Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013

Size: px
Start display at page:

Download "Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013"

Transcription

1 Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Introduction Natural photosynthesis, based on complex organic photoactive antennae and metal organic redox and other catalysts, evolved not long after the origin of life and became, apart from geothermal heat for certain bacteria, the exclusive source of energy for all forms of life over several billion years, at least until humankind learnt to tap other natural energy sources such as wind, flowing water and nuclear energy. Technically, artificial photosynthetic processes were exploited for the first time in 1837 by Daguerre in his pioneering early trials with photography. The same photochemical and photophysical principles, which governed traditional photography and involved organic sensitisers, inorganic semiconductors and redox reactions and result in very effective charge separation following excitation by light, laid the cornerstones for dye solar cells (DSCs) with their unique properties. One great advantage of DSC is that it remains efficient even when panel orientation in regards to the North-South direction and/or the angle from horizontal is far from optimum e.g. on building façades, where more traditional PV panels such as crystalline silicon significantly lose efficiency due to increased electron-hole recombination at lower light levels. DSC devices, in contrast, work especially well under light levels corresponding to around 30% - 50% full sun, such as typically available on the side of a building during the course of an average day. Even with AM1.5 G (see info box to right) DSC efficiencies being lower compared to crystalline silicon, the DSC levelised cost of electricity is comparable or even lower than for traditional PV panels offering higher peak efficiencies - especially on façades in areas with relatively high levels of diffuse radiation. When DSC has a lower levelised cost of energy than PV panels this means that your DSC greenalternative steel roofing or DSC green-alternative window will produce energy for you at a lower cost than the traditional tack-on PV panel. Levelised Cost of Energy (LCOE) is a calculation that gives the cost of electricity (typically in cents per kilowatt hour) generated by different sources of power. LCOE calculations take in all factors that influence the cost of energy production including the initial capital including the inverter and cabling, manufacturing and installation costs, discount rate, the cost of continuous operation, fuel, and maintenance. LCOE helps us compare apples to apples when discussion different sources of power. In addition, the unique attribute of DSC in the built environment is its ability to capture and convert light into electricity while maintaining a level of transparency unattainable for other PV technologies. DSC devices, glassbased DSC products in particular, can be produced in a wide range of colours and transparency options and can become an integral aesthetic part of a building in the form of specially designed cladding or semi-transparent windows. The standard small cell liquid DSC material set combination with TiO 2 and I 3 - /I - produces an efficiency of around 12%. Cobalt complexes offer higher device voltages, but their much larger size results in slower ionic diffusion, which significantly limits performance under higher illumination levels, particularly in electrolytes which use stable industrially feasible solvents. DSC based on Cobalt complexes or other larger size redox systems are thus best suited for indoor applications, where cell efficiencies under indoor fluorescent room lighting can reach an incredible 26%, while standard silicon cells provide only 9%. Dyesol Ltd: Global Leaders in Dye Solar Cell Technology Page 1 of 5

2 Solid-State DSC with Inorganic Sensitisers Game Changing PV Technology True solid-state DSC (ssdsc) has been of enormous industrial interest for a long time. After the first report featuring a ssdsc in 1998 by EPFL with 0.74% efficiency, progress was relatively slow. Scientists had to learn that ssdsc has special requirements in terms of processing, pore filling with a solid, in particular, optimum TiO 2 thickness (the thinner the better) and dyes with high enough absorption coefficients, which were compatible with thinner TiO 2 layers. Suppressing interfacial recombination was another challenge as well as creating sufficient hole conductivity, e.g. through doping of the hole transport material. The highest efficiency so far for dye-based ssdsc had been 7.2% and was reported in Then, almost out of the blue, appeared solid state dye solar cells featuring inorganic materials of perovskite stoichiometry ABX 3, i.e. compounds which crystallise in the same structure as the natural mineral Perovskite (=CaTiO 3 ). In contrast to oxides (X=O), with many different ABX 3 perovskite type composition found in natural deposits, perovskites for photovoltaic applications are based on halides (i.e. X=I, Br or Cl), tin or lead (i.e. B=Sn or Pb) and feature a relatively large cation (e.g. A + =Cs + or an organic cation, such as an ammonium cation). Compared to standard molecular dyes, perovskites can suppress the electron back transfer (recombination) between the excited electron and the holes in the hole transport material by a factor of around 10 million! These favourable interfacial electron transfer kinetics enabled, over the past year, incredibly fast improvement of ssdsc device performance with virtually bi-weekly announcements of progress, see the figure below. No other PV technology has ever before undergone such rapid progress. Historic development of small laboratory ssdsc (green) and liquid-based DSC performance (orange). Dyesol Ltd: Global Leaders in Dye Solar Cell Technology Page 2 of 5

