The ESBWR an advanced Passive LWR

Size: px
Start display at page:

Download "The ESBWR an advanced Passive LWR"

Transcription

1 1 IAEA PC-Based Simulators Workshop Politecnico di Milano, 3-14 October 2011 The ES an advanced Passive LWR Prof. George Yadigaroglu, em. ETH-Zurich and ASCOMP

2 2 Removal of decay heat from evolutionary LWRs with active systems Assured by redundant and diverse active ECCS and containment cooling systems High degrees of reliability and safety can be achieved by increasing system redundancy, separation, diversity, etc. Such improvements may bring, however, added complexity and costs to the systems

3 3 Advanced passive ALWR designs - 1 Replacement of active emergency core and containment cooling systems with passive ones: no active components such as pumps, fans, diesels, water chillers, etc. Simple re-alignment of valves allowed Use only natural devices or forces such as gravity, natural circulation, passive heat sink, stored energy (e.g. compressed gas) to operate Passive heat sinks: Containment structures, water pools or the atmosphere

4 4 Advanced passive LWR designs - 2 Require no operator actions to mitigate DBAs Typical unattended operation period: 72 h No redundant, safety-grade, active ECCS and containment cooling systems no redundant emergency power supplies The ambient air is most often the ultimate heat sink no safetygrade service water system

5 5 Passive LWRs for near-term deployment Replacement of highly redundant safety-grade ECCS systems by passive systems does not necessarily improve safety but has the potential of significantly reducing capital and operating costs: reducing upstream complexity : Fuel, air, Diesel Electricity ECCS coolant delivery Startup and control

6 6 Avoid the sophisticated, redundant, etc. safety grade ECCS and its upstream complexity DG Room Ventilation System Emergency Bus Loading Program Initiation Signal Crankcase Ventilation Engine Governing Control DG Lubrication Oil System DC Pwr Courtesy of B. Shiralkar, GE Nuclear Energy Starting Air Diesel Generator Room 1 of 3 DG Cooling Water System Diesel DG Fuel Oil System DG Fuel Oil Storage and Transfer System Air Intake & Exhaust Plant Service Water Generator Control and Protection Generator Emergency Bus Breaker Closes < 10 s Breaker Breaker Breaker HVAC Plant Service Water Pump Motor HVAC Reactor Component Cooling Water Pump Motor RCCW HVAC Emergency Core Cooling System Pump Motor Typical of HPCS, LPCS, & RHR Water Source Conventional Active Plant Loads Loads Plant Service Water A Q Q ADS Logic DC Pwr M ECCS Logic Initiation Signal RPV Core ADS A S/P Aux. Water Source M Passive Plant

7 7 Key ES features Design Objectives Improve safety and simplify with passive systems Better plant economics Continued technical advancements Product Outcomes Auto safety response, no AC power or operator action required for at least 72 hrs No core uncovery in Design Basis Accidents Lower Core Damage Frequency ( ) Significant simplification lowers costs Evolutionary development Key Improvements: simplification Reduction in systems and equipment Reduction in operator challenges Reduction in core damage frequency (10x) Reduction in cost/mwe Tall chimney above core Flattened core

8 8 Optimized parameters for ES Parameter /4-Mk I (Browns Ferry 3) /6-Mk III (Grand Gulf) A ES Power (MWt/MWe) 3293/ / / /1550 Vessel height/dia. (m) 21.9/ / /7.1.7/7.1 Fuel Bundles (number) Active Fuel Height (m) Power density (kw/l) Recirculation pumps 2(large) 2(large) 10 zero Number of CRDs/type 185/LP 193/LP 205/FM 269/FM Safety system pumps zero Safety diesel generator zero Core damage freq./yr 1E-5 1E-6 1E-7 3E-8 Safety Bldg Vol (m 3 /MWe) <130

9 9 Cooling of the core under all conditions Primary intact: heat removal from the RPV 2 Primary breached: heat removal from the containment Heat removal by the turbine 1 Heat generation in the core

10 10 Passive systems for decay heat removal The classical ECCS and containment cooling systems replaced by: Natural-circulation cooling of the core (when the primary system is intact) Gravity Driven Cooling Systems (GDCS) (with the primary system breached) Passive Containment Cooling Systems (PCCS)

