Optimizing Indoor Environments for Occupant Satisfaction. Presented by: Kelli Goldstone April 2016

Size: px
Start display at page:

Download "Optimizing Indoor Environments for Occupant Satisfaction. Presented by: Kelli Goldstone April 2016"

Transcription

1 Optimizing Indoor Environments for Occupant Satisfaction Presented by: Kelli Goldstone April 2016

2 Outline Function of HVAC Thermal Comfort Air Distribution Radiant Heating / Cooling Case Study

3 Function of HVAC

4 Function of HVAC What is the function of an air distribution system? A major function of an air distribution system is to provide thermal comfort to building occupants.

5 Thermal Comfort Definition Statistics Factors Methods

6 Thermal Comfort Definition ASHRAE Standard 55 condition of the mind which expresses satisfaction with the thermal environment Occupant defines thermally comfortable Physiological & Psychological States Mood Experiences

7 Thermal Comfort Definition Can we make 100% of a building occupants comfortable? Why, or why not?

8 Statistics Goal 80% Occupant Satisfaction Thermal Comfort is easy to define, hard to obtain 11% Air Quality and Thermal Comfort in Office Buildings: Results of a Large Indoor Environmental Quality Survey Proceedings of Healthy Buildings 2006, Hiuzenga, et al., Lisbon, Vol. III,

9 Statistics Goal 80% Occupant Satisfaction Indoor Air Quality 26% Air Quality and Thermal Comfort in Office Buildings: Results of a Large Indoor Environmental Quality Survey Proceedings of Healthy Buildings 2006, Hiuzenga, et al.,lisbon, Vol. III,

10 Thermal Comfort Factors Goal is 80% Acceptance How do we obtain thermal comfort? For given values of humidity, air speed, metabolic rate, and clothing insulation, a comfort zone can be determined. We define the comfort zone in terms of a range of operative temperatures (combination of air temperature and mean radiant temperature) that will provide an acceptable thermal environment.

11 Thermal Comfort Factors Occupant Characteristics Metabolic Rate Clothing Air Temp Radiant Temp Air Speed Humidity Thermal Environment Conditions

12 Thermal Comfort Factors Heat Balance Heat gain or loss can occur through: Conduction transfer from body to air Convection transfer by air motion relative to body Radiation transfer by direct exchange Evaporation sweat Warm Just Right? Cold

13 Thermal Comfort Factors Metabolic Rate(s) May vary by occupant based on occupant activities Restaurant: Diner (1 met) & Server (2 met) Use data in Table for most comparable activity Activity (subset ) Met W/m 2 Btu/h ft 2 Seated, writing Standing, filing Walking on level surface, 2 mph Machine work Calisthenics, exercise Dancing, social Met 108W 353 Btu/h based on Average Adult surface area 1.8 m 2 (19.6ft 2 )

14 Thermal Comfort Factors Clothing (Insulation) Tables A & B clo Clothing Description (Typical Ensembles) 0.57 Trousers, short-sleeve shirt 1.01 Trousers, Long-sleeve sweater, T-shirt 0.54 Knee-length skirt, short-sleeve shirt (sandals) 1.04 Knee-length skirt, long-sleeve shirt, half slip, suit jacket clo: Unit of thermal insulation 1 clo= m 2 C /W = 0.88 ft 2 h F/Btu

15 Thermal Comfort Factors Factors for Graphical and Analytic Methods Operative temperature, : based on average air temperature, t a and mean radiant temperature, Case 1: can be used in place of when: 1. No radiant, and/or radiant heating/cooling system 2. Window Solar Heat Gain Coefficient (SHGC) < 0.48 Case 2: t a t r A is based on relative air velocity, t o to Ata 1 A tr v 40 fpm; A 0.5 t o r 40 v 120 fpm; A 0.6 r 120 v 200 fpm; A 0.7 r

16 Thermal Comfort Factors Factors for Graphical and Analytic Methods Operative temperature, : based on average air temperature, t and mean radiant temperature, Case 3: Occupants with 1.0<met<1.3 No direct sunlight Average air speed < 40fpm t r t a a 7 F t o t r t o t a 2 t r

17 Graphical Method Graphical Methods Metabolic (MET) rates between 1.0 and 1.3 Clothing Insulation (CLO) between Air speed < 40fpm

18 Analytical Method Analytical Method Metabolic rates between 1.0 and 2.0 Compliance is defined as: -0.5 < PMV < +0.5 PMV -> Predicted Mean Vote Average occupant thermal sensation Uses assumptions at to clothing and activity levels Related to PPD (Percent People Dissatisfied)

19 Analytical Method Analytical Method PPD is an empirical profit fit of Thermal SENsation Surveys (TSENS) A PMV of ±0.5 is equivalent to PPD of 10% (Based on TSENS Data) Due to localized discomfort, an additional 10% PPD is expected PMV of ±0.5 is equivalent to PPD of 20% (local discomfort impact)

20 Thermal Comfort Factors Analytical Method Analytic Method ASHRAE Thermal Comfort Tool CBE Thermal Comfort Tool

21 Thermal Comfort Factors Analytical Method Comfort Zone Methods How to select diffusers to achieve <40fpm Use displacement system Use underfloor system Use diffuser mapping to select overhead diffusers

22 Thermal Comfort Factors Designing for Velocities >40fpm Standard Effective Temperature (SET) Temperature of an imaginary environment at: 50%rh, ta <20 fpm, tr ta Total heat loss from skin of imaginary occupant with 1.0 met and 0.6 clo is the same as that from a person in the actual environment, with actual clothing and activity level SET is used to evaluate all cases of comfort with local air velocity above 40 fpm

23 Thermal Comfort Factors Designing for velocities >40fpm Standard Effective Temperature (SET) Figure B

24 Thermal Comfort Factors Acceptable ranges of operative temperatures and average air speed for the 1.0 and 0.5 clo comfort zone, humidity ratio 0.010

25 Thermal Comfort Factors Local Discomfort Shoot for 80% Acceptance < 20 PPD (Predicted Percentage Dissatisfied) Dissatisfaction due to Draft Dissatisfaction due to Other Sources Draft Draft Vertical Air Temperature Difference Warm or Cool Floors Radiant Asymmetry <20% <5% <10% <5% At t o below 22.5C (72.5F), t a shall not exceed 0.15 m/s(30 fpm)

26 Thermal Comfort Factors Local Discomfort Radiant temperature asymmetry Ceiling Warmer than Floor Radiant Temperature Asymmetry C ( F) Ceiling Cooler than Floor Wall Warmer than Air Wall Cooler than Air <5 (9.0) <14 (25.2) <23 (41.4) <10 (18.0)