3 ssdsc offers a series of advantages: 1) No liquid component in device, which renders manufacture of large area, thin film devices much easier and holds the promise of longer product life, especially in hot climates. 2) In principle, much less driving force is required for dye (or sensitiser) regeneration in ssdsc compared to the commonly used I 3 - /I - system of liquid DSC where DSC energy losses are ev due to a complex two-electron transfer process, requiring considerable activation energy. Thus, significantly higher voltages are possible with ssdsc compared to traditional DSC. 3) Certain inorganic sensitisers e.g. in the form of quantum dots or very thin layers, are soluble in traditional DSC electrolyte systems, which renders them, therefore, incompatible with liquid electrolytes. Certain inorganic sensitisers are very strong light absorbers and offer better coverage of the solar spectrum, resulting in higher device currents and thus power output. 4) Only electronic charge i.e. electrons and holes, is transported in ssdsc, rather than ions in addition to electrons as in traditional DSC. Thus, charge transport is not limited by the size of ionic or molecular redox species. 5) ssdsc, based on highly absorbing inorganic materials, enables thinner and thinner devices, which require less and less material and holds the promise of lower materials costs. In combination with higher expected device voltages (2.), currents (3.) and possibly fill factors (4.), ultimately higher device efficiency and lower LCOE (levelised cost of electricity) is expected. ssdsc, therefore, seems to combine the best of two worlds. The inherent advantages of DSC i.e. effective charge separation into two phases thanks to fast injection of electrons into a wide bandgap semiconductor and fast charge neutralisation by a semiconductive donor, superior harvesting of diffuse light, an option of partial transparency, and colour selection are maintained, while cumbersome and challenging filling of devices with a liquid can be avoided. Dyesol Ltd: Global Leaders in Dye Solar Cell Technology Page 3 of 5

4 Which Family? With the more recent developments, boundaries between DSC and more traditional p-n heterojunctions become more and more blurred. Presently there are three main solid-state DSC embodiments under examination, see the figure below 4(A-C) in addition to a p-n heterojunction (D). Schematics of the main solid-state mesoscopic solar cell embodiments. In all cases, light enters the device from the top. A) FTO/wide band gap semiconductor/dye/htm/metal contact This system has been under development for the longest time. Spiro-MeOTAD is the most commonly used hole transport material (HTM) with the highest performance achieved to date. Alternative HTMs, such as CuI, CuSCN and conductive polymers e.g. polythiothenes or polyanilines, tend to offer lower performance than spiro. B) FTO/wide band gap semiconductor/dye/perovskite HTM+light absorber/metal contact These cells are based on TiO 2 /N719/doped CsSnI 3 (perovskite)/nano-pt catalyst/fto. A drawback of CsSnI 3 is its significant sensitivity to air, necessitating manufacturing under strict atmospheric control, which could be rather costly and would require stringently hermetic seals. C) FTO/wide band gap semiconductor/perovskite sensitiser/htm/metal contact It is with this system that very rapid ssdsc progress has occurred. Within 9 months, efficiencies of laboratory cells increased from 9.7 to 15%, which is up from around 5% in Dyesol actively participates in development of these sensitised mesoscopic solar cells. Inorganic sensitisers tend to offer a steeper onset of the optical absorption at longer wavelengths. D) FTO/perovskite/HTM/metal contact These devices do not utilise a nanoporous TiO 2 film, which may contribute to lowered product cost. The high vacuum deposition technique employed for the perovskite layer would however offset any such cost savings. Such heterojunctions have the disadvantage that charge separation following exciton formation is not facilitated through a mesoporous n-type semiconductor scaffold such as TiO 2. Dyesol Ltd: Global Leaders in Dye Solar Cell Technology Page 4 of 5