11 11 Primary system intact: ES isolation condenser Isolation Condenser (IC) directly connected to the RPV, immersed in pool outside the containment condenses steam from the core Courtesy of B. Shiralkar, GE Nuclear Energy

12 12 Decay heat removal: Breached primary system at high or medium pressure AP600, AP1000: Core Make-up Tank (CMT) SWR-1000: Emergency condenser immersed in core-flooding pool and permanently connected to the RPV For intermediate pressure levels in PWRs: injection of water from accumulators (~50 bar) or core reflood tanks (CRT ~15 bar) ES solution: automatic depressurization of the primary system and actuation of the Gravity-Driven Cooling System

13 13 ES Gravity Driven Cooling System (GDCS) Courtesy of B. Shiralkar, GE Nuclear Energy Following depressurization of the primary system by the ADS gravity driven flow keeps core covered

14 14 Main Steam Line break

15 15 Small pipe break at bottom of RPV

16 16 The alternative SWR-1000: Primary system breached: passive core cooling system Collapse of the voids in and above the core region leads to automatic activation of the Emergency Condenser connected to the RPV without valves and immersed in the Core Flooding Pool. 2-step cooling Loop seal: hot water does not rise and start boiling Needs some p in primary system

17 17 Decay heat removal from the Containment All containment systems profit from the passive heat sink provided by the containment structures and walls. These are needed to absorb the higher level of initial decay heat generation and the blowdown heat load. When the containment heat sink gets saturated, the decay heat level is lower Important timing considerations: heat capacity of system vs time at which cooling function is taken over Water pools used as heat sinks can boil off either to the atmosphere (1-step process) or to the containment (2-step process)

18 18 PCCS Passive Containment Cooling System Long term operation The DW pressure acts on the water level in the WW weir and opens the horizontal vents: the steam condenses in the pressure suppression pool The DW pressure also pushes the steam into the PCCS condensers and the noncondensables to be vented to the suppression pool: the preferred path for long-term decay heat evacuation A delicate pressure balance to ensure that decay heat goes to the PCCS pools

19 19 PCC Behavior in presence of steam/air mixtures The PANDA tests showed: PCC heat removal capacity is adjusted to actual requirements Decrease in decay heat and PCC-pool level are compensated by changing air content in PCC lower region Pool Height (m) Water level at test start active tube length Water level inactive primary side (air) Inactive secundary side (Water level low) Condenser Behavior of passive condensers in presence of steam/air mixtures is well understood Time (hours) Active condenser area is automatically adjusted to match requirements by adjustment of the air content in the lower part of the tubes

20 20 Summary: Passive core and containment cooling of the ES The Isolation Condensers (IC) condense steam from the RPV. The Gravity Driven Cooling System (GDCS) pool floods the core after depressurization of the primary system. The Passive Containment Cooling System (PCCS) condenses containment steam and vents the non-condensibles to the Suppression Pool. The PCCS system is modular and can be scaled to any power level

21 21 Passive containment cooling: PCCS The ES and the SWR-1000

22 22 ES Passive safety systems within Containment envelope Decay Heat HX s Above Drywell High Elevation Gravity Drain Pools All Pipes/Valves Inside Containment Raised Suppression Pool Courtesy of B. Shiralkar, GE Nuclear Energy

23 23 ES passive safety systems The ICS condenses steam from the RPV The GDCS floods the core after depressurization of the primary system The PCCS condenses containment steam and vents the noncondensibles to the Suppression Pool The PCCS system is modular and can be scaled to any power level; pools easy to refill ADS system Passive boron injection Non-safety-grade Diesels and closed Cooling Water and Service Water Systems

24 24 Natural Circulation The Dodewaard natural-circulation Natural circulation is not new Small, 183 MWth

25 25 Enhanced natural circulation in the ES Average Power per Bundle (MWt) A 6 A LUNGMEN CLINTON ESBW R ES a N Power Flow XLS Chart1 (5) Average Flow per Bundle (kg/s) Courtesy of B. Shiralkar, GE Nuclear Energy Higher driving head Chimney/taller vessel Reduced flow resistance Shorter core Increased downcomer flow area

