 2015 São Paulo, Brasil Martin van t Hoff ECN & Royal Dahlman A 15 year relationship in R&D, Engineering

More information

We accept the challenge!

We accept the challenge! Synthesis Gas Generation for Transportation Fuel Production Gasification Technologies Conference 2014, October 26-29 Washington, DC Andras I. Horvath / ANDRITZ Oy, Niels R. Udengaard /Haldor Topsoe Inc.

More information

Engineers India Limited Multi product generation from Coal via gasification

Engineers India Limited Multi product generation from Coal via gasification Engineers India Limited Multi product generation from Coal via gasification 16 th February, 2017, New Delhi Future Energy Scenario - India Energy Hungry Nation (a) Growth Vs Energy Demand Trend India Imports

More information

Siemens Gasification and IGCC Update

Siemens Gasification and IGCC Update Siemens Gasification and IGCC Update Harry Morehead Manager, IGCC and Gasification Sales and Marketing, Americas Presented at PowerGEN International Orlando, FL December 3, 2008 Siemens Energy Renewable

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

GoBiGas Hours of Operation. Anton Larsson IEA FBC and IEA Bioenergy Task 33 joint workshop

GoBiGas Hours of Operation. Anton Larsson IEA FBC and IEA Bioenergy Task 33 joint workshop GoBiGas 10 000 Hours of Operation Anton Larsson IEA FBC and IEA Bioenergy Task 33 joint workshop 2017 10 24 Our owners say: Göteborg Energi shall actively contribute to the development of a sustainable

More information

Biomass Gasifiers Christoph Pfeifer. Biogas from Biomass Gasification for Homes and Transport 20-21st January 2010, Gothenburg

Biomass Gasifiers Christoph Pfeifer. Biogas from Biomass Gasification for Homes and Transport 20-21st January 2010, Gothenburg Biomass Gasifiers Christoph Pfeifer Biogas from Biomass Gasification for Homes and Transport 20-21st January 2010, Gothenburg Content of the presentation Processes for gas production Overview gasification

More information

Research on small-scale biomass gasification in entrained flow and fluidized bed technology for biofuel production

Research on small-scale biomass gasification in entrained flow and fluidized bed technology for biofuel production Institute for Energy Systems Department of Mechanical Engineering Technical University of Munich Research on small-scale biomass gasification in entrained flow and fluidized bed technology for biofuel

More information

Synfuels China CTL Technologies

Synfuels China CTL Technologies 中科合成油技术有限公司 SynfuelsChina Synfuels China CTL Technologies Yongbin Cui Synfuels China Technology Co., Ltd. cuiyongbin@synfuelschina.com.cn SFC Background Established in 2006 Registered Capital: 1b RMB Synfuels

More information

Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion

Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion Eric D. Larson* Haiming Jin** Fuat Celik* RBAEF Meeting Washington, DC 23 February 2004 * Princeton Environmental Institute

More information

Combined Cycle Gasification Plant

Combined Cycle Gasification Plant Combined Cycle Gasification Plant Kenneth Jørgensen and Robert Heeb Babcock & Wilcox Vølund A/S Abstract: The gasification technology promises many technological advantages compared to traditional steam

More information

HTW Gasification of High Volatile Bituminous Coal David Krause M.Sc., TU Darmstadt

HTW Gasification of High Volatile Bituminous Coal David Krause M.Sc., TU Darmstadt Otto-Berndt-Straße 2 64287 Darmstadt / Germany Phone: +49 6151 16 23002 www.est.tu-darmstadt.de HTW Gasification of High Volatile Bituminous Coal David Krause M.Sc., TU Darmstadt 9 th International Freiberg

More information

Methanol Production by Gasification of Heavy Residues

Methanol Production by Gasification of Heavy Residues Methanol Production by Gasification of Heavy Residues by C. A. A. Higman Presented at the IChemE Conference "Gasification: An Alternative to Natural Gas" London, 22-23 23 November, 1995 Methanol Production

More information

Introduction to GSP TM gasification technology. SUSTEC GSP China Technology Co. Ltd.