5 In summary, systems C) and D) are being evaluated and reviewed in depth, with initial indication that they are potentially the most appropriate solid state material sets for the commercial applications Dyesol seeks to exploit. Summary and Outlook Since mid-2012, the pace of progress with ssdsc has been astounding and some of the novel material combinations and device architectures have allowed the solid state DSC variations to catch up with and, most recently, to surpass performance of traditional solvent and redox-couple based DSC. These avenues are extremely promising to push DSC-type device technology to the next level of performance and to lower manufacturing costs, all while avoiding liquid electrolytes, offering good low light energy generating capability and even retaining the option of partial transparency. In contrast to standard DSC, where the most efficient and stable dyes are red, inorganic materials can more easily be tuned to a variety of colours including grey, similar to standard tinted windows. Further R&D work and, in particular industrial scale-up and process development work on this new variation in the technology, is required and ongoing. Device stability at the cell level under light and at elevated temperatures such as 85 o C must be completed to match the durability levels of the liquid DSC systems. Laboratory processes such as spin coating or physical vapour deposition for the technology will be replaced by industrially scalable and lower cost processes. The following table summarises the main differences between solid-state and liquid based DSC. *) Depending on materials, possibly slightly higher compared to liquid DSC Significant ssdsc work is presently in progress at Dyesol, partly in collaboration with EPFL within an FP-7 program and in addition Dyesol is working in collaboration with Nanyang Technological University (NTU) on ssdsc as announced earlier in the year. In summary, the ssdsc and related mesoscopic solar cell variants are expected, thanks to recent exciting developments, to have a great future, in particular, in the building integrated photovoltaics applications Dyesol seeks to exploit. - See more at: Dyesol Limited ABN: Dominion Place Queanbeyan, NSW 2620 Australia PO Box 6212, Queanbeyan, NSW 2620 Australia Tel: Fax: information@dyesol.com Dyesol Ltd: Global Leaders in Dye Solar Cell Technology Page 5 of 5

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

DYESOL LIMITED MANAGING DIRECTOR, RICHARD CALDWELL

DYESOL LIMITED MANAGING DIRECTOR, RICHARD CALDWELL DYESOL LIMITED MANAGING DIRECTOR, RICHARD CALDWELL OCTOBER 2014 FORWARD LOOKING STATEMENTS This presentation includes forward-looking statements that are subject to many risks and uncertainties. These

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Electricity from the Sun (photovoltaics)

Electricity from the Sun (photovoltaics) Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption 100 100 square kilometers of solar cells could produce all the electricity for the US. But they are still too costly. The required

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

PHOTOVOLTAIC CELLS

PHOTOVOLTAIC CELLS www.ljuhv.com PHOTOVOLTAIC CELLS How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free from their bond. Due to

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. ARTICLE NUMBER: 16178 DOI: 10.1038/NENERGY.2016.178 Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI3 Perovskite Photovoltaics Supplementary

More information

Unique Characteristics and Benefits of DSC

Unique Characteristics and Benefits of DSC Unique Characteristics and Benefits of DSC By Hans Deslivestro, Dyesol Limited Chief Scientist Dye Solar Cell technology (DSC) has been widely recognised as a technology of the future because DSC has a

More information

For personal use only. DYESOL (AU:DYE) The Scale-Up and Commercialisation of Perovskite Solar Cells Richard CALDWELL, Managing Director

For personal use only. DYESOL (AU:DYE) The Scale-Up and Commercialisation of Perovskite Solar Cells Richard CALDWELL, Managing Director DYESOL (AU:DYE) The Scale-Up and Commercialisation of Perovskite Solar Cells Richard CALDWELL, Managing Director GPVC, Gwang Ju KOREA, 16 th March 2017 Disclaimer This presentation includes forward-looking

More information

(d, J(H H)= 8.24 Hz, 1H), 2.52 (s, 3H). Scheme S 1 Synthetic Procedure for Cu (I/II) (dmp) 2 TFSI/Cl (2 and 3)

