ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida

Size: px
Start display at page:

Download "ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida"

Transcription

1 ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Spring 2015 Final Examination Monday, April 27, 2015 University of South Florida Civil & Environmental Engineering Prof JA Cunningham Instructions: 1. You may read these instructions, but do not turn the page or begin working until instructed to do so. 2. This exam contains 4 questions, all with multiple parts. Pick any three. 3. The total number of points possible is 120. Point values for each question are indicated. 4. Answer the exam questions on separate sheets of paper (i.e., not on these exam sheets). Make sure your name is on each piece of paper, and that you submit all pages you want graded. At the end of the exam period, staple your papers together in the proper order. You may use as many sheets of paper as you need (though, in the spirit of ENV 4001, I encourage you not to be wasteful). 5. To maximize your partial credit, show all your work and state your assumptions clearly. I can only assign you partial credit if I can follow what you are doing. 6. Report your answers to a reasonable number of significant digits and with proper units. 7. You are allowed to use your text book, your course notes, or other printed materials. You may not receive help from another person. 8. The back of this page contains some constants and unit conversions that you might find helpful. I am also including two additional pages, scanned from a previous year s text book, that have some helpful tables on them. 9. A hand-held calculator is recommended. Other electronic devices are not permitted. 10. Time limit: 120 minutes. Stop working when asked. If you continue working after time has been called, you will be penalized at a rate of 1 point per minute. 11. Don t cheat. Cheating will result in appropriate disciplinary action according to university policy. More importantly, cheating indicates a lack of personal integrity. 12. Hints: Read each question carefully and answer the question that is asked. Watch your units. If you take good care of your units, they will take good care of you. Work carefully and don t rush. 1

2 Potentially useful constants: Ideal gas constant, R: Pa m 3 mol 1 K 1 = atm m 3 mol 1 K 1 Gravitational acceleration, g: 9.81 m/s 2 Molecular weight of water, H2O: g/mole Density of water at 18 C: g/ml = kg/m 3 Viscosity of water at 18 C: Pa sec Density of air at 18 C: 1.21 kg/m 3 Viscosity of air at 18 C: Pa sec Potentially useful conversion factors: Pressure: 1 atm = 760 mm Hg = 760 torr = Pa 1 Pa = 1 N/m 2 = 1 kg/(m sec 2 ) Mass: 1 kg = 1000 g = 10 6 mg = 10 9 µg 1 kg = lbmass 1 t (metric tonne) = 1000 kg = 2207 lbmass 1 ton (English ton) = 2000 lbmass Length: 1 km = 1000 m = 10 6 mm = 10 9 µm 1 ft = 12 in = cm = m Temperature: 25 C = K Volume: 1 m 3 = 1000 L = 10 6 ml = 10 6 cm 3 1 gal = L Work/Energy: 1 BTU = kj Power: 1 MW = 10 6 W = 10 6 J/s = 10 6 N m/s Area : 1 ha = 10 4 m 2 Atomic Masses: H = g/mole C = g/mole N = g/mole O = g/mole P = g/mole S = g/mole Cl = g/mole Br = g/mole Na = g/mole Mg = g/mole Ca = g/mole Fe = g/mole 2

3 from Principles of Environmental Engineering and Science, 2nd edition, by Davis and Masten 3

4 from Principles of Environmental Engineering and Science, 2nd edition, by Davis and Masten 4

5 1. (40 pts) Biochemical oxygen demand, oxygen depletion in a river, reactor theory A factory discharges its liquid waste into the Bellhorn River. During the summer, the temperature of the river is 22 C. Upstream of the discharge point, the flow rate of the river is 4.6 m 3 /s, and the water is pretty clean: BOD5 = 4.0 mg/l, and the concentration of dissolved oxygen is 8.00 mg/l. The flow rate of the factory s wastewater discharge is 0.4 m 3 /s, and it does not contain any dissolved oxygen. Bacteria in the river degrade the organic matter from the factory s wastewater. The firstorder rate coefficient for degradation of the organic matter is 0.40 d 1. You may assume that this is also the deoxygenation rate coefficient in the river. Downstream of the factory s discharge, the width of the river is 10 m, the depth of the river is 2.0 m, and the re-aeration rate coefficient is 0.70 d 1. a. (5 pts) Estimate/calculate the BODult in the river upstream of the factory s discharge. b. (25 pts) We want to be sure that the oxygen concentration in the river is at least 6.00 mg/l at a distance 30 km downstream of the discharge, because that is believed to be a part of the river where fish spawn during the summer. Estimate/calculate the maximum allowable BODult in the factory s wastewater to ensure adequate oxygen at this location. c. (10 pts) The factory measured the BODult in their wastewater and found that they needed to remove 70% of the organic matter in the waste stream to protect the health of the river. They will install a completely mixed flow reactor that can remove the organic matter with a first-order rate coefficient of 1.0 hr 1. Estimate/calculate the required volume of the reactor. Report your answer in units of m 3. 5