Introduction to GSP TM gasification technology. SUSTEC GSP China Technology Co. Ltd. Introduction to GSP TM gasification technology SUSTEC GSP China Technology Co. Ltd. Corporate Structure of Sustec Group China Shenhua Group Sustec Holding AG 51% 100% 100% 100% Shenhua Ningxia Coal Group

More information

The BGL-Commercial Plants and Pilot Testing. Status and Perspectives on Envirotherm BGL-technology. Hansjobst Hirschfelder

The BGL-Commercial Plants and Pilot Testing. Status and Perspectives on Envirotherm BGL-technology. Hansjobst Hirschfelder The BGL-Commercial Plants and Pilot Testing Status and Perspectives on Envirotherm BGL-technology Hansjobst Hirschfelder 6 th International Freiberg Conference on IGCC &XEL Technology May 19 22, 2014 Dresden/Radebeul,

More information

FLEXIBLE DIMETHYL ETHER PRODUCTION FROM BIOMASS GASIFICATION WITH SORPTION ENHANCED PROCESSES

FLEXIBLE DIMETHYL ETHER PRODUCTION FROM BIOMASS GASIFICATION WITH SORPTION ENHANCED PROCESSES FLEXIBLE DIMETHYL ETHER PRODUCTION FROM BIOMASS GASIFICATION WITH SORPTION ENHANCED PROCESSES Dimethyl-ether production from biomass Pre-treatments Gasification Syngas Dimethyl-ether () is an organic compound

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

Mk Plus The Next Generation Lurgi FBDB Gasification. Leipzig, 22/05/2012 Dr. Henrik Timmermann

Mk Plus The Next Generation Lurgi FBDB Gasification. Leipzig, 22/05/2012 Dr. Henrik Timmermann Mk Plus The Next Generation Lurgi FBDB Gasification Leipzig, 22/05/2012 Dr. Henrik Timmermann Outline Air Liquide E&C Perspective Next Generation Lurgi FBDB TM Gasification Lurgi FBDB Clean Conversion

More information

The CUTEC concept to produce BtL-fuels for advanced powertrains

The CUTEC concept to produce BtL-fuels for advanced powertrains International Freiberg Conference on IGCC & XtL Technologies June 16-18, 2005 The CUTEC concept to produce BtL-fuels for advanced powertrains Univ.-Prof. Dr.-Ing. Michael Claußen Dr.-Ing. Stefan Vodegel

More information

Development and optimization of a two-stage gasifier for heat and power production

Development and optimization of a two-stage gasifier for heat and power production Journal of Physics: Conference Series PAPER OPEN ACCESS Development and optimization of a two-stage gasifier for heat and power production Related content - Design and implementation of a laserbased absorption

More information

Research and Development Initiatives of WRI

Research and Development Initiatives of WRI Research and Development Initiatives of WRI Presented at COAL GASIFICATION: WHAT DOES IT MEAN FOR WYOMING? February 28, 2007 www.westernresearch.org Who is WRI? WRI is a 501 (c) 3 research, technology

More information

Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and. Preparation for study trip to the CUTEC-Institute

Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and. Preparation for study trip to the CUTEC-Institute Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and Energy Park Preparation for study trip to the CUTEC-Institute 1 2nd of November 2009 Current utilization of biomass 2 2nd of November 2009 Fuel cells

More information

Department of Mechanical Engineering, University of Cagliari Piazza d Armi, Cagliari, Italia

Department of Mechanical Engineering, University of Cagliari Piazza d Armi, Cagliari, Italia Department of Mechanical Engineering, University of Cagliari Piazza d Armi, 09123 Cagliari, Italia CCT 2009 Fourth International Conference on Clean Coal Technologies for Our Future 18/21 May 2009 Dresden

More information

Syngas from Biomass. Ruben Smit Syngas & SNG Group.