(d, J(H H)= 8.24 Hz, 1H), 2.52 (s, 3H). Scheme S 1 Synthetic Procedure for Cu (I/II) (dmp) 2 TFSI/Cl (2 and 3) Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 215 High-efficiency dye-sensitized solar cells with molecular copper phenanthroline

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Solar Power. Technical Aspects and Environmental Impacts. 6 th March 2011 Sustainable Energy Options (UAU212F) - University of Iceland

Solar Power. Technical Aspects and Environmental Impacts. 6 th March 2011 Sustainable Energy Options (UAU212F) - University of Iceland Solar Power Technical Aspects and Environmental Impacts 1 Solar Power 1. Introduction 2. Passive Solar Energy utilization 3. Solar Thermal Heat Utilization 4. Solar thermal power plants 5. Photovoltaic

More information

Solar Photovoltaic Technologies: Past, Present and Future

Solar Photovoltaic Technologies: Past, Present and Future Solar Photovoltaic Technologies: Past, Present and Future Xihua Wang, Ph.D., P.Eng. Assistant Professor of Electrical & Computer Engineering University of Alberta April 18, 2018 Outline History of photovoltaic

More information

Solar cell technologies present and future

Solar cell technologies present and future Solar cell technologies present and future Joachim LUTHER, Armin ABERLE and Peter Wuerfel Solar Energy Research Institute of Singapore (SERIS) Nature Photonics Technology Conference, Tokyo, Japan 20 October

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

Long term stability of dye solar cells meeting IEC requirements

Long term stability of dye solar cells meeting IEC requirements Long term stability of dye solar cells meeting IEC 61646 requirements Hans Desilvestro, Nancy Jiang, Martin Berry and Paul Murray Presenter: Ben Wilkinson (Dyesol UK) 4 April 2012 Commercial In Confidence

More information

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Laboratoire de la photonique et des interfaces - EPFL Lausanne Electrochemistry for Energy Organic Photonics Displays, Lighting & Photovoltaics 25th. June 2008

More information

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Introduction Solar Energy A.Uses of Solar Energy o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Surbhi; Neumann, Oara; Nordlander, Peter; and Urban, Alexander.

More information

Organic Solar Cells. Green River Project

Organic Solar Cells. Green River Project Organic Solar Cells Green River Project Silicon Cells Silicon semiconductors Advantages: Efficiencies Lifetimes Disadvantages: High manufacturing costs Inflexible http://en.wikipedia.org Organic semiconductors

More information

Dyesol Chairman s Address AGM Richard Caldwell Chairman

Dyesol Chairman s Address AGM Richard Caldwell Chairman Dyesol Chairman s Address AGM 2009 Richard Caldwell Chairman Dyesol Now Commercialising a Frontier Solar Technology with World-Class Partners to Create a Sustainable Future 2009 Strategy Focus on First

More information

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE VALUE OF EFFICIENCY & ENERGY GAP FOR DIFFERENT DYE SOLAR CELLS Nserdin A. Ragab* 1, Sawsan Ahmed Elhouri Ahmed 2, Ahmed Hassan Alfaki 3, Abdalsakhi

More information

Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find

Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find Michael Grätzel on Light and Energy, Molecular Photovoltaics Mimic Photosynthesis. Perhaps the greatest challenge for our global society is to find ways to replace the slowly, but inevitably vanishing

More information

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems 2.4M funding for an EPSRC Networking Centre + 1.4M Matching from Industry Joint Centre involving Cambridge, Newcastle, Queen Mary and UCL. 400k earmarked for networking activities Start Date: 1 December

More information

Latest Solar Technologies

Latest Solar Technologies Latest Solar Technologies Mrs. Jothy.M. Saji Mrs. Sarika. A. Korade Lecturer Lecturer IE Dept, V.P.M s Polytechnic, Thane IE Dept, V.P.M s Polytechnic, Thane Mob no. : 9892430301 Mob no. : 9960196179 Email:

More information

SolarWindow. Innovating Alternative and Renewable Energy Solutions. Corporate» Technology» Media» Investors» Contact

SolarWindow. Innovating Alternative and Renewable Energy Solutions. Corporate» Technology» Media» Investors» Contact Innovating Alternative and Renewable Energy Solutions A A A Corporate» Technology» Media» Investors» Contact SolarWindow New Energy Technologies is developing the first-of-its kind SolarWindow technology,