6 2. (40 pts) Material balances, wastewater treatment At a certain wastewater treatment plant, secondary treatment is performed via the activated sludge process, which we studied this year in ENV There is an aeration basin in which bacteria metabolize dissolved organic carbon (DOC), and there is a clarifier in which the biomass is separated from the treated effluent. Sludge from the bottom of the clarifier is split into a return activated sludge (RAS) stream, which returns to the aeration basin, and a waste activated sludge (WAS) stream, which goes to anaerobic digestion. The volume of the aeration basin is 8,000 m 3. In the aeration basin, active bacterial cells are produced at a net rate of 120 kg/hr. (Note that net rate accounts for both bacterial growth and bacterial death.) a. (20 pts) Consider the following process diagram for the secondary treatment. The table below gives the volumetric flow rate and the concentration of active bacterial cells in some of the streams shown in the diagram. You may assume that the density of every stream is the same (1000 kg/m 3 ); this assumption is not perfect, but it is close enough. Stream Flow rate Bacterial conc. (L/s) (mg/l) A B 584 C 5 D E 4 F Your job is to complete the table by estimating/calculating the remaining flow rates and solids concentrations. You must show your work to receive credit. 6 problem 2 continues

7 2. continued b. (10 pts) The bacteria in the aeration basin that metabolize the DOC have the following biological properties: half-velocity coefficient KS = 60 mg/l BOD5 bacterial death rate coefficient kd = 0.08 d 1 maximum specific growth rate coefficient µmax = 4.0 d 1 yield coefficient Y = 0.72 mg biomass produced per mg BOD5 consumed Estimate/calculate the concentration of DOC (expressed as BOD5) exiting the system in the treated effluent stream (stream C in the process diagram). Report your answer in units of mg/l. Hint #1: Dissolved organic carbon (DOC) is the soluble substrate metabolized by the bacteria. Hint #2: Make use of the net rate of production of active bacterial cells. Hint #3: How is the concentration of DOC in the treated effluent stream related to the concentration of DOC in the aeration basin? c. (10 pts) Estimate/calculate the concentration of DOC (expressed as BOD5) in the stream coming from primary treatment (stream A). What is the fractional removal of DOC in the secondary treatment process? Hint: use a material balance around the aeration basin. 7

8 3. (40 pts) Environmental chemistry, water treatment A farmer has a pond on his farm. The pond has a volume of 15,000 m 3 and a surface area of 5,000 m 2. It has one stream flowing in at a rate of 3,000 m 3 /hr, and one stream flowing out at the same rate. The temperature is 18 C. The pond has too much phosphate (PO 4 3 ) in the water, because when it rains, fertilizer from the fields gets washed into the pond. The phosphate leads to algae blooms in the pond, which the farmer hates. To control the phosphate concentration, the farmer plans to add alum, Al 2(SO 4) 3, to the influent stream of the pond. This will release Al 3+ and cause the phosphate to precipitate as AlPO 4. Then the AlPO 4 particles will settle to the bottom of the pond, removing the phosphate. This is a good plan as long as the Al 3+ from the alum reacts with the phosphate to form AlPO 4. If too much of the Al 3+ instead forms Al(OH) 3, then the phosphate will not be removed. The solubility product constant (K sp) for Al(OH) 3 is The solubility product constant (K sp) for AlPO 4 is a. (3 pts) Estimate/calculate the average hydraulic residence time of the pond. b. (10 pts) Suppose the ph of the pond is 8.5. What will be the equilibrium concentration of Al 3+, in units of mol/l? Hint: use the K sp for Al(OH) 3. c. (10 pts) Under this ph condition, what will be the equilibrium concentration of PO 4 3 remaining in the pond water? Report your answer in mg/l as P. Hint: use your result from part (b). Can the farmer reduce his phosphate concentration to below 0.1 mg/l (as P) with this strategy? d. (7 pts) Repeat your calculations from parts (b) and (c) if the ph of the pond is 6.5. Now can the farmer reduce his phosphate concentration to below 0.1 mg/l as P? What might the farmer might want to add to the pond in addition to alum? e. (10 pts) The farmer does not want a lot of AlPO 4 particles flowing out of the pond in the effluent stream. He wants the AlPO 4 particles to settle out while they are still in the pond. What particle diameter is required for the AlPO 4 particles to ensure that at least 90% of the particles are removed before exiting the pond? (It is OK to assume that the flow in the pond is relatively calm, mimicking the behavior of a sedimentation basin at a drinking-water treatment plant.) I do not know the density of the AlPO 4 particles, but let s guess 2.0 g/cm 3 = 2000 kg/m 3. [Note: sedimentation of the AlPO 4 particles will be aided by the formation of some Al(OH) 3 flocs, which will sweep up the AlPO 4 particles and help them settle. You just don t want *too* much Al(OH) 3 because then you won t form AlPO 4 for the phosphate removal.] 8