27 Thermal Comfort Factors Local Discomfort Vertical Air Temperature Difference 3 C (5.4 F) Included in DV Calculations

28 Thermal Comfort Factors Local Discomfort Floor Surface Temperature When occupants are seated with feet in contact with floor 19 C (66.2 F) floor surface 29 C (84.2 F)

29 Thermal Comfort Factors Local Discomfort Cyclic Variations, t o 1.1 C (2 F) for period of cycle <15 minutes Drifts and Ramps, t o Time Period 0.25 h 0.5 h 1 h 2 h 4 h Max Operative Temperature Change 1.1 C (2.0 F) 1.7 C (3.0 F) 2.2 C (4.0 F) 2.8 C (5.0 F) 3.3 C (6.0 F)

30 Naturally Ventilated Spaces (Adaptive Model) There is no mechanical cooling system (e.g., refrigerated air conditioning, radiant cooling, or desiccant cooling) installed. No heating system is in operation. Representative occupants have metabolic rates ranging from 1.0 to 1.3 met. Representative occupants are free to adapt their clothing to the indoor and/or outdoor thermal conditions within a range at least as wide as 0.5 to 1.0 clo. The prevailing mean outdoor temperature is greater than 10 C (50 F) and less than 33.5 C (92.3 F).

31 Naturally Ventilated Spaces (Adaptive Model)

32 Case Study PROJECT #1: Overhead VAV Minimum Flow Reduction

33 Frequency Project #1: VAV Minimum Reduction Retro-commissioning & ASHRAE Research Reduce energy use of VAV systems Energy code adoption of low minimum VAV control Title ASHRAE Existing buildings retrofit opportunity with less than 1 year payback Barriers to market acceptance VAV controller stability Resolved (PG&E, ASHRAE RP 1353) Potential occupant comfort issues? Dumping diffusers Poor room air mixing MIN zone for 1 year MAX Cooling airflow

34 VAV Minimum Reduction Objective and Method Objectives Measure energy savings & validate simulations Identify comfort issues that may occur at low flow Funding California Energy Commission - PIER ASHRAE UC Berkeley - Center for the Built Environment Method Field Study in 7 buildings Background survey Right now survey matched to zone trends Energy monitoring Laboratory Study Air distribution for various diffuser types

35 Yahoo! Sunnyvale Campus B A E D C F G Energy Meter A,B,E,G

36 Intervention schedule, over 1.5 years

37 Measured flow fractions: Yahoo campus Warm Season All Occupied Hours Cool Season All Occupied Hours Density Low Minimum 30% Minimum Density Low Minimum 30% Minimum Flow Fraction [%] Flow Fraction [%]

38 % dissatisfied of people "How satisfied are you with the temperature in your workspace? HIGH min flow rate 30.0% % 20.0% % 10.0% % 0.0% 800 Ferry 800 Ferry Building Building Warm season Yahoo! Cool season Yahoo! Warm season % Dissatisfied people HIGH LOW 800 Ferry Building warm season 27.3% 12.5% Yahoo! cool season 8.7% 9.4% Yahoo! warm season 20.1% 10.3%

39 Thermal Sensations Yahoo warm season, 1865 votes HIGH min flow rate LOW min flow rate 60% 37.4% 55.9% 50% 40% 24.2% 41.6% 30% 20% 21.5% 16.1% 16.7% 16.8% 10% 0% 5.5% 3.3% 10.4% 4.8% Cold (-3) Cool (-2) Slightly cool (- 1) Neutral (0) Slightly warm (1) 4.3% 2.9% 0.1% 0.2% Warm (2) Hot (3)

40 Air temperature under high & low min flows (800 Ferry building) High flow: average Tair = 71.2ºF Low flow: average Tair = 73.3ºF 800 Ferry Building - Zone Temperature 85 HIGH minimum flow rate LOW minimum flow rate /22 09/23 09/26 09/27 09/28 09/29 09/30 10/03 10/04 10/05 10/06 10/07 10/10 10/11 10/12 10/13 10/14 10/17 10/18 zone temperature [F] 10/19 10/20 N Mean sd Dates

41 Loads are surprisingly low California T24 minimum ventilation CFM/FT 2 at 20 F ΔT 140 Zones, 2 buildings, 1 warm month (Sept)

42 What happens when the loads are lower than the VAV minimum? Cooling setpoint Space temperature Heating setpoint Zones spend a lot of time at heating setpoint in cooling season. Explanation for summer cold complaints. See ASHRAE 2012 Chicago Seminar 14, Why Are We Over Cooling Buildings in the Summer

43 800 Ferry average temperature vs. Standard Ferry Building Sept Heating Setpoint F Cooling Setpoint 30-50% VAV mins Existing 10-15% VAV mins ASHRAE -55 SUMMER COMFORT ZONE

44 Sense of air movement Have you noticed any air movement in your workspace? No air movement A moderate amount A little Strong air movement Moderate and strong votes (% of total votes) VAV flow rate < 30% 30% - 40% >90% Yahoo! warm season Yahoo! cool season Ferry building 9 16

45 Measured energy Savings 8%-20% energy cost savings ~ 1 year payback (retrofit) Immediate payback for new construction

46 Air Distribution Laboratory Testing Price Labs 8x6 520 Grille Smoke Pattern Testing Chamber

47 Temperature & Air Speed distribution Representative results Price PDN perforated face diffuser Temperature is more even at lower flow Air speeds decrease at lower flow Air speeds below 30 fpm draft limit Similar results for all other ceiling mounted diffusers

48 Comfort Metrics Draft, vertical stratification, ADPI ASHRAE Standard 55 Thermal Environmental Conditions for Human Occupancy Air Speed average air speed at three heights over 1-3 minutes Draft limit below 72.5 F the air speed limit is 30 ft/min Air speed limit above 72.5 F & no occupant control, 160 ft/min Vertical temperature limit 5.4 F from head to ankle ADPI Air Diffusion Performance Index. Measure of mixing. Well mixed ADPI > 80% ensures ASHRAE 55 vertical air temperature limit per ASHRAE Fundamentals Ch. 20

49 Air Diffusion Results Summary Diffusers Flush with Ceiling (PDF, PDN, SDB, SPD) % ADPI regardless of flow or temperature Lower air speeds at lower flow Average air speed below ASHRAE 55 draft limit Lower air speed at 65 F discharge temp compared to 55 F No Ceiling (RCD, 520 grille) % ADPI at 65 F Lower air speeds at low flow Average air speed below ASHRAE 55 still air limit Sidewalls can dump at 55 F and low flow