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Thin Film Solar Cells Fabrication, Characterization and Applications

Thin Film Solar Cells Fabrication, Characterization and Applications Thin Film Solar Cells Fabrication, Characterization and Applications Edited by Jef Poortmans and Vladimir Arkhipov IMEC, Leuven, Belgium John Wiley & Sons, Ltd Contents Series Preface Preface xiii xv 1

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Low-cost transparent solar cells: Potential of TiO 2 nanotubes in the improvement of these next generation solar cells

Low-cost transparent solar cells: Potential of TiO 2 nanotubes in the improvement of these next generation solar cells Low-cost transparent solar cells: Potential of TiO 2 nanotubes in the improvement of these next generation solar cells Franscious Cummings Energy and Processes Materials Science and Manufacturing 31 August

More information

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells Supplementary Material (ESI for Chemical Communications This journal is (c The Royal Society of Chemistry 2011 Supplementary Material (ESI for Chemical Communications Cubic CeO 2 Nanoparticles as Mirror-like

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

Nanotechnologies. National Institute for Materials Science (NIMS)

Nanotechnologies. National Institute for Materials Science (NIMS) Dye-Sensitized Solar Cells with Nanotechnologies Liyuan Han Advanced Photovoltaics Center National Institute for Materials Science (NIMS) Expectations to PV market 12,000 World mark ket scale (MW) 10,000

More information

Advanced Analytical Chemistry Lecture 9. Chem 4631

Advanced Analytical Chemistry Lecture 9. Chem 4631 Advanced Analytical Chemistry Lecture 9 Chem 4631 Solar Cell Research Solar Cell Research Solar Cell Research Solar Cell Research Thin film technologies Candidates for thin-film solar cells: Crystalline

More information

Energy & Sustainability

Energy & Sustainability Energy & Sustainability Lecture 24: Renewable Energy April 23, 2009 Renewable Energy Sources Solar the mother of all renewables Direct solar plus wind and wave power, hydroelectricity and biomass (indirect

More information

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited

Roll to Roll Flexible Microgroove Based Photovoltaics. John Topping Chief Scientist Big Solar Limited Roll to Roll Flexible Microgroove Based Photovoltaics John Topping Chief Scientist Big Solar Limited Big Solar Limited, Washington Business Centre 2 Turbine Way, Sunderland SR5 3NZ Email: John@powerroll.solar

More information

SOLAR PHOTOVOLTAIC ASI GLASS E. ASI Glass. Integrated Architecture Powered by the Sun

SOLAR PHOTOVOLTAIC ASI GLASS E. ASI Glass. Integrated Architecture Powered by the Sun SOLAR PHOTOVOLTAIC ASI GLASS E Integrated Architecture Powered by the Sun BIPV Building Integrated Photovoltaics with All the benefits of glass plus integrated solar power Whether a facade or a roof, today

More information

A ZnOS Demonstrator Solar Cell and its Efficiency

A ZnOS Demonstrator Solar Cell and its Efficiency Performance Enhancement of Large Area Solar cells by incorporating Nanophosphors: 1 A ZnOS Demonstrator Solar Cell and its Efficiency High quality ternary ZnO 1-x S x (0 x 1.0) nanocrystals in the whole

More information

ASI Glass. Integrated Architecture Powered by the Sun

ASI Glass. Integrated Architecture Powered by the Sun ASI Glass Integrated Architecture Powered by the Sun BIPV Building Integrated Photovoltaics with ASI Glass All the benefits of glass plus integrated solar power Whether a facade or a roof, today s building

More information

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University Solar ells Jong Hak Kim hemical & Biomolecular Engineering Yonsei University omparison of Solar ells 반도체태양전지장점 고효율 (30% 이상 ) 태양전지제조가능 단점 고효율태양전지제조시원료비용및제조비용부담이매우큼고순도를요하는공정이므로제조공정이복잡하고어려움환경에유해한물질발생 광감응염료태양전지장점

More information

Section 2: Sources of Energy

Section 2: Sources of Energy Section 2: Sources of Energy Types of Energy¹ All the things we use every day to meet our needs and wants are provided through the use of natural resources.natural resources are either renewable or nonrenewable.