9 4. (40 pts) Risk assessment, air pollution, solid waste management A small city of 200,000 people recycles 25% of its municipal solid waste and sends the rest to a waste-to-energy facility. A resident who lives 5 km away from the waste-to-energy facility is worried about the emissions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, also frequently just called dioxin ) from the facility. TCDD is one of the most toxic compounds known to man. It is formed in small quantities when plastic (especially PVC) is burned. If the waste-to-energy facility does not have adequate air pollution controls, then it might be emitting hazardous levels of 2,3,7,8-TCDD into the air. The resident under consideration is a 45-year-old woman who will live in the town for 30 years. She spends about 12 hours per day at her house. The wind patterns in the area are such that her house is downwind of the waste-to-energy facility about 2 days per week on the other 5 days per week, the wind blows away from her house. a. (5 pts) What is an acceptable chronic daily intake (CDI) of TCDD if the woman wants to keep her incremental cancer risk to an acceptable level? State your assumptions and/or show your work, as necessary. Report your answer with the proper units for CDI. b. (10 pts) What is an acceptable concentration of 2,3,7,8-TCDD in the air to ensure that she does not exceed the CDI you found in part (a)? State your assumptions clearly and show your work. Report your answer in units of mg/m 3. c. (13 pts) Suppose that a typical day is one in which the wind speed is 5.5 m/s (at a height of 10 m above the ground) and both the daytime and nighttime conditions are thinly overcast. The effective stack height of the waste-to-energy facility is 35 m. What is an acceptable emission rate of TCDD from the facility to protect the woman s health? Report your answer in units of mg/d. Show your work and state your assumptions as appropriate. d. (12 pts) I read that TCDD is formed at a rate of mg per kg of newspaper burned, 0.43 mg per kg of PVC burned, and about mg per kg of other plastics burned [Shibamoto et al., 2007, Dioxin formation from waste incineration, Rev. Environ. Contam. Toxicol., 190:1 41.] Based on these, estimate the emissions rate of TCDD from the waste-to-energy facility. Does the emission rate that you estimate in part (d) exceed the acceptable emission rate in part (c)? If so, what fractional removal of TCDD would be required by the facility s air pollution control system? Do you think the resident is right to worry about living 5 km from a waste-to-energy facility? Explain very briefly. Hint: use your text book to look up the composition of MSW. END OF EXAMINATION 9

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Final Examination Monday, December 4, 2017 University of South Florida Civil & Environmental Engineering Prof JA Cunningham Instructions: 1. You may

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2016 Quiz #2 Wednesday, October 26 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2018 Quiz #1 Wednesday, September 26 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Quiz #2 Wednesday, October 25 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2018 Quiz #2 Wednesday, October 24 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Spring 2015 Quiz #2 Wednesday, March 18 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Quiz #1 Wednesday, September 27 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4417: WATER QUALITY AND TREATMENT. University of South Florida Civil & Environmental Eng.

ENV 4417: WATER QUALITY AND TREATMENT. University of South Florida Civil & Environmental Eng. ENV 4417: WATER QUALITY AND TREATMENT Fall 2015 Final exam Thursday, December 10 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

University of South Florida Civil & Environmental Eng.

University of South Florida Civil & Environmental Eng. ENV 4417: WATER QUALITY AND TREATMENT Fall 2015 Exam #1 Thursday, October 15 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Spring 2010 Final Examination Friday, May 7, 2010 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read

More information

University of South Florida

University of South Florida ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Problem set #8 Finish by well, before the third quiz, I guess University of South Florida Civil & Environmental Eng. Prof. J. A. Cunningham This problem

More information

Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal

Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal ENGI 9605 Advanced Wastewater Treatment Chapter 4: Advanced Wastewater Treatment for Phosphorous Removal Winter 2011 Faculty of Engineering & Applied Science 4.1 Phosphorous in wastewaters 1. Common forms

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 01. PT_CE_A+B_Environmental Engineering_090718 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_A_Environmental Engineering_100818 CLASS TEST (GATE Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS

More information

1/11/2016. Types and Characteristics of Microorganisms. Topic VI: Biological Treatment Processes. Learning Objectives:

1/11/2016. Types and Characteristics of Microorganisms. Topic VI: Biological Treatment Processes. Learning Objectives: Topic VI: Biological Treatment Processes Learning Objectives: 1. Discuss microbiology and relate it to wastewater treatment. 2. Describe growth kinetics of pure bacterial culture with Monod expression

More information

ENVE 302 Environmental Engineering Unit Processes

ENVE 302 Environmental Engineering Unit Processes ENVE 302 Environmental Engineering Unit Processes CHAPTER: 11 PONDS & LAGOONS Assist. Prof. Bilge Alpaslan Kocamemi Marmara University Department of Environmental Engineering Istanbul, Turkey 1 PONDS &

More information

Meeting SB1 Requirements and TP Removal Fundamentals

Meeting SB1 Requirements and TP Removal Fundamentals Meeting SB1 Requirements and TP Removal Fundamentals June 5, 2017 Agenda SB1 requirements for P TP removal mechanisms Biological removal Chemical removal SB No. 1 Requirements for Phosphorus ** WWTP /

More information

CEE 371 May 14, 2009 Final Exam

CEE 371 May 14, 2009 Final Exam CEE 371 May 14, 2009 Final Exam Closed Book, two sheets of notes allowed Please answer questions 3, 6 and 7. In addition, answer either question 1 or 2, and answer either question 4 or 5. The total potential