26 26 Natural circulation in the ES Reduction in components pumps, controls, power supplies vessel internals Passive safety/natural circulation more water in the vessel no external piping, no canned motor penetrations Very good performance and reliability power/flow ratio similar to pumped plant large margin to combined t/h neutronic stability Load following with Control Rods

27 Much more water above the core Top of Active Fuel, TAF

Advanced LWRs Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering

Advanced LWRs Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering Advanced LWRs Jacopo Buongiorno Associate Professor of Nuclear Science and Engineering 22.06: Engineering of Nuclear Systems Outline Performance goals for near-term advanced LWRs Technical features of

More information

Design of the ESBWR reactor

Design of the ESBWR reactor Design of the ESBWR reactor Chris Maslak, Marketing Leader, New Units, GE Energy-Nuclear Anders Carlson, Sales Manager, Nordic Accounts, GE Energy-Nuclear Jaime Segarra, Global Sales Manager, Europe, GE

More information

SMR/1848-T03. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007

SMR/1848-T03. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007 SMR/1848-T03 Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors 25-29 June 2007 Applications of Natural Circulation Systems N. Aksan Paul Scherrer Institut (PSI), Villingen,

More information

Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors

Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors 2152-2 Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors 17-21 May 2010 APPLICATION OF NATURAL CIRCULATION SYSTEMS: ADVANTAGES AND CHALLENGES

More information

WESTENGHOUSE AP600 ADVANCED NUCLEAR PLANT DESIGN

WESTENGHOUSE AP600 ADVANCED NUCLEAR PLANT DESIGN WESTENGHOUSE AP600 ADVANCED NUCLEAR PLANT DESIGN IAEA-SM-353/30 W. GANGLOFF Westinghouse Energy Systems, Pittsburgh, Pennsylvania, United States of America Abstract '""""""^0053563' As part of the cooperative

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S)

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S) Loss of Ultimate Heat Sink ANS AESJ AESJ Fukushima Symposium, March h4, 2012 Hisashi Ninokata, Tokyo Institute of Technology Available ultimate heat sinks at 1F1~3 1F1 (Fukushima Dai ichi Unit 1) Sea water

More information

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM Roger Schène Director,Engineering Services 1 Background Late 80: USA Utilities under direction of EPRI and endorsed by NRC : Advanced

More information

AP1000 European 16. Technical Specifications Design Control Document

AP1000 European 16. Technical Specifications Design Control Document 16.3 Investment Protection 16.3.1 Investment Protection Short-term Availability Controls The importance of nonsafety-related systems, structures and components in the AP1000 has been evaluated. The evaluation

More information

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Modified

More information

THE ROLE OF PASSIVE SYSTEMS IN ENHANCING SAFETY AND PREVENTING ACCIDENTS IN ADVANCED REACTORS

THE ROLE OF PASSIVE SYSTEMS IN ENHANCING SAFETY AND PREVENTING ACCIDENTS IN ADVANCED REACTORS THE ROLE OF PASSIVE SYSTEMS IN ENHANCING SAFETY AND PREVENTING ACCIDENTS IN ADVANCED REACTORS M. Aziz Nuclear and radiological regulatory authority Cairo, Egypt moustafaaaai@yahoo.com Abstract Most of

More information

AP1000 The PWR Revisited

AP1000 The PWR Revisited IAEA-CN-164-3S05 AP1000 The PWR Revisited Paolo Gaio Westinghouse Electric Company gaiop@westinghouse.com Abstract. For nearly two decades, Westinghouse has pursued an improved pressurized water reactor

More information

The Westinghouse AP1000 : Passive, Proven Technology to Meet European Energy Demands

The Westinghouse AP1000 : Passive, Proven Technology to Meet European Energy Demands BgNS TRANSACTIONS volume 20 number 2 (2015) pp. 83 87 The Westinghouse AP1000 : Passive, Proven Technology to Meet European Energy Demands N. Haspel Westinghouse Electric Germany GmbH, Dudenstraße 6, 68167

More information

Westinghouse AP1000 Nuclear Power Plant

Westinghouse AP1000 Nuclear Power Plant Westinghouse Non-Proprietary Class 3 April 2011 Westinghouse AP1000 Nuclear Power Plant Coping with Station Blackout Westinghouse Non-Proprietary Class 3 April 2011 Westinghouse AP1000 Nuclear Power Plant