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light Development of Highly Efficiency, Ultra-light light Weight, Radiation-Resistant, Resistant, High-Specific Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Neelkanth G. Dhere Florida Solar

More information

KGC SCIENTIFIC TYPES OF SOLAR CELL

KGC SCIENTIFIC  TYPES OF SOLAR CELL KGC SCIENTIFIC www.kgcscientific.com TYPES OF SOLAR CELL How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free

More information

Dye-Sensitized Solar Cell Sealant

Dye-Sensitized Solar Cell Sealant ThreeBond Technical News Issued January 1, 214 83 Dye-Sensitized Solar Cell Sealant Introduction Renewable energy development is currently underway all across the world in an effort to ensure sufficient

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project March 5 th, 2010 Investigators Nicholas Melosh, Department of Materials Science

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH

ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH SKALA THE AVANCIS ARCHITECTS PANEL The AVANCIS SKALA solar panel is the architectural PV module series designed as a premium component

More information

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

ET3034TUx High efficiency concepts of c- Si wafer based solar cells ET3034TUx - 4.4 - High efficiency concepts of c- Si wafer based solar cells In the previous block we have discussed various technological aspects on crystalline silicon wafer based PV technology. In this

More information

Flexible Photovoltaics for Your Advantage. United Solar Ovonic

Flexible Photovoltaics for Your Advantage. United Solar Ovonic Flexible Photovoltaics for Your Advantage Solar Energy The sun really is green Ever increasing carbon dioxide emissions and their impact on climate changes as well as rising energy costs and diminishing

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Overview of Photovoltaic Energy Conversion

Overview of Photovoltaic Energy Conversion Overview of Photovoltaic Energy Conversion Topics Solar Energy Economics Photovoltaic Technologies Challenges and Opportunities II-VI Solar Cells November 20, 2006 U.S. Energy Overview (Quadrillion BTU)

More information

Energy Efficient Glazing Design. John Ridealgh Off-Line Coatings Technology Group Pilkington European Technology Centre

Energy Efficient Glazing Design. John Ridealgh Off-Line Coatings Technology Group Pilkington European Technology Centre Energy Efficient Glazing Design John Ridealgh Off-Line Coatings Technology Group Pilkington European Technology Centre 2 John Ridealgh 30th November 2009 Talk Outline Pilkington Group Limited & NSG Group

More information

Renewable Energy CHEM REBECCA SCHEIDT

Renewable Energy CHEM REBECCA SCHEIDT Renewable Energy CHEM20204 2018.3.20 REBECCA SCHEIDT Energy Consumption 1 Energy Consumption U.S. Energy Consumption in 2016 by Source Wind, 2.2% Hydro, 2.5% Biomass, 4.9% Nuclear, 8.6% Coal, 14.6% Solar,

More information

HANA BENEŃOVÁ 1, PETR MACH 2

HANA BENEŃOVÁ 1, PETR MACH 2 Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/21/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.3.11 HANA BENEŃOVÁ 1, PETR MACH 2 Suggestion for Modify of

More information

Efficiency Enhancement of Bulk-Heterojunction

Efficiency Enhancement of Bulk-Heterojunction Efficiency Enhancement of Bulk-Heterojunction Hybrid Solar Cells Michael Krüger, Yunfei Zhou, Michael Eck Freiburg Materials Research Centre (FMF), University of Freiburg, Germany Institute for Microsystems

More information

Thermally-Enhanced Generation of Solar Fuels

Thermally-Enhanced Generation of Solar Fuels Thermally-Enhanced Generation of Solar Fuels Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh, William Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Fundamentals

More information

SOLAR PHOTOVOLTAICS Part 1

SOLAR PHOTOVOLTAICS Part 1 SOLAR PHOTOVOLTAICS Part 1 Solar Energy Contents Irradiance, Solar Constant Solar Window & tilt effects Atmospheric effects, air mass Solar spectrum, sensitivity of PV materials to various wavelengths

More information

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry Red luminescence from Si quantum dots embedded in films grown with controlled stoichiometry Zhitao Kang, Brannon Arnold, Christopher Summers, Brent Wagner Georgia Institute of Technology, Atlanta, GA 30332