More information

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013 Homework #6 Due Thurs., April 11 Topic: Disinfection Assignment for 2013: Problems 4, 5, 8, 12 1. Answer question 13-5 in the Howe text book (same as 13-4 in the Crittenden text, 3rd edition). Don t worry

More information

Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR )

Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR ) Utilizing algal oxygen production for advanced wastewater treatment in a Moving Bed Biofilm Reactor (MBBR) the Biologically Aerated Reactor (BAR ) R. Blanc*, U. Leshem Aquanos Energy Ltd., 4 Hadekel Street,

More information

ENVE EXAM II Help Session DCC pm

ENVE EXAM II Help Session DCC pm ENVE-2110 EXAM II Help Session DCC337 10-8-13 4-5 pm Abbreviations Look through lecture notes, book and assignments Examples: (sample test Q1) V, Q, MW, L, CSTR, PFR, batch reactor, C, k, EPA, OSHA, G,

More information

Secondary Wastewater Treatment

Secondary Wastewater Treatment The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Sanitary Engineering (ECIV 4325) Instructor: Dr. Abdelmajid Nassar Lect. W12-13 Secondary Wastewater Treatment Treatment

More information

University of South Florida

University of South Florida ENV 4417: WATER QUALITY & TREATMENT Fall 2015 Problem set #4 Due Tuesday, Oct. 13 University of South Florida Civil & Environmental Eng. Prof. J. A. Cunningham For 2015, answer problem 1, then problem

More information

Course: Wastewater Management

Course: Wastewater Management Course: Wastewater Management Prof. M. M. Ghangrekar Questions 1 1. Describe advantages and disadvantages offered by the water carriage system. 2. What are the possible adverse effects when untreated or

More information

Duffin Creek Water Pollution Control Plant Technical Information

Duffin Creek Water Pollution Control Plant Technical Information Duffin Creek Water Pollution Control Plant Technical Information Plant History The Duffin Creek Water Pollution Control Plant (WPCP) is located on the northern shore of Lake Ontario in the City of Pickering

More information

Key Points. The Importance of MCRT/SRT for Activated Sludge Control. Other (Confusing) Definitions. Definitions of SRT

Key Points. The Importance of MCRT/SRT for Activated Sludge Control. Other (Confusing) Definitions. Definitions of SRT Key Points The Importance of MCRT/SRT for Activated Sludge Control Randal Samstag Carollo Engineers Definitions Why is SRT important? Examples of use of SRT for process control Nitrification control Settleability

More information

Wastewater Treatment. Where does wastewater go when it leaves your house?

Wastewater Treatment. Where does wastewater go when it leaves your house? Wastewater Treatment Where does wastewater go when it leaves your house? Let s s take a look The process includes: Collection of wastewater Primary Treatment Secondary Treatment Solids Handling Influent

More information

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD as modeled in the previous assignment. and t is the time in days.

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD as modeled in the previous assignment. and t is the time in days. STELLA Assignment #3 - Dissolved Oxygen and BOD Now that you have a good grasp of the STELLA basics, let's begin to expand the BOD model developed in the past assignment. One concern of an environmental

More information

Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility

Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility Performance Evaluation of the Moores Creek Advanced Water Resource Recovery Facility Richard W. Gullick, Ph.D. Director of Operations Timothy Castillo Wastewater Manager Presented to the Albemarle County

More information

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days.

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days. STELLA Assignment #3 - Dissolved Oxygen and BOD Now that you have a good grasp of the STELLA basics, let's begin to expand the BOD model developed in the past assignment. Often the concern of an environmental

More information

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013 Homework #5 Due Thurs., March 28 Topic: Filtration 1. (2 pts) When estimating the effectiveness of a granular-media filter, we usually estimate the single-collector efficiency,. If we account for three

More information

2017 National Pollutant Release Inventory (NPRI) Report

2017 National Pollutant Release Inventory (NPRI) Report 2017 National Pollutant Release Inventory (NPRI) Report City of London s Environmental and Engineering Services Division June 5, 2018 Page 1 of 14 Table of Contents 2017 NPRI... 3 Brief explanatory notes

More information

Aeration Blower Requirements. Tom Jenkins 06/15/2016

Aeration Blower Requirements. Tom Jenkins 06/15/2016 Aeration Blower Requirements Tom Jenkins 06/15/2016 Aeration blowers receive a lot of attention from design engineers, suppliers, and end users. That is understandable since blowers account for more than

More information

Physical water/wastewater treatment processes

Physical water/wastewater treatment processes Physical water/wastewater treatment processes Tentative schedule (I) Week 1: Introduction Week 2: Overview of water/wastewater treatment processes Week 3: Major contaminants (Chemicals and pathogens) Week

More information

Bioremediation What is it and how does it work?

Bioremediation What is it and how does it work? Bioremediation What is it and how does it work? Bioremediation and Waste Management Biological treatment and our reliance on bacteria is not new or novel, it has played a central role in conventional waste

More information

Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8.

Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8. Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8. 1. (20 pts) a. Answer question 13-4 in the Crittenden text (3 rd edition).