More information

Fukushima Event PCTRAN Analysis. Dr. LI-Chi Cliff Po. Dr. LI-Chi Cliff Po. March 25, 2011

Fukushima Event PCTRAN Analysis. Dr. LI-Chi Cliff Po. Dr. LI-Chi Cliff Po. March 25, 2011 Fukushima Event PCTRAN Analysis Dr. LI-Chi Cliff Po Fukushima Event PCTRAN Analysis Dr. LI-Chi Cliff Po 1. Description of Event March 25, 2011 The earthquake caused instant loss of offsite power. The scale-9

More information

BWR3 Mark I. Dr. John H. Bickel

BWR3 Mark I. Dr. John H. Bickel Beyond the Design Bases BWR3 Mark I Dr. John H. Bickel BWR3, Mark I DBA Features: Electric di driven Mi Main Feedwater, Condensate Pumps 2 Diesels supply: 4kV power, 480V, 250VDC, 125VDC 2 Trains Electric

More information

NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012

NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012 NUCLEAR POWER NEW NUCLEAR POWER PLANTS IN 2012 AP1000 IN FEBRUARY 2012, THE FIRST NUCLEAR POWER PLANTS IN THE US IN 35 YEARS WERE LICENSCED TO BEGIN CONSTRUCTION. TWO WESTINGHOUSE AP1000 NUCEAR REACTOR

More information

Boiling Water Reactor Simulator with Passive Safety Systems

Boiling Water Reactor Simulator with Passive Safety Systems Boiling Water Reactor Simulator with Passive Safety Systems User Manual October 2009 2 INTERNATIONAL ATOMIC ENERGY AGENCY, 2009 The originating Section of this publication in the IAEA was: Nuclear Power

More information

ABWR, ESBWR and PRISM. Craig Sawyer Chuck Boardman March 26, 2015

ABWR, ESBWR and PRISM. Craig Sawyer Chuck Boardman March 26, 2015 ABWR, ESBWR and PRISM Craig Sawyer Chuck Boardman March 26, 2015 Current Nuclear Products of GE-Hitachi Nuclear Energy (GEH) Advanced Boiling Water Reactor (ABWR) Developed jointly by GE, Hitachi and Toshiba

More information

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development A. Introduction The IAEA Report on Reactor and Spent Fuel Safety in the Light of

More information

NSSS Design (Ex: PWR) Reactor Coolant System (RCS)

NSSS Design (Ex: PWR) Reactor Coolant System (RCS) NSSS Design (Ex: PWR) Reactor Coolant System (RCS) Purpose: Remove energy from core Transport energy to S/G to convert to steam of desired pressure (and temperature if superheated) and moisture content

More information

PRISM Heat Removal Safety Systems

PRISM Heat Removal Safety Systems PRISM Heat Removal Safety Systems 5 th IAEA/GIF SFR Safety Workshop David Powell Ph.D. 23/24 June 2015 Copyright 2013 GE Hitachi Nuclear Energy International All rights reserved PRISM: The Commercialization

More information

Lecture 7 Heat Removal &

Lecture 7 Heat Removal & Containment Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University Containment R4 vgs 1 Where We Are (still) Deterministic Requirements Experience Chapter 3 Chapter 1 Safety Goals Chapter 6 Probabilistic

More information

GE Hitachi's ABWR and ESBWR: safer, simpler, smarter

GE Hitachi's ABWR and ESBWR: safer, simpler, smarter GE Hitachi's ABWR and ESBWR: safer, simpler, smarter OECD/NEA Workshop on innovations in water-cooled reactor technologies Issy-les-Moulineaux, Paris 11-12 February, 2015 David Powell Vice President Nuclear

More information

AP1000 European 15. Accident Analysis Design Control Document

AP1000 European 15. Accident Analysis Design Control Document 15.2 Decrease in Heat Removal by the Secondary System A number of transients and accidents that could result in a reduction of the capacity of the secondary system to remove heat generated in the reactor

More information

Status report Economic Simplified Boiling Water Reactor (ESBWR)