50 VAV minimum reduction conclusions Counter to the original hypothesis, comfort improves rather than gets worse Explanation for summer over-cooling Dumping & draft do not occur at low flow Ventilation is maintained Energy savings is significant and similar to simulation predictions Significant retrofit opportunity for existing building with DDC controls. Less than 1 year payback. More detail : 1) ASHRAE Dallas 2013, Seminar 70 Save Energy and Improve Occupant Comfort with Advanced VAV Zone Controls 2) Science and Technology for the Built Environment, 2015, Effects of Diffuser Airflow Minima on Occupant Comfort, Air Mixing, and Building Energy Use (RP-1515)

51 Conclusion ASHRAE Standard is code intended Thermal Comfort is subjective Thermal Comfort Factors need to be part of your design Overhead mixing does not equal draft generation

52 Questions

Designing Air-Distribution Systems To Maximize Comfort

Designing Air-Distribution Systems To Maximize Comfort Designing Air-Distribution Systems To Maximize Comfort By David A. John, P.E., Member ASHRAE An air-distribution system that provides occupant thermal comfort can be a complicated system to predict and

More information

Information paper 17. Prepared by: David Clark. book:

Information paper 17. Prepared by: David Clark. book: Information paper 17 Thermal comfort standards Prepared by: David Clark A paper referenced in the book: Cundall Johnston & Partners LLP. 2013 Issue 1.0: 29 July 2013 This information paper is one of a

More information

Performance Investigation of Building Ventilation System by Calculating Comfort Criteria through HVAC Simulation

Performance Investigation of Building Ventilation System by Calculating Comfort Criteria through HVAC Simulation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684Volume 3, Issue 6 (Nov. - Dec. 2012), PP 07-12 Performance Investigation of Building Ventilation System by Calculating Comfort

More information

Energy and indoor temperature consequences of adaptive thermal comfort standards

Energy and indoor temperature consequences of adaptive thermal comfort standards Energy and indoor temperature consequences of adaptive thermal comfort standards L. Centnerova and J.L.M. Hensen Czech Technical University in Prague, Czech Republic (lada@tzb.fsv.cvut.cz) Technische Universiteit

More information

COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM

COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM COMPUTER MODELING OF UNDERFLOOR AIR SUPPLY SYSTEM JJ Kim, JD Chang, and JC Park Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, MI, USA ABSTRACT An underfloor air

More information

CLIMATE CONTROL: INTENT/CRITERIA

CLIMATE CONTROL: INTENT/CRITERIA CLIMATE CONTROL: INTENT/CRITERIA This lecture is a review/restatement of information from ARCH 273. Thermal comfort and indoor air quality (coming up) are critical foundations for HVAC system design. Ball

More information

An Employee Thermal Comfort Model for Semiconductor Manufacturing

An Employee Thermal Comfort Model for Semiconductor Manufacturing An Employee Thermal Comfort Model for Semiconductor Manufacturing Author Information Robbie Walls Corporate Ergonomist Intel Corporation MS CH10-22 5000 W. Chandler Blvd. Chandler, AZ 85226 Phone: (480)

More information

CLIMATE CONTROL: OPR

CLIMATE CONTROL: OPR CLIMATE CONTROL: OPR A review/restatement of information from ARCH 273. Thermal comfort and indoor air quality (coming up) are critical foundations for active climate control (HVAC system) design. OPR

More information

Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels

Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels Numerical Investigation on Ventilation Strategy for Laboratories: A Novel Approach to Control Thermal Comfort Using Cooling Panels Farhad Memarzadeh 1, Andy Manning 2 and Zheng Jiang 2 1 National Institutes

More information

DISPLACEMENT VENTILATION

DISPLACEMENT VENTILATION DISPLACEMENT VENTILATION D3 OVERVIEW The fundamental approach to displacement ventilation utilizes the natural buoyancy forces created by the convective flows from heat sources in the space. As supply

More information

ISO 7730 INTERNATIONAL STANDARD

ISO 7730 INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 7730 Third edition 2005-11-15 Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices

More information

Prediction of Thermal Comfort. mech14.weebly.com

Prediction of Thermal Comfort. mech14.weebly.com Prediction of Thermal Comfort Thermal Sensation Scale (Rohles & Nevins, 1974) Fanger s Thermal Comfort Model (1982) Steady state model, applicable for M 3 met and a large group of people Fanger s Thermal

More information

Thermal Environment evaluation in commercial kitchens

Thermal Environment evaluation in commercial kitchens Downloaded from orbit.dtu.dk on: Nov 11, 2018 Thermal Environment evaluation in commercial kitchens Simone, Angela; Olesen, Bjarne W. Publication date: 2013 Link back to DTU Orbit Citation (APA): Simone,

More information

Energy simulation of traditional vs. adaptive thermal comfort for two

Energy simulation of traditional vs. adaptive thermal comfort for two Hensen, J.L.M. & Centnerova, L. (2001). Energy simulation of traditional vs. adaptive thermal comfort for two moderate climate regions. Proceedings of the International conference "Moving Thermal Comfort

More information

REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS. Galway, Ireland

REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS. Galway, Ireland REAL-TIME CONTROL OF OCCUPANTS THERMAL COMFORT IN BUILDINGS Magdalena Hajdukiewicz 1,2,3, Padraig O Connor 1, Colin O Neill 1, Daniel Coakley 1,2,3, Marcus M. Keane 1,2,3, Eoghan Clifford 1,2,3 1 Department

More information

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1

BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY. Dr Mirek Piechowski 1, Adrian Rowe 1 BUILDING DESIGN FOR HOT AND HUMID CLIMATES IMPLICATIONS ON THERMAL COMFORT AND ENERGY EFFICIENCY Dr Mirek Piechowski 1, Adrian Rowe 1 Meinhardt Building Science Group, Meinhardt Australia 1 Level 12, 501

More information

LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS

LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS LOCAL VENTILATION SYSTEMS: SOME INVESTIGATIONS ABOUT COMFORT LEVELS AND ENERGY DEMANDS Elena Buchberger - ebuch@iuav.it Luca Porciani, porciani@iuav.it Fabio Peron, fperon@iuav.it Universita IUAV di Venezia,

More information

AN ASSESSMENT OF THERMAL COMFORT IN NATURALLY VENTILATED ARCHITECTURAL STUDIO IN ABIA STATE UNIVERSITY, UTURU

AN ASSESSMENT OF THERMAL COMFORT IN NATURALLY VENTILATED ARCHITECTURAL STUDIO IN ABIA STATE UNIVERSITY, UTURU International Journal of Advance Studies in Engineering and Scientific Inventions Volume 3 Number 1, JULY 2015. ISSN (Print): 1741-8763 ISSN (Online):1741-8771 AN ASSESSMENT OF THERMAL COMFORT IN NATURALLY