More information

Modeling Surface Water Contamination

Modeling Surface Water Contamination Modeling Surface Water Contamination One of the resources required for an ecosystem to function is an available source of fresh water This is quite true for human settlements as well: If you examine the

More information

CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5

CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5 CEE 3510 -- ENVIRONMENTAL UALITY ENGINEERING PROBLEM SET #5 Problem 1. (adapted from Water uality by Tchobanoglous and Schroeder) A stream has a nearly uniform cross section, although it passes through

More information

CE421/521 Environmental Biotechnology. Nitrogen and Phosphorus Cycles Lecture Tim Ellis

CE421/521 Environmental Biotechnology. Nitrogen and Phosphorus Cycles Lecture Tim Ellis CE421/521 Environmental Biotechnology Nitrogen and Phosphorus Cycles Lecture 9-269 26-06 Tim Ellis Nitrification Kinetics µ = µ K maxs NH 4 S + S NH4 K O S O2 + S O2 where µ max = maximum specific growth

More information

Sludge Reduction Benefits Observed When using Rare Earth Technology in Wastewater Treatment. Rare Earth Chemistry and Solid Generation in Wastewater

Sludge Reduction Benefits Observed When using Rare Earth Technology in Wastewater Treatment. Rare Earth Chemistry and Solid Generation in Wastewater Sludge Reduction Benefits Observed When using Rare Earth Technology in Wastewater Treatment Introduction In a wastewater treatment facility, the separation of solids from water is a very important task.

More information

Wastewater Tools: Activated Sludge and Energy Use Analysis

Wastewater Tools: Activated Sludge and Energy Use Analysis Wastewater Tools: Activated Sludge and Energy Use Analysis Larry W. Moore, Ph.D., P.E. University of Memphis June 22, 2017 Objectives of Biological Treatment Oxidize dissolved and particulate biodegradable

More information

Lowering The Total Cost Of Operation

Lowering The Total Cost Of Operation Lowering The Total Cost Of Operation The system removes more solids than conventional clarification, so filters can run longer between backwash cycles. Fewer backwash cycles means less backwash water,

More information

Environmental Engineering I Jagadish Torlapati, PhD Fall 2017 MODULE 3 WASTEWATER TREATMENT CONTROL PARAMETERS QS = VX F M

Environmental Engineering I Jagadish Torlapati, PhD Fall 2017 MODULE 3 WASTEWATER TREATMENT CONTROL PARAMETERS QS = VX F M F:M Ratio MODULE 3 WASTEWATER TREATMENT CONTROL PARAMETERS One commonly used parameter in the activated sludge process is the food to microorganism ratio (F/M or F:M) Food (F) Organic matter in the wastewater

More information

Sludge recycling (optional) Figure Aerobic lagoon

Sludge recycling (optional) Figure Aerobic lagoon 19.4 Aerated Lagoon Aerated lagoons are one of the aerobic suspended growth processes. An aerated lagoon is a basin in which wastewater is treated either on a flow through basis or with solids recycle.

More information

Sanitary and Environmental Engineering I (4 th Year Civil)

Sanitary and Environmental Engineering I (4 th Year Civil) Sanitary and Environmental Engineering I (4 th Year Civil) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information

Appendix B-1. Design Calculations for Sewage Treatment Plant

Appendix B-1. Design Calculations for Sewage Treatment Plant APPENDIX B SEWERAGE FACILITIES Appendix B-1 Design Calculations for Sewage Treatment Plant Appendix. B.1 CAPACITY CALCULATION OF SEWAGE TREATMENT PLANT 1 BASIC CONDITIONS 1.1 BASIC S (1) Name : Astana

More information

SECTION-I. b) Write a short note on pumping of savage. 4

SECTION-I. b) Write a short note on pumping of savage. 4 UNIVERSITY OF PUNE [4364]-401 B. E. (Civil Engineering Semester I) Examination - 2013 ENVIRONMENTAL ENGINEERING-II (2008 Pattern) [Total No. of Questions :12] [Total No. of Printed Pages :4] [Time : 3

More information

Modeling Surface Water Contamination

Modeling Surface Water Contamination Modeling Surface Water Contamination A municipal wastewater treatment facility is planning to locate upstream on a popular fishing river. The wastewater facility will continuously discharge wastewater

More information

CEE 370 Fall Homework #8

CEE 370 Fall Homework #8 CEE 370 Fall 015 Homework #8 Drinking Water Problems 1. Drinking Water Quality The following mineral analysis was reported for Michigan State Well water. Determine the following in units of mg/l as CaCO3

More information

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100

Copies: Mark Hildebrand (NCA) ARCADIS Project No.: April 10, Task A 3100 MEMO To: Jeff Pelz (West Yost) Kathryn Gies (West Yost) Copies: Mark Hildebrand (NCA) ARCADIS U.S., Inc. 200 Harvard Mills Square Suite 430 Wakefield Massachusetts 01880 Tel 781 224 4488 Fax 781 224 3033