More information

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence Solar Photovoltaics We are on the cusp of a new era of Energy Independence Broad Outline Physics of Photovoltaic Generation PV Technologies and Advancement Environmental Aspect Economic Aspect Turkish

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

light to electricity in p-n junctions

light to electricity in p-n junctions (-) (+) light e - Conducting back contact h + thin conducting transparent film n p light to electricity in p-n junctions + J - V + Dark Current - Photo Current Typical plots of current vs. applied potential

More information

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann Efficiency improvement in solar cells MSc_TI Winter Term 2015 Klaus Naumann Agenda Introduction Physical Basics Function of Solar Cells Cell Technologies Efficiency Improvement Outlook 2 Agenda Introduction

More information

Prism Solar Technologies

Prism Solar Technologies 1 Technologies Juan Russo, Optical Scientist Tapping Holographic Technologies to Make Photovoltaics More Cost-Effective 2 About Technologies: manufactures Holographic Planar Concentrator (HPC) film. An

More information

Today in Dyesol. Tomorrow under the sun

Today in Dyesol. Tomorrow under the sun Today in Dyesol Tomorrow under the sun Dyesol has sold and distributed in all the continents In over 80 countries Agents, Distributors Business & Research Collaborations Japan India China - Singapore Taiwan-

More information

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Francesca Menchini Photovoltaic Technologies Laboratory, ENEA Casaccia LIMS 2018 17-18 maggio 2018 Outline

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

Efficient Organic Solar Cells based on Small Molecules

Efficient Organic Solar Cells based on Small Molecules Fakultät Mathematik und Naturwissenschaften Institut für Angewandte Photophysik http://www.iapp.de Efficient Organic Solar Cells based on Small Molecules C. Körner, R. Fitzner, C. Elschner, F. Holzmüller,

More information

ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH

ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH SKALA THE AVANCIS ARCHITECTS PANEL The AVANCIS SKALA solar panel is the architectural PV module series designed as a premium component

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

future-proof energy with photovoltaic systems

future-proof energy with photovoltaic systems future-proof energy with photovoltaic systems DESIGN STRATEGIES SOLAR PANELS FOR ON-SITE ENERGY PHOTOVOLTAIC SYSTEMS The direct conversion of sunlight into electricity with solar cells connected in a series

More information

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Principles, technologies, systems, costs, markets Assessing PV output Global

More information

Molecular Design of Organic Dyes. for Hybrid Solar Cells. Institute of Molecular Sciences - University of Bordeaux -

Molecular Design of Organic Dyes. for Hybrid Solar Cells. Institute of Molecular Sciences - University of Bordeaux - Molecular Design of Organic Dyes for Hybrid Solar Cells Céline OLIVIER Institute of Molecular Sciences - University of Bordeaux - Symposium on Quantum Modeling of Electronic Processes in Optoelectronic

More information

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET)

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) The Greenhouse Effect 270 ppm carbon dioxide (CO 2 ) in the atmosphere absorbs outgoing

More information

Deliverable D1.4: Report on QDs with tunable color and high quantum yield. Summary

Deliverable D1.4: Report on QDs with tunable color and high quantum yield. Summary Deliverable D.4: Report on QDs with tunable color and high quantum yield Responsible author: Dr Beata Kardynal, FZJ Summary The synthesis of the InP/ZnS nanocrystals with wavelengtnh in the range of green

More information

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg and A.N. Tiwari* Thin Films Physics Group, Laboratory for Solid State Physics, Swiss Federal Institute

More information

Bulk HeterojunctionSolar Cells Dr Scott Watkins, Stream Leader Organic Photovoltaics

Bulk HeterojunctionSolar Cells Dr Scott Watkins, Stream Leader Organic Photovoltaics Bulk HeterojunctionSolar Cells Dr Scott Watkins, Stream Leader Organic Photovoltaics CSIRO Future Manufacturing Flagship www.csiro.au Outline Organic Electronics Commercialisation of OLEDs Organic Photovoltaics

More information

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K Solar Spectrum 1 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K 2 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun

More information

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

Summary and Scope for further study

Summary and Scope for further study Chapter 6 Summary and Scope for further study 6.1 Summary of the present study Transparent electronics is an emerging science and technology field concentrated on fabricating invisible electronic circuits