More information

Assessment of thermal comfort near a glazed exterior wall

Assessment of thermal comfort near a glazed exterior wall Assessment of thermal comfort near a glazed exterior wall Timothy Anderson 1, Mark Luther 2 and Tim Brain 3 1 School of Engineering, Auckland University of Technology, Auckland 1142, New Zealand 2 School

More information

Thermal Environment evaluation in Commercial kitchens: Procedure of data collection

Thermal Environment evaluation in Commercial kitchens: Procedure of data collection Thermal Environment evaluation in Commercial kitchens: Procedure of data collection Angela Simone *, Bjarne W. Olesen ICIEE-BYG, Technical University of Denmark, Kgs. Lyngby, Denmark * email: asi@byg.dtu.dk

More information

You Can t Afford Discomfort. Dan Int-Hout Chief Engineer, Krueger Richardson, Texas

You Can t Afford Discomfort. Dan Int-Hout Chief Engineer, Krueger Richardson, Texas You Can t Afford Discomfort Dan Int-Hout Chief Engineer, Krueger Richardson, Texas Where We Are Today: So You Want To Save Money? Things to consider: 1. First Cost 2. Energy cost 3. Occupant Salary costs

More information

Findings of Field Survey for Thermal Comfort and Ventilation in US Office Buildings

Findings of Field Survey for Thermal Comfort and Ventilation in US Office Buildings Findings of Field Survey for Thermal Comfort and Ventilation in US Office Buildings Liangcai Tan 1, Samir Moujaes, HDR Inc. University of Nevada Las Vegas SUMMARY This paper presents the measured data

More information

RADIANT SLAB COOLING: A FIELD STUDY OF OCCUPANT THERMAL COMFORT. Zhen Tian 1, James A. Love 2

RADIANT SLAB COOLING: A FIELD STUDY OF OCCUPANT THERMAL COMFORT. Zhen Tian 1, James A. Love 2 Second National IBPSA-USA Conference Cambridge, MA August 2-4, 2006 RADIANT SLAB COOLING: A FIELD STUDY OF OCCUPANT THERMAL COMFORT Zhen Tian 1, James A. Love 2 1 Ph. D. Candidate, Faculty of Environmental

More information

Energy simulation of traditional vs. adaptive thermal comfort for two moderate climate regions Hensen, J.L.M.; Hensen Centnerová, L.

Energy simulation of traditional vs. adaptive thermal comfort for two moderate climate regions Hensen, J.L.M.; Hensen Centnerová, L. Energy simulation of traditional vs. adaptive thermal comfort for two moderate climate regions Hensen, J.L.M.; Hensen Centnerová, L. Published in: Proceedings int. conf. "Moving Thermal Comfort Standards

More information

Designing for thermal comfort near a glazed exterior wall. * School of Engineering, Auckland University of Technology, Auckland, New Zealand

Designing for thermal comfort near a glazed exterior wall. * School of Engineering, Auckland University of Technology, Auckland, New Zealand Designing for thermal comfort near a glazed exterior wall T.N. Anderson ǂ *, M.B. Luther ** * School of Engineering, Auckland University of Technology, Auckland, New Zealand ** School of Architecture and

More information

ATBU, Journal of Science, Technology & Education (JOSTE); Vol. 3 (4), December, 2015 ISSN:

ATBU, Journal of Science, Technology & Education (JOSTE); Vol. 3 (4), December, 2015 ISSN: THERMAL COMFORT ASSESSMENT OF ENGINEERING WORKSHOP: A CASE STUDY OF UNIVERSITY OF MAIDUGURI By S. Shodiya 1 *, M.B. Oumarou 1, A.T Quadri 2, and A.B. Muhammed 1 1 Department of Mechanical Engineering,

More information

Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA

Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA Perception of Thermal Comfort for Naturally Ventilated High School Classrooms in San Rafael, CA GWENEDD MURRAY 1 1 Architectural Association, Inc., London, United Kingdom ABSTRACT: The primary intention

More information

Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space

Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space Thermal Comfort Assessment Based on Measurement and Questionnaire Surveys in a Large Mechanically Ventilated Space Ali Alzaid 1, Maria Kolokotroni 1, Hazim Awbi 2 1 Mechanical Engineering, Brunel University

More information

Individual Comfort Control

Individual Comfort Control Individual Comfort Control During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within

More information

Work environment. Microclimate - definition. Main microclimate elements. Core temperature. Microclimate

Work environment. Microclimate - definition. Main microclimate elements. Core temperature. Microclimate Microclimate - definition Work environment Microclimate A local atmospheric zone where the climate differs from the surrounding area A small-scale site of special conditions within a larger climate Can

More information

Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis

Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis Ali Alajmi Associate Professor College of Technological Studies, Kuwait Outline Introduction Motivation HVAC s Air Distribution

More information

Attaining Thermal Comfort in. Buildings with Predominantly. Glazed Facades. presented to: ANSYS Boston Regional Conference

Attaining Thermal Comfort in. Buildings with Predominantly. Glazed Facades. presented to: ANSYS Boston Regional Conference Attaining Thermal Comfort in Buildings with Predominantly Glazed Facades presented to: ANSYS Boston Regional Conference September 14, 2011 Case Study Background High floor to ceiling windows Large skylight

More information

Assessment of thermal comfort inside primary governmental classrooms in hot-dry climates Part II a case study from Egypt

Assessment of thermal comfort inside primary governmental classrooms in hot-dry climates Part II a case study from Egypt Assessment of thermal comfort inside primary governmental classrooms in hot-dry climates Part II a case study from Egypt Tamer Gado 1, Mady Mohamed 2 1 University of Dundee, UK 2 Zagazig University, Egypt

More information

Air Movement Preference and Thermal Comfort A survey in classrooms during summer season in Brazil

Air Movement Preference and Thermal Comfort A survey in classrooms during summer season in Brazil Air Movement Preference and Thermal Comfort A survey in classrooms during summer season in Brazil CHRISTHINA CÂNDIDO 1,4, RICHARD DE DEAR, ROBERTO LAMBERTS 1, LEONARDO BITTENCOURT 3 1 Federal University

More information

Radiant Floor Cooling Combined with Mixing Ventilation in a Residential Room Thermal Comfort and Ventilation Effectiveness