More information

Anderson Water Pollution Control Plant

Anderson Water Pollution Control Plant City of Anderson Wastewater Division Public Works Director Jeff Kiser Chief Plant Operator Plant Supervisor Operator III Operator I Phil DeBlasio Mike Hansen Tony Hinchliff Vacant Collections Supervisor

More information

COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS

COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS ABSTRACT COLD WEATHER NITRIFICATION OF LAGOON EFFLUENT USING A MOVING BED BIOFILM REACTOR (MBBR) TREATMENT PROCESS Mr. Flemming G. Wessman 1 and Mr. Chandler H. Johnson 1 AnoxKaldnes, Inc., 58 Weybosset

More information

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ENHANCING THE PERFORMANCE OF OXIDATION DITCHES Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ABSTRACT Oxidation ditches are very popular wastewater treatment

More information

AGSM 337/BAEN 465 Sedimentation, Flow Equalization Page 1 of 7

AGSM 337/BAEN 465 Sedimentation, Flow Equalization Page 1 of 7 AGSM 337/BAEN 465 Sedimentation, Flow Equalization Page 1 of 7 Definition of Sedimentation Gravitational accumulation of solids (particles) at the bottom of a fluid (air or water) Essentially settling

More information

Aeration University Advanced Concepts in Energy Efficiency

Aeration University Advanced Concepts in Energy Efficiency Aeration University Advanced Concepts in Energy Efficiency Wisconsin Wastewater Operators Association 47 th Annual Conference October 23, 2013 Presented by Phil Korth Aeration and Energy Wastewater Treatment

More information

Choices to Address Filamentous Growth

Choices to Address Filamentous Growth Michigan Water Environment Association Process Seminar November 12, 2015 Choices to Address Filamentous Growth Richard Beardslee City of Battle Creek Nathan Cassity Donohue & Associates Outline Battle

More information

WASTEWATER TREATMENT

WASTEWATER TREATMENT WASTEWATER TREATMENT Every community produces both liquid and solid wastes. The liquid portion-wastewater-is essentially the water supply of the community after it has been fouled by a variety of uses.

More information

Trickling Filters and Rotary Biological Contactors

Trickling Filters and Rotary Biological Contactors Trickling Filters and Rotary Biological Contactors CE - 370 1 Trickling Filters Definition: a biological process in which the microorganisms are attached to the filter media Trickling filters are composed

More information

CEE March 2012

CEE March 2012 CEE 577 28 March 2012 MID-TERM EXAM Closed book, 1 sheet of notes allowed. Answer 2 of the following 3 questions. Please state any additional assumptions you made, and show all work. I. (50%) The Cape

More information

QUESTIONNAIRE POND TREATMENT PLANT OLOID Agitate, Circulate, Aerate

QUESTIONNAIRE POND TREATMENT PLANT OLOID Agitate, Circulate, Aerate Page 1 of 5 In order to quickly clarify whether this energy-saving technology is suitable for your application, please fill out the questionnaire as far as possible and to send us by e-mail. Questionnaire

More information

Waste water treatment Biological treatment

Waste water treatment Biological treatment Leonardo da Vinci Project Sustainability in commercial laundering processes Module 1 Usage of Water Chapter 5 Waste water treatment Biological treatment Module 1 Usage of water Chapter 5 Waste Water Treatment

More information

Unit Treatment Processes in Water and Wastewater Engineering

Unit Treatment Processes in Water and Wastewater Engineering Unit Treatment Processes in Water and Wastewater Engineering T J Casey AQUAVARRA RESEARCH LIMITED 22A Brookfield Avenue Blackrock Co. Dublin. October 2006 Author s Note Water and wastewater treatment technology

More information

Case Study. BiOWiSH Aqua. Biological Help for the Human Race. Municipal Wastewater Bathurst Waste Water Treatment Works Australia.

Case Study. BiOWiSH Aqua. Biological Help for the Human Race. Municipal Wastewater Bathurst Waste Water Treatment Works Australia. Case Study BiOWiSH Aqua Municipal Wastewater Bathurst Waste Water Treatment Works Australia BiOWiSH Aqua Executive Summary The main objective of the validation was to quantify cost savings in using BiOWiSH.

More information

Homework Solution for Module 15 Waste Water Treatment Plants. 2. What is the difference between municipal and industrial wastewater?

Homework Solution for Module 15 Waste Water Treatment Plants. 2. What is the difference between municipal and industrial wastewater? Homework Solution for Module 15 Waste Water Treatment Plants 1. Why do we have to treat wastewater? Because the dilution of a river is usually not sufficient to purify sewage and industrial pollution well

More information

CASE STUDY: ROYAL AUSTRALIAN AIR FORCE BASE, AMBERLEY SEWAGE TREATMENT PLANT

CASE STUDY: ROYAL AUSTRALIAN AIR FORCE BASE, AMBERLEY SEWAGE TREATMENT PLANT 2007 Virotec International plc All rights reserved. A COMMERCIAL APPLICATION OF VIROSEWAGE TECHNOLOGY CASE STUDY: ROYAL AUSTRALIAN AIR FORCE BASE, AMBERLEY SEWAGE TREATMENT PLANT The ViroSewage Technology