Status report Economic Simplified Boiling Water Reactor (ESBWR) Status report 100 - Economic Simplified Boiling Water Reactor (ESBWR) Overview Full name Acronym Reactor type Coolant Moderator Neutron spectrum Thermal capacity Gross Electrical capacity Design status

More information

Westinghouse Small Modular Reactor Development Overview

Westinghouse Small Modular Reactor Development Overview Westinghouse Small Modular Reactor Development Overview Small Modular Reactor Development Team Westinghouse Electric Company Dr. Nick Shulyak Presentation to IAEA July 4, 2011 1 SMR Product Specifications

More information

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS S.Tarkiainen, T.Hyrsky, I.Paavola, A.Teräsvirta Fortum Nuclear and Thermal

More information

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 1/12 Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 J. Bittan¹ 1) EDF R&D, Clamart (F) Summary MAAP is a deterministic code developed by EPRI that can

More information

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007 SMR/1848-T21b Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors 25-29 June 2007 T21b - Selected Examples of Natural Circulation for Small Break LOCA and Som Severe

More information

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water GENES4/ANP23, Sep. 15-19, Kyoto, JAPAN Paper 116 LOCA analysis of high temperature reactor cooled and moderated by supercritical light water Yuki Ishiwatari 1*, Yoshiaki Oka 1 and Seiichi Koshizuka 1 1

More information

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE The Egyptian Arab Journal of Nuclear Sciences and Applications Society of Nuclear Vol 50, 3, (229-239) 2017 Sciences and Applications ISSN 1110-0451 Web site: esnsa-eg.com (ESNSA) Station Blackout Analysis

More information

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS Alessandro Alemberti Alessandro.Alemberti@ann.ansaldo.it TECHNICAL MEETING ON IMPACT OF FUKUSHIMA EVENT ON CURRENT

More information

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level Nuclear Power Plant Safety Basics Construction Principles and Safety Features on the Nuclear Power Plant Level Safety of Nuclear Power Plants Overview of the Nuclear Safety Features on the Power Plant

More information

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level Nuclear Power Plant Safety Basics Construction Principles and Safety Features on the Nuclear Power Plant Level Safety of Nuclear Power Plants Overview of the Nuclear Safety Features on the Power Plant

More information

An Overview of the ACR Design

An Overview of the ACR Design An Overview of the ACR Design By Stephen Yu, Director, ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 25, 2002 ACR Design The evolutionary

More information

PSA Michael Powell, Roy Linthicum, Richard Haessler, Jeffrey Taylor

PSA Michael Powell, Roy Linthicum, Richard Haessler, Jeffrey Taylor PSA-2017 Crediting the Use of a Rapidly Deployable Mobile to Recover from and Core Damage Events Caused by a Failure of the Turbine Driven Auxiliary Feedwater Michael Powell, Roy Linthicum, Richard Haessler,

More information

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR HYUN-SIK PARK *, KI-YONG CHOI, SEOK CHO, SUNG-JAE YI, CHOON-KYUNG PARK and MOON-KI

More information

Plant Layout. Chapter Plant Layout and Arrangement 8-1

Plant Layout. Chapter Plant Layout and Arrangement 8-1 8 Chapter Plant Layout and Arrangement Plant Layout The ABWR Plant includes all buildings which are dedicated to housing systems and the equipment related to the nuclear system or controls access to this

More information

Nuclear Power A Journey of Continuous Improvement

Nuclear Power A Journey of Continuous Improvement Nuclear Power A Journey of Continuous Improvement Westinghouse Non Proprietary Class 3 Our Place in Nuclear History Innovation 1886 and forever Implementation & Improvement 1957 through Today Renaissance

More information

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region IAEA Technical Meeting on Technology Assessment of Small Modular Reactors for Near Term Deployment 2 5

More information

Recommendations are based on validity of above assumptions.