Radiant Floor Cooling Combined with Mixing Ventilation in a Residential Room Thermal Comfort and Ventilation Effectiveness Downloaded from orbit.dtu.dk on: Apr 09, 2019 Radiant Floor Cooling Combined with Mixing Ventilation in a Residential Room Thermal Comfort and Ventilation Effectiveness Krajcik, Michal; Simone, Angela;

More information

Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions

Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions Downloaded from orbit.dtu.dk on: Oct 29, 2018 Performance of radiant cooling ceiling combined with personalized ventilation in an office room: identification of thermal conditions Lipczynska, Aleksandra

More information

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building

Thermal comfort evaluation of natural ventilation mode: case study of a high-rise residential building J. Zuo, L. Daniel, V. Soebarto (eds.), Fifty years later: Revisiting the role of architectural science in design and practice: 50 th International Conference of the Architectural Science Association 2016,

More information

IMPACT OF THE AIRFLOW INTERACTION ON OCCUPANTS THERMAL COMFORT IN ROOMS WITH ACTIVE CHILLED BEAMS

IMPACT OF THE AIRFLOW INTERACTION ON OCCUPANTS THERMAL COMFORT IN ROOMS WITH ACTIVE CHILLED BEAMS IMPACT OF THE AIRFLO INTERACTION ON OCCUPANTS THERMAL COMFORT IN ROOMS ITH ACTIVE CHILLED BEAMS Arsen Melikov 1, Boryana Yordanova 1, Lyuben Bozkhov 1, Viktor Zboril 1,2, and Risto Kosonen 3 1 International

More information

INVESTIGATING THE EFFECT OF CO 2 CONCENTRATION ON REPORTED THERMAL COMFORT

INVESTIGATING THE EFFECT OF CO 2 CONCENTRATION ON REPORTED THERMAL COMFORT INVESTIGATING THE EFFECT OF CO 2 CONCENTRATION ON REPORTED THERMAL COMFORT S. Gauthier 1 ; B. Liu 2 ; G. Huebner 2 ; D. Shipworth 2 1: University of Southampton, Highfield, Southampton, SO17 1BJ, UK. 2:

More information

Thermal comfort recent challenges

Thermal comfort recent challenges Thermal comfort recent challenges Quality and compliance - Thermal comfort and indoor air quality 19 November 2013 Bjarne OLESEN International Centre for Indoor Environment and Energy Technical University

More information

THERMAL COMFORT OF A COURTYARD IN GUANGZHOU IN SUMMER

THERMAL COMFORT OF A COURTYARD IN GUANGZHOU IN SUMMER THERMAL COMFORT OF A COURTYARD IN GUANGZHOU IN SUMMER L Jin 1,*, QL Meng 1 and LH Zhao 1 1 Building Environment Energy Laboratory, South China University of Technology, Guangzhou 510640, China Engineering

More information

Evaluation methods for indoor environmental quality assessment according to EN15251

Evaluation methods for indoor environmental quality assessment according to EN15251 Summary of this article was published in the REHVA European HVAC Journal Vol 49, Issue 4 (August), 2012, pages 14-19, available at http://www.rehva.eu/en/rehva-european-hvac-journal. Evaluation methods

More information

COMPARISON OF THE STANDARDIZED REQUIREMENTS FOR INDOOR CLIMATE IN OFFICE BUILDINGS

COMPARISON OF THE STANDARDIZED REQUIREMENTS FOR INDOOR CLIMATE IN OFFICE BUILDINGS Kazderko Mikhail COMPARISON OF THE STANDARDIZED REQUIREMENTS FOR INDOOR CLIMATE IN OFFICE BUILDINGS Bachelor s Thesis Building Services Engineering December 2012 DESCRIPTION Date of the bachelor's thesis

More information

Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement

Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement Downloaded from orbit.dtu.dk on: Mar 08, 2019 Thermal comfort assessment of Danish occupants exposed to warm environments and preferred local air movement Simone, Angela; Yu, Juan ; Levorato, Gabriele

More information

Standards for Ventilation, IAQ, and Thermal Comfort EVALUATION OF THE INDOOR ENVIRONMENT THERMAL ENVIRONMENT INDOOR ENVIRONMENT.

Standards for Ventilation, IAQ, and Thermal Comfort EVALUATION OF THE INDOOR ENVIRONMENT THERMAL ENVIRONMENT INDOOR ENVIRONMENT. Standards for Ventilation, IAQ, and Thermal Comfort Bjarne W. Olesen, PhD. Wirsbo-Velta, Germany Adjunct professor, Technical University Denmark Chair ISO/TC159/SC5/WG1 Ergonomics of the thermal environment

More information

A Field Study of the Thermal Environment in Residential Buildings in Harbin

A Field Study of the Thermal Environment in Residential Buildings in Harbin KC-03-13-4 (4664) A Field Study of the Thermal Environment in Residential Buildings in Harbin Zhao-Jun Wang, Ph.D. Gang Wang Le-Ming Lian ABSTRACT This paper presents the main findings of Project HIT.2000.25

More information

IMPLICATIONS OF CLIMATE CHANGE AND OCCUPANT BEHAVIOUR ON FUTURE ENERGY DEMAND IN A ZERO CARBON HOUSE

IMPLICATIONS OF CLIMATE CHANGE AND OCCUPANT BEHAVIOUR ON FUTURE ENERGY DEMAND IN A ZERO CARBON HOUSE IMPLICATIONS OF CLIMATE CHANGE AND OCCUPANT BEHAVIOUR ON FUTURE ENERGY DEMAND IN A ZERO CARBON HOUSE Halla Huws and Ljubomir Jankovic Birmingham School of Architecture Birmingham Institute of Art and Design,

More information

Higher Education Energy Efficiency Partnership Program BEST PRACTICES AWARDS

Higher Education Energy Efficiency Partnership Program BEST PRACTICES AWARDS Higher Education Energy Efficiency Partnership Program BEST PRACTICES AWARDS UC / CSU Sustainability Conference, June 2005 A program created by the UC/CSU/IOU Partnership and under the auspices of the

More information

Investigation and Analysis of Winter Classroom Thermal Environment. In Chongqing

Investigation and Analysis of Winter Classroom Thermal Environment. In Chongqing ESL-IC-61-8 ICEBO26, Shenzhen, China Investigation and Analysis of Winter Classroom Thermal Environment In Chongqing Jing Liu Baizhan Li Runming Yao Postgraduate Ph.D Ph.D Professor Senior researcher Chongqing,

More information

Thermal Comfort Zone for Thai People

Thermal Comfort Zone for Thai People Engineering, 013, 5, 55-59 http://dx.doi.org/10.436/eng.013.5506 Published Online May 013 (http://www.scirp.org/journal/eng) Thermal Comfort Zone for Thai People Juntakan Taweekun *, Ar-U-Wat Tantiwichien