More information

Lagoons Operation and Management in New Brunswick

Lagoons Operation and Management in New Brunswick Lagoons Operation and Management in New Brunswick Lagoons Provide secondary treatment to domestic wastewater by the action of bacteria stabilizing the organic matter in the wastewater. Benefits of lagoons:

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering afayette College Department of Civil and Environmental Engineering CE 21: Environmental Engineering and Science Fall 2011 Homework #10 Due: Friday, December 2, 2011 Solutions 1) A wastewater treatment

More information

WATER QUALITY ENGINEERING

WATER QUALITY ENGINEERING WATER QUALITY ENGINEERING Zerihun Alemayehu (AAiT-CED) Water Quality Management The control of pollution from human activities so that the water is not degraded to the point that it is no longer suitable

More information

Module 1: CHAPTER FOUR PHYSICAL PROCESSES

Module 1: CHAPTER FOUR PHYSICAL PROCESSES Module 1: CHAPTER FOUR PHYSICAL PROCESSES Objectives: To know physical processes that are important in the movement of pollutants through the environment and processes used to control and treat pollutant

More information

Right click on the influent element and select name. Type Influent in the box. This should change the name of your element to influent.

Right click on the influent element and select name. Type Influent in the box. This should change the name of your element to influent. CE 521 WASTEWATER ENGINEERING - BIOWIN DESIGN PROJECT IN CLASS ASSIGNMENT TUTORIAL (adapted from assignments by Professor Chris Schmit SDSU http://learn.sdstate.edu/christopher%5fschmit/) Start BioWin

More information

Parathion Chemical Fate and Transport in the Environment Quiz #2 Dec. 14, am-12am.

Parathion Chemical Fate and Transport in the Environment Quiz #2 Dec. 14, am-12am. 1.725 Chemical Fate and Transport in the Environment Quiz #2 Dec. 14, 2004 9am-12am. 1) (15 pts) Wind from over the ocean has a temperature of 17 degrees C and a relative humidity of 85 %. Orographic effects

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering afayette College Department of Civil and Environmental Engineering CE 21: Environmental Engineering and Science Fall 2014 Homework #11 Due: Monday, December 1, 2014 SOUTIONS 1) Suppose some wastewater

More information

Proprietary AquaTron technology incorporates three (3) innovative features that increase its efficiency and reduces cost:

Proprietary AquaTron technology incorporates three (3) innovative features that increase its efficiency and reduces cost: THE AQUATRON The Technology The AquaTron is the result of over twenty years of research, development, testing and practical experience. Using the principles of the activated sludge biological process,

More information

Presentation Outline

Presentation Outline Presentation Outline Nitrification/denitrification refresher Treatment technologies available for nitrification and BNR/ENR What is the problem? BNR/ENR VPDES permitting Causes of reduced BNR performance

More information

/ Marley MARPAK Modular Biomedia /

/ Marley MARPAK Modular Biomedia / / Marley MARPAK Modular Biomedia / The Marley MARPAK Difference SPX Cooling Technologies is a world leader in the design, manufacturing and construction of cooling products. The design and production of

More information

General Information on Nitrogen

General Information on Nitrogen General Information on Nitrogen What is nitrogen? Nitrogen was discovered in 1772 by Daniel Rutherford in Scotland Nitrogen gas makes up nearly 80% of the air we breathe Nitrogen gas is not toxic Nitrogen

More information

Wastewater Treatment Processes

Wastewater Treatment Processes Wastewater Treatment Processes CEL212 Environmental Engineering (2 nd Semester 2010-2011) Dr. Arun Kumar (arunku@civil.iitd.ac.in) Department of Civil Engineering Indian Institute of Technology (Delhi)

More information

Preparing for Nutrient Removal at Your Treatment Plant

Preparing for Nutrient Removal at Your Treatment Plant Summer Seminar Emerging Issues in the Water/Wastewater Industry Preparing for Nutrient Removal at Your Treatment Plant Rajendra P. Bhattarai, P.E., BCEE Austin Water Utility Ana J. Peña-Tijerina, Ph.D.,

More information

MARPAK modular biomedia WASTEWATER TREATMENT

MARPAK modular biomedia WASTEWATER TREATMENT MARPAK modular biomedia WASTEWATER TREATMENT The Marley MARPAK Difference SPX Cooling Technologies is a world leader in the design, manufacturing and construction of evaporative cooling products. The design

More information

WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES

WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES A range of potential ammonia limits were identified for alternatives evaluation, as discussed in Section 2.2.5. This chapter

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING Question Bank CE2354 - ENVIRONMENTAL ENGINEERING - II Prepared By: Year: 3rd year Semester: 6th Semester R.THENMOZHI / A.P.Civil J.SHANMUGAPRIYA

More information

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.)