Syngas from Biomass. Ruben Smit Syngas & SNG Group. Syngas from Biomass Ruben Smit Syngas & SNG Group www.ecn.nl ECN Energy research Centre of the Netherlands ECN mission: development of high-quality knowledge and technology for the transition to a sustainable

More information

GASIFICATION: gas cleaning and gas conditioning

GASIFICATION: gas cleaning and gas conditioning GASIFICATION: gas cleaning and gas conditioning A. van der Drift November 2013 ECN-L--13-076 GASIFICATION: gas cleaning and gas conditioning Bram van der Drift SUPERGEN Bioenergy Hub Newcastle, UK 23 October

More information

Fremtidens (Bio)brændstoffer

Fremtidens (Bio)brændstoffer Fremtidens (Bio)brændstoffer John Bøgild Hansen 1 Haldor Topsøe A/S We have been committed to catalytic process technology for more than 78 years Founded in 1940 by Dr. Haldor Topsøe Revenue: 700 million

More information

New technologies & projects based on. gasification technologies. Jens Perregaard, October 31 November 3, Washington DC

New technologies & projects based on. gasification technologies. Jens Perregaard, October 31 November 3, Washington DC New technologies & projects based on Topsøe's s knowledge of downstream gasification technologies Jens Perregaard, G ifi ti T h l i C f 2010 Gasification Technologies Conference 2010 October 31 November

More information

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00.

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00. C10J PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES (synthesis gas from liquid or gaseous hydrocarbons C01B; underground gasification

More information

Debnath Pal Process Director Peter Brennan Project Director. Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager

Debnath Pal Process Director Peter Brennan Project Director. Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager Debnath Pal Process Director Peter Brennan Project Director Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager SCI Energy from Waste: Advanced Thermal Technologies Lancaster

More information

Biomass gasification as a Pathway for Sustainable Aviation Fuel. Senior Scientist Jesper Ahrenfeldt, DTU KT

Biomass gasification as a Pathway for Sustainable Aviation Fuel. Senior Scientist Jesper Ahrenfeldt, DTU KT Biomass gasification as a Pathway for Sustainable Aviation Fuel Senior Scientist Jesper Ahrenfeldt, DTU KT BGE Agenda Introduction to Thermal Gasification of Biomass and Synthesis of Biofuels Thermal Gasification

More information

Abstract. 1. Introduction

Abstract. 1. Introduction IBP0962_17 COMPARISON OF POWER-TO-X TECHNOLOGIES FOR THE PRODUCTION OF FUELS FROM RENEWABLE ELECTRICITY S. Bajohr 1, N. Trudel 2, F. Graf 3, W. Köppel 4, T. Kolb 5 Copyright 2017, International Gas Union

More information

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER Biomass is a source of renewable energy which is biological material derived from living or recently living organisms such as wood, waste and alcohol fuels.

More information

Testing and Feasibility Study of an Indirectly Heated Fluidized-Bed Coal Gasifier

Testing and Feasibility Study of an Indirectly Heated Fluidized-Bed Coal Gasifier Testing and Feasibility Study of an Indirectly Heated Fluidized-Bed Coal Gasifier Benjamin D. Phillips Clean Coal Conference Laramie, Wyoming August 20, 20141 Project Sponsor: Project Participants: 2 Emery

More information

Commercialisation of WtE through gasification technology developed by ECN

Commercialisation of WtE through gasification technology developed by ECN Commercialisation of WtE through gasification technology developed by ECN Bram van der Drift Ponferrada, 13 May 2015 IEA Bioenergy, Task 33 workshop www.ecn.nl ECN STARTED IN 1996 earlier, it was only

More information

The BGL Commercial Plants and Pilot Testing

The BGL Commercial Plants and Pilot Testing The BGL Commercial Plants and Pilot Testing M. Olschar, O. Schulze (IEC) 5th International Freiberg Conference on IGCC & XtL Technologies, May 21-24, 2012, Leipzig, Germany Introduction The improved slagging

More information

Thermochemical conversion routes of lignocellulosic biomass

Thermochemical conversion routes of lignocellulosic biomass Thermochemical conversion routes of lignocellulosic biomass S. GERBINET and A. LEONARD saicha.gerbinet@ulg.ac.be University of Liège LABORATORY of CHEMICAL ENGINEERING Processes and Sustainable development

More information