More information

Field Studies of Subjective Effects on Thermal Comfort in a University. Classroom

Field Studies of Subjective Effects on Thermal Comfort in a University. Classroom Field Studies of Subjective Effects on Thermal Comfort in a University Classroom Jian Wang Zhaojun Wang Master Associate Candidate Professor School of Municipal & Environmental Engineering, Harbin Institute

More information

THERMAL COMFORT IN LECTURE HALLS IN THE TROPICS

THERMAL COMFORT IN LECTURE HALLS IN THE TROPICS Topic 2. Indoor environment THERMAL COMFORT IN LECTURE HALLS IN THE TROPICS Yat Huang Yau *, Bee Teng Chew, Aza Saifullah Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur,

More information

ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES

ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES ENERGY SIMULATION AND ANALYSIS OF AN INTERMITTENT VENTILATION SYSTEM UNDER TWO CLIMATES Alan Kabanshi, Arman Ameen, Bin Yang, Hans Wigö, Mats Sandberg CORRESPONDENCE ADDRESSES: Alan Kabanshi, Ph.D., University

More information

James Marston Fitch American Building: The Environmental Forces that Shape It

James Marston Fitch American Building: The Environmental Forces that Shape It THERMAL COMFORT Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 James Marston Fitch American Building: The Environmental Forces that Shape It The fundamental thesis of this book is that the

More information

Practical Guide Comfort level measurement in the workplace :32. PMV PPD measurement protocol Default Point Graphic Date/Time

Practical Guide Comfort level measurement in the workplace :32. PMV PPD measurement protocol Default Point Graphic Date/Time 05.05.2015 16:32 PMV PPD measurement protocol Default Point Graphic Date/Time 04.05.2015 10:51 Practical Guide Comfort level measurement in the workplace 1 Introduction. Several hundred million people

More information

SUBJECTIVE AND MEASURED THERMAL COMFORT IN ITALIAN UNIVERSITY CLASSROOMS IN HEATED AND FREE RUNNING CONDITIONS

SUBJECTIVE AND MEASURED THERMAL COMFORT IN ITALIAN UNIVERSITY CLASSROOMS IN HEATED AND FREE RUNNING CONDITIONS SUBJECTIVE AND MEASURED THERMAL COMFORT IN ITALIAN UNIVERSITY CLASSROOMS IN HEATED AND FREE RUNNING CONDITIONS Stefano Corgnati, Roberta Ansaldi, and Marco Filippi Department of Energy (DENER), Politecnico

More information

Sustainable Designed Air-Conditioned Mosque For Thermal Comfort

Sustainable Designed Air-Conditioned Mosque For Thermal Comfort Sustainable Designed Air-Conditioned Mosque For Thermal Comfort Presented by Prof. Dr. Essam E. Khalil, Fellow ASHRAE, Fellow ASME, Fellow AIAA Professor of Mechanical Power Engineering Prepared by Redhwan

More information

Assessment of Indoor Climate: Learning from Buildings

Assessment of Indoor Climate: Learning from Buildings Roomvent 27: 1 th International Conference on Helsinki, June 1-15, 27 Assessment of Indoor Climate: Learning from Buildings Outdoor climate Edward Arens Center for the Built Environment UC Berkeley Indoor

More information

VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS. Stephanie Gauthier 1, David Shipworth 1

VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS. Stephanie Gauthier 1, David Shipworth 1 1 2 3 4 5 6 7 8 9 10 VARIABILITY OF THERMAL STRATIFICATION IN NATURALLY VENTILATED RESIDENTIAL BUILDINGS ABSTRACT Stephanie Gauthier 1, David Shipworth 1 1 UCL Energy Institute, London, United-Kingdom

More information

UC Berkeley Indoor Environmental Quality (IEQ)

UC Berkeley Indoor Environmental Quality (IEQ) UC Berkeley Indoor Environmental Quality (IEQ) Title Energy savings from extended air temperature setpoints and reductions in room air mixing Permalink https://escholarship.org/uc/item/28x9d7xj Authors

More information

Energy and Comfort in School Buildings in the South of Portugal

Energy and Comfort in School Buildings in the South of Portugal Energy and Comfort in School Buildings in the South of Portugal Eusébio Z. E. Conceição, Cláudia M. M. Nunes and Mª Manuela J. R. Lúcio CINTAL - Faculdade de Ciências e Tecnologia - Universidade do Algarve

More information

DFC DISPLACEMENT FLOW CEILING DIFFUSER

DFC DISPLACEMENT FLOW CEILING DIFFUSER DFC DISPLACEMENT FLOW CEILING DIFFUSER The DFC displacement diffuser is a ceiling mounted diffuser that supplies low velocity discharge air into the occupied zone. The cool supply air cascades down from

More information

Artificial Neural Network Models Using Thermal Sensations and Occupants Behavior for Predicting Thermal Comfort

Artificial Neural Network Models Using Thermal Sensations and Occupants Behavior for Predicting Thermal Comfort Deng, Z. and Chen, Q. 2018. Artificial neural network models using thermal sensations and occupants behavior for predicting thermal comfort, Energy and Buildings. 174: 587-602. 1 2 3 4 5 6 7 8 9 10 11

More information

EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION CFD STUDY

EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION CFD STUDY e-issn 2455 1392 Volume 2 Issue 4, April 2016 pp. 202-207 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com EXPERIMENTAL INVESTIGATION OF THERMAL AND VENTILATION ANALYSIS FOR STRATUM VENTILATION

More information

Indoor comfort and air quality in spaces equipped with eco-ventilation systems

Indoor comfort and air quality in spaces equipped with eco-ventilation systems ICUC9-9 th International Conference on Urban Climate jointly with th Symposium on the Urban Environment Indoor comfort and air quality in spaces equipped with eco-ventilation systems Eusébio Z. E. Conceição,

More information

Advanced Variable Air Volume Control Sequences. Steven T. Taylor, PE Taylor Engineering Alameda, CA

Advanced Variable Air Volume Control Sequences. Steven T. Taylor, PE Taylor Engineering Alameda, CA Advanced Variable Air Volume Control Sequences Steven T. Taylor, PE Taylor Engineering Alameda, CA November 12, 2013 Agenda VAV Box Control Sequences AHU Control Sequences Zone Groups DP setpoint reset

More information

Thermal Comfort Evaluation of HDB flats

Thermal Comfort Evaluation of HDB flats Thermal Comfort Evaluation of HDB flats Objective Measurements For this study, empirical data on the thermal comfort parameters (i.e. room space temperature, velocity and relative humidity) was collected