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.) 1 P age Module 19 : Aerobic Secondary Treatment Of Wastewater Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.) 2 P age 19.1.5 Process Analysis of Completely Mixed Reactor with Sludge Recycle

More information

Struvite Scale Potential Determination Using a Computer Model

Struvite Scale Potential Determination Using a Computer Model Struvite Scale Potential Determination Using a Computer Model K.N. Ohlinger, Ph.D., PE * and R. J. Mahmood, Ph.D., PE * * Office of Water Programs, Department of Civil and Environmental Engineering, California

More information

Department of Environmental Quality

Department of Environmental Quality EARL WUESTNICK Wastewater Specialist Bruce Lack Certification Specialist Department of Environmental Quality Operator Training and Certification Unit OPERATOR TRAINING AND CERTIFICATION UNIT For More Information

More information

Wastewater Terms for Permit Applications

Wastewater Terms for Permit Applications Wastewater Terms for Permit Applications Activated Sludge Alkalinity Anaerobic Anoxic Bacteria The term "activated sludge" refers to a brownish flocculent culture of organisms developed in aeration tanks

More information

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Always write your name and entry number in all submissions. Please mention your assumptions explicitly. Q1. Say a raw wastewater

More information

Case Study. Biological Help for the Human Race. Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia.

Case Study. Biological Help for the Human Race. Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia. Case Study BiOWiSH Aqua Bathurst Municipal Wastewater Treatment Works, New South Wales, Australia BiOWiSH Aqua Executive Summary The main objective of the study was to quantify the cost savings of using

More information

AquaNereda Aerobic Granular Sludge Technology

AquaNereda Aerobic Granular Sludge Technology Aerobic Granular Sludge AquaNereda Aerobic Granular Sludge Technology The AquaNereda Aerobic Granular Sludge (AGS) Technology is an innovative biological wastewater treatment technology that provides advanced

More information

Activated Sludge Base Notes: for student. Activated Sludge Intro. What is Activated Sludge? 3/12/2012

Activated Sludge Base Notes: for student. Activated Sludge Intro. What is Activated Sludge? 3/12/2012 Activated Sludge Base Notes: for student DMACC 2012 WAT307 Activated Sludge Intro A brief introduction designed to provide basic knowledge of Activated Sludge including some process control basics What

More information

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical & Process Engineering Stage 3 (Bachelor of Engineering in Chemical and Process Engineering Stage 3) (NFQ Level 8) Summer 005 CE3.6

More information

Industrial Waste Water Treatment. Unit 5

Industrial Waste Water Treatment. Unit 5 Industrial Waste Water Treatment Unit 5 Outline Levels of treatment methods 1 Biological wastewater treatment Caste study Heavy metals Biological wastewater treatment Treatment Methods employed Biological

More information

Biological Wastewater Treatment Processes II: MBBR Processes

Biological Wastewater Treatment Processes II: MBBR Processes Biological Wastewater Treatment Processes II: MBBR Processes Course No: C04-045 Credit: 4 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point,

More information

Lecture 5: River Water Quality

Lecture 5: River Water Quality Lecture 5: River Water Quality (Jan 16 th, 2015) by Dr. Arun Kumar (arunu@civil.iitd.ac.in) Objective: To introduce river water quality concepts and fundamentals January 15, 2015 Arun Kumar (arunu@civil.iitd.ac.in)

More information

Wastewater Treatment Processes

Wastewater Treatment Processes Wastewater Treatment Processes (Sep 27 th and 28 th, 2016) by Dr. Arun Kumar (arunku@civil.iitd.ac.in) Objective: To learn about processes used in tertiary treatment Courtesy: Dr. Irene Xagoraraki, MSU,

More information

Water Pollution. Objective: Name, describe, and cite examples of the eight major types of water pollution.

Water Pollution. Objective: Name, describe, and cite examples of the eight major types of water pollution. Water Pollution Objective: Name, describe, and cite examples of the eight major types of water pollution. Types of Water Pollution Water pollutants are divided into eight categories: 1. Sediment pollution

More information

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing - 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants by Glenn Thesing Through retrofitting IFAS systems, communities can upgrade and expand wastewater treatment without the expense and complication

More information

Rawal Lake Water Treatment Plant Rawalpindi, Pakistan

Rawal Lake Water Treatment Plant Rawalpindi, Pakistan Rawal Lake Water Treatment Plant Rawalpindi, Pakistan 1. Background Information Rawal Lake Water Treatment Plant is managed by the Water & Sanitation Agency (WASA) under the Rawalpindi Development Authority

More information

Practice Problems; Chapter#1

Practice Problems; Chapter#1 Practice Problems; Chapter#1 #1. Determine the density of an object that has a mass of 149.8 g and displaces 12.1 ml of water when placed in a graduated cylinder. A) 8.08 g/ml B) 1.38 g/ml C) 12.4 g/ml

More information

Wastewater Treatment Design of Waste Stabilization Ponds

Wastewater Treatment Design of Waste Stabilization Ponds The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Sanitary Engineering (ECIV 4325) Instructor: Dr. Abdelmajid Nassar Lect. W10 Wastewater Treatment Design of Waste Stabilization

More information

Figure Trickling Filter

Figure Trickling Filter 19.2 Trickling Filter A trickling filter is a fixed film attached growth aerobic process for treatment of organic matter from the wastewater. The surface of the bed is covered with the biofilm and as the

More information