More information

Solar Control. Pilkington Solar Control range

Solar Control. Pilkington Solar Control range Solar Control Pilkington Solar Control range Contents Energy efficiency in buildings Solar Control How it works Low-emissivity How it works Introduction to the Pilkington Solar Control range Coated Glass

More information

Optics and Photovoltaics Physics 9810b Course Information: Winter 2012

Optics and Photovoltaics Physics 9810b Course Information: Winter 2012 The University of Western Ontario Department of Physics and Astronomy Optics and Photovoltaics Physics 9810b Course Information: Winter 2012 1. Course Description Objective of this course is to provide

More information

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Optimization

More information

14. Visions for the future

14. Visions for the future What kind of advanced materials are going to be needed in the future? Very difficult to predict! For instance, did anyone predict that superconductors would have largest application in medicine? Or that

More information

DYEMOND SOLAR - DYEMOND SOLAR Innovative Technology for Low Cost Production of Energy Efficient Dye-Sensitized Solar Cells LIFE09 ENV/SE/000355

DYEMOND SOLAR - DYEMOND SOLAR Innovative Technology for Low Cost Production of Energy Efficient Dye-Sensitized Solar Cells LIFE09 ENV/SE/000355 DYEMOND SOLAR - DYEMOND SOLAR Innovative Technology for Low Cost Production of Energy Efficient Dye-Sensitized Solar Cells LIFE09 ENV/SE/000355 Project description Environmental issues Beneficiaries Administrative

More information

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC Markets for Indium-Based Materials in Photovoltaics Nano-405 Published September 2011 NanoMarkets, LC NanoMarkets, LC PO Box 3840 Glen Allen, VA 23058 Tel: 804-360-2967 Web: Chapter One: Introduction 1.1

More information

SKALA ARCHITECTS PANELS

SKALA ARCHITECTS PANELS SKALA ARCHITECTS PANELS APPLICATIONS AND TECHNICAL SPECIFICATIONS ENGLISH THE AVANCIS ARCHITECTS PANEL SKALA The AVANCIS SKALA solar panel is the architectural PV module series designed as a premium component

More information

Anodizing of aluminium

Anodizing of aluminium Anodizing of aluminium Posted on Nov 04, Posted by P&A International Category General Talk Anodising is a process for producing decorative and protective films on articles made of aluminium and its alloys.

More information

ppm Dissolved Oxygen Measurement

ppm Dissolved Oxygen Measurement ppm Dissolved Oxygen Measurement INTRODUCTION Dissolved oxygen (D.O.) levels are used as a general indicator of water quality. Oxygen is essential to life and vital for countless aquatic forms. D.O. level

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting April 20, 2012 Final Report to the Global Climate and Energy Project Investigators Nicholas Melosh, Department of Materials Science and Engineering,

More information

Towards scalable fabrication of high efficiency polymer solar cells

Towards scalable fabrication of high efficiency polymer solar cells Towards scalable fabrication of high efficiency polymer solar cells Hui Joon Park 2*, Myung-Gyu Kang 1**, Se Hyun Ahn 3, Moon Kyu Kang 1, and L. Jay Guo 1,2,3 1 Department of Electrical Engineering and

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Solar Cells. Mike McGehee Materials Science and Engineering

Solar Cells. Mike McGehee Materials Science and Engineering Solar Cells Mike McGehee Materials Science and Engineering Why solar cells are likely to provide a significant fraction of our power We need ~ 30 TW of power, the sun gives us 120,000 TW. Solar cells are

More information

BIPV Architectural Glazing. Polysolar. Polysolar Limited

BIPV Architectural Glazing. Polysolar.   Polysolar Limited BIPV Architectural Glazing hamish.watson@polysolar.co.uk www.polysolar.co.uk Polysolar Gen 1 a-si Glass Polysolar Limited Gen 2 CdTe Glass Gen 3 OPV Glass Award winning manufacturer of energy generating

More information

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839)

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Sample geometry used by Adams and Day (1876) for the investigation

More information

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Crystalline Silicon Solar Cells With Two Different Metals Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588,

More information