More information

PREDICTION OF THERMAL SENSATION IN NON-AIR- CONDITIONED BUILDINGS IN WARM CLIMATES

PREDICTION OF THERMAL SENSATION IN NON-AIR- CONDITIONED BUILDINGS IN WARM CLIMATES PREDICTION OF THERMAL SENSATION IN NON-AIR- CONDITIONED BUILDINGS IN WARM CLIMATES PO Fanger and J Toftum * International Centre for Indoor Environment and Energy, Technical University of Denmark ABSTRACT

More information

Thermal Comfort Research at the Center for the Built Environment

Thermal Comfort Research at the Center for the Built Environment Thermal Comfort Research at the Fred Bauman University of California, Berkeley May 2013 1 May 2013 Presentation outline 1. Review of Thermal Comfort 2. (CBE) a. Human Comfort and Indoor Environmental Quality

More information

James Marston Fitch American Building: The Environmental Forces that Shape It

James Marston Fitch American Building: The Environmental Forces that Shape It THERMAL COMFORT Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 James Marston Fitch American Building: The Environmental Forces that Shape It The fundamental thesis of this book is that the

More information

An Assessment of Thermal Comfort in Hot and Dry Season (A Case Study of 4 Theaters at Bayero University Kano)

An Assessment of Thermal Comfort in Hot and Dry Season (A Case Study of 4 Theaters at Bayero University Kano) International Journal of Multidisciplinary and Current Research Research Article ISSN: - Available at: http://ijmcr.com An Assessment of Thermal Comfort in Hot and Dry Season (A Case Study of Theaters

More information

THE ROLE OF ENVIRONMENTAL AND PERSONAL VARIABLES IN INFLUENCING THERMAL COMFORT INDICES USED IN BUILDING SIMULATION. Stephanie Gauthier 1

THE ROLE OF ENVIRONMENTAL AND PERSONAL VARIABLES IN INFLUENCING THERMAL COMFORT INDICES USED IN BUILDING SIMULATION. Stephanie Gauthier 1 THE ROLE OF ENVIRONMENTAL AND PERSONAL VARIABLES IN INFLUENCING THERMAL COMFORT INDICES USED IN BUILDING SIMULATION Stephanie Gauthier 1 1 UCL Energy Institute, London, United-Kingdom ABSTRACT The need

More information

FIELD MEASUREMENT OF A RESIDENTIAL FLOOR COOLING SYSTEM AND EVALUATION OF HUMAN THERMAL COMFORT

FIELD MEASUREMENT OF A RESIDENTIAL FLOOR COOLING SYSTEM AND EVALUATION OF HUMAN THERMAL COMFORT Engineering Review, Vol. 35, Issue 1, 69-79, 015. 69 FIELD MEASUREMENT OF A RESIDENTIAL FLOOR COOLING SYSTEM AND EVALUATION OF HUMAN THERMAL COMFORT X. M. Sui 1* X. Zhang 1 School of Environmental Science

More information

Thermal comfort under transient seasonal conditions of a bioclimatic building in Greece

Thermal comfort under transient seasonal conditions of a bioclimatic building in Greece 54 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Thermal comfort under transient seasonal conditions of a bioclimatic building in Greece A. Androutsopoulos Centre for

More information

REAL-LIFE OPERATION OF SOLUS SYSTEM: A FOCUS ON THERMAL COMFORT 11 A P R I L D A N VA K D A G E N

REAL-LIFE OPERATION OF SOLUS SYSTEM: A FOCUS ON THERMAL COMFORT 11 A P R I L D A N VA K D A G E N REAL-LIFE OPERATION OF SOLUS SYSTEM: A FOCUS ON THERMAL COMFORT 11 A P R I L 2 0 1 8 D A N VA K D A G E N A L E S S A N D R O M A C C A R I N I, P O S T D O C Agenda Concept behind the SOLUS system Energy

More information

INTERNATIONAL STANDARDS FOR THE INDOOR ENVIRONMENT Where are we and do they apply Worldwide. Professor Bjarne W. Olesen, PhD Fellow, Treasurer

INTERNATIONAL STANDARDS FOR THE INDOOR ENVIRONMENT Where are we and do they apply Worldwide. Professor Bjarne W. Olesen, PhD Fellow, Treasurer INTERNATIONAL STANDARDS FOR THE INDOOR ENVIRONMENT Where are we and do they apply Worldwide Professor Bjarne W. Olesen, PhD Fellow, Treasurer Technical University of Denmark INDOOR ENVIRONMENT THERMAL

More information

BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT

BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT BALANCING ENERGY EFFICIENCY AND THERMAL COMFORT The need for energy efficient building designs has increasingly gained acceptance by the public. The A/E industry has been developing methods to create more

More information

STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM

STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM STUDIES ON THERMAL COMFORT AND ENERGY CONSUMPTION OF HVAC SYSTEM B Liu,*, N Zhu 2, RQ Zhang.Dep. Of Refrigeration, Tianjin University of Commerce, 334, lbtjcu@tjcu.edu.cn 2.Environment School, Tianjin

More information

DISPLACEMENT VENTILATION

DISPLACEMENT VENTILATION clever creative comfort DISPLACEMENT VENTILATION A p p l i c a t i o n G u i d e Application Guide3 Introduction to 3 Air Change Effectiveness3 Typical Applications4 Contaminant Removal4 Benefits & Limitations4

More information

Assessing thermal comfort of dwellings in summer using EnergyPlus

Assessing thermal comfort of dwellings in summer using EnergyPlus Assessing thermal comfort of dwellings in summer using EnergyPlus Irina Bliuc, Rodica Rotberg and Laura Dumitrescu Gh. Asachi Technical University of Iasi, Romania Corresponding email: irina_bliuc@yahoo.com

More information

SKYLIGHT DESIGN PERFORMANCE EVALUATION METHOD DEVELOPMENT WITH THERMAL AND DAYLIGHT SIMULATION

SKYLIGHT DESIGN PERFORMANCE EVALUATION METHOD DEVELOPMENT WITH THERMAL AND DAYLIGHT SIMULATION SKYLIGHT DESIGN PERFORMANCE EVALUATION METHOD DEVELOPMENT WITH THERMAL AND DAYLIGHT SIMULATION Xianou Li, Frederick Wong, and Yihan Li Arup International Consultants (Shanghai) Co Ltd ABSTRACT This paper

More information

Thermal Delight in Architecture

Thermal Delight in Architecture THERMAL COMFORT OPR Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 Thermal Delight in Architecture This work began with the hypothesis that the thermal function of a building could be used

More information

Underf loor For Schools

Underf loor For Schools The following article was published in ASHRAE Journal, May 2008. Copyright 2008 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes

More information

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya

HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya HVAC INTEGRATED CONTROL FOR ENERGY SAVING AND COMFORT ENHANCEMENT vahid Vakiloroaya (vahid.vakiloroaya@engineer.com) ABSTRACT: The overall attainable reduction in energy consumption and enhancement of

More information

A Field Study of Thermal Comfort in Open-plan Office Buildings during Transition Seasons in Harbin. Yunsong Han 1, 2, Huixuan Sun 1, 2, Cheng Sun 1, 2

A Field Study of Thermal Comfort in Open-plan Office Buildings during Transition Seasons in Harbin. Yunsong Han 1, 2, Huixuan Sun 1, 2, Cheng Sun 1, 2 A Field Study of Thermal Comfort in Open-plan Office Buildings during Transition Seasons in Harbin Yunsong Han 1, 2, Huixuan Sun 1, 2, Cheng Sun 1, 2 1 School of Architecture, Harbin Institute of Technology,

More information

Busting the Myth: Passive Houses Only Work in Cold Climates. (The Comfort Proposition)

Busting the Myth: Passive Houses Only Work in Cold Climates. (The Comfort Proposition) Busting the Myth: Passive Houses Only Work in Cold Climates (The Comfort Proposition) Alison Kwok, Ph.D., AIA, LEED AP, CPHC Alison G. Kwok Ph.D., AIA, LEED AP University of Oregon Walter T. Grondzik P.E.,

More information

Performance Evaluation of a Passive Chilled Beam System and Comparison with a Conventional Air System

Performance Evaluation of a Passive Chilled Beam System and Comparison with a Conventional Air System Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2016 Performance Evaluation of a Passive Chilled Beam System and Comparison with a Conventional

More information

Air-Water Systems. Chilled Ceilings and Beams TROX USA. Principle of Operation. Radiant Effect on Occupants. Early 1980 s. Chilled Ceiling Panels

Air-Water Systems. Chilled Ceilings and Beams TROX USA. Principle of Operation. Radiant Effect on Occupants. Early 1980 s. Chilled Ceiling Panels Air-Water Systems and Beams Early 1980 s 1980 1990 2005 Buildings well insulated for heating Advent of personal computers Need to remove heat from space Limited space available TROX USA 1 2 Principle of

More information

ScienceDirect. Influence of the balcony glazing construction on thermal comfort of apartments in retrofitted large panel buildings

ScienceDirect. Influence of the balcony glazing construction on thermal comfort of apartments in retrofitted large panel buildings Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 108 (2015 ) 481 487 7th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD 2015) Influence of the

More information

Comparison between thermal comfort predictive models and subjective responses in Italian university classrooms

Comparison between thermal comfort predictive models and subjective responses in Italian university classrooms Comparison between thermal comfort predictive models and subjective responses in Italian university classrooms Roberta Ansaldi 1, Stefano Paolo Corgnati 1 and Marco Filippi 1 1 Department of Energy (DENER),

More information

DUCT SYSTEM DESIGN CONSIDERATIONS Part 2

DUCT SYSTEM DESIGN CONSIDERATIONS Part 2 Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 DUCT SYSTEM DESIGN CONSIDERATIONS Part 2 by Roger M Hensley, CMS INTRODUCTION One of the most important components of

More information

Quantifying Comfort to Assist in the Window Selection Process

Quantifying Comfort to Assist in the Window Selection Process Quantifying Comfort to Assist in the Window Selection Process Kerry Haglund, Efficient Windows Collaborative Jim Larsen, Cardinal Glass Industries June 18, 2015 WDMA Technical & Manufacturing Conference

More information

University of Wisconsin La Crosse Centennial Hall LEED Credit 7.2 Thermal Comfort Plan

University of Wisconsin La Crosse Centennial Hall LEED Credit 7.2 Thermal Comfort Plan University of Wisconsin La Crosse Centennial Hall LEED Credit 7.2 Thermal Comfort Plan I. Intent: To meet LEED Indoor Environmental Quality credit 7.2, Thermal Comfort, Verification, the University of

More information

Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments

Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments Topic 3. Indoor and outdoor air quality, thermal comfort and health impact related to built environment Application of CFD Predictions to Quantify Thermal Comfort for Indoor Environments Tateh Wu 1,*,

More information

Shifting Comfort Zone for Hot-Humid Environments

Shifting Comfort Zone for Hot-Humid Environments PLEA6 - The rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6-8 September 6 Shifting Comfort Zone for Hot-Humid Environments Kitchai Jitkhajornwanich Faculty of Architecture,

More information

Leluo Zhang 1, Murali Annavaram 1, Kyle Konis 1. Abstract. Introduction

Leluo Zhang 1, Murali Annavaram 1, Kyle Konis 1. Abstract. Introduction Occupant-Aware Energy Management: Simulated Energy Savings Achievable Using Learned Cooling Temperature Set-points Over a Range of Climates and Cooling System Designs Leluo Zhang 1, Murali Annavaram 1,

More information

125 YMCB Microclimate and Architecture 2 nd Lecture

125 YMCB Microclimate and Architecture 2 nd Lecture ČVUT v Praze Fakulta stavební Katedra technických zařízení budov 125 YMCB Microclimate and Architecture 2 nd Lecture prof. Ing. Karel Kabele, CSc. A227b kabele@fsv.cvut.cz PROBLEMS RELATED TO INDOOR ENVIRONMENTAL

More information

Human response to individually controlled micro environment generated with localized chilled beam

Human response to individually controlled micro environment generated with localized chilled beam Downloaded from orbit.dtu.dk on: Jan 31, 2019 Human response to individually controlled micro environment generated with localized chilled beam Uth, Simon C. ; Nygaard, Linette; Bolashikov, Zhecho Dimitrov;

More information

Integrated BIPV performance assessment for tropical regions: a case study for Bangalore

Integrated BIPV performance assessment for tropical regions: a case study for Bangalore Integrated BIPV performance assessment for tropical regions: a case study for Bangalore Gayathri Aaditya Indian Institute of Science, Bangalore, India Rohitkumar Pillai Indian Institute of Science, Bangalore,

More information

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS

IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS IMPLEMENTATION OF ANALYTICAL MODELS FOR PASSIVE DOWN-DRAFT EVAPORATIVE COOLING (PDEC) TOWER WITH SPRAY SYSTEMS Daeho Kang 1, Richard K. Strand 2 1 Department of Environmental Control Technology, New York

More information