Recommendations are based on validity of above assumptions. RST Assessment offukushima Daiichi Units, UNIT ONE ASSUMPTIONS: (based on input from multiple data source: JAIF, NISA, TEPCO, & GEH) Core Status: Core is contained in the reactor pressure vessel, reactor

More information

Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System

Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System LIU Yang, JIA Hai-jun Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

More information

Post-Fukushima Assessment of the AP1000 Plant

Post-Fukushima Assessment of the AP1000 Plant ABSTRACT Post-Fukushima Assessment of the AP1000 Plant Ernesto Boronat de Ferrater Westinghouse Electric Company, LLC Padilla 17-3 Planta 28006, Madrid, Spain boronae@westinghouse.com Bryan N. Friedman,

More information

NuScale: Expanding the Possibilities for Nuclear Energy

NuScale: Expanding the Possibilities for Nuclear Energy NuScale: Expanding the Possibilities for Nuclear Energy D. T. Ingersoll Director, Research Collaborations Georgia Tech NE 50 th Anniversary Celebration November 1, 2012 NuScale Power, LLC 2012 Allowing

More information

Advanced light-water reactor development in the United States

Advanced light-water reactor development in the United States Advanced light-water reactor development in the United States A number of design concepts are being pursued by J.J. Taylor, K.E. Stahlkopf, and J.C. DeVine, Jr. In 1983 the Electric Power Research Institute

More information

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Danrong Song, Biao Quan Nuclear Power Institute of China, Chengdu, China songdr@gmail.com Abstract Developing

More information

Considerations on the performance and reliability of passive safety systems for nuclear reactors

Considerations on the performance and reliability of passive safety systems for nuclear reactors January 2016 Considerations on the performance and reliability of passive safety systems for nuclear reactors I. Background Pressurized water reactors currently operating in France are equipped with safety

More information

Small Modular Reactors: A Call for Action

Small Modular Reactors: A Call for Action Small Modular Reactors: A Call for Action Overview of Five SMR Designs by Dr. Regis A. Matzie Executive Consultant Adapted May 2015 for the Hoover Institution's Reinventing Nuclear Power project from a

More information

Application of Technologies in CANDU Reactors to Prevent/Mitigate the Consequences of a Severe Accidents

Application of Technologies in CANDU Reactors to Prevent/Mitigate the Consequences of a Severe Accidents Application of Technologies in CANDU Reactors to Prevent/Mitigate the Consequences of a Severe Accidents Lovell Gilbert Section Manager/Technical Advisor, Reactor Safety Engineering Bruce Power IAEA International

More information

The Application of the Design Safety Requirements to the Passive SMART

The Application of the Design Safety Requirements to the Passive SMART Technical Meeting on Challenges in the Application of the Design Safety Requirements for Nuclear Power Plants to Small and Medium Sized Reactors 4~8 September 2017, Vienna, Austria The Application of the

More information

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie The BWR reactor vessel spray(core spray) and feed water spray systems are designed to inject water into

More information

Fukushima Daiichi NPP Accident

Fukushima Daiichi NPP Accident Fukushima Daiichi NPP Accident Plant Design and Preliminary Observations K. Moriya and K. Sato Hitachi GE Nuclear Energy, Ltd. May 3, 2011 [Note] 1. The view expressed herein are not the official view

More information

Summary of the ABWR Key Features. Chapter2 Plant Overview 2-1. Safety Enhancement

Summary of the ABWR Key Features. Chapter2 Plant Overview 2-1. Safety Enhancement Chapter2 Plant Overview The key design objectives for the ABWR were established during the development program. The key goals, all of which were achieved, are as follows: Design life of 60 years. Plant

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

THE DESIGN CHARACTERISTICS OF ADVANCED POWER REACTOR Advanced NPP Development Office Korea Hydro & Nuclear Power Co., Ltd.

THE DESIGN CHARACTERISTICS OF ADVANCED POWER REACTOR Advanced NPP Development Office Korea Hydro & Nuclear Power Co., Ltd. International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21 th Century Vienna, IAEA, Oct. 27-30, 2009 THE DESIGN CHARACTERISTICS OF ADVANCED POWER REACTOR 1400 KIM, HAN-GON

More information

AP1000 European 7. Instrumentation and Controls Design Control Document

AP1000 European 7. Instrumentation and Controls Design Control Document 7.5 Safety-Related Display Information 7.5.1 Introduction An analysis is conducted to identify the appropriate variables and to establish the appropriate design bases and qualification criteria for instrumentation

More information

Technical Challenges Associated with Shutdown Risk when Licensing Advanced Light Water Reactors

Technical Challenges Associated with Shutdown Risk when Licensing Advanced Light Water Reactors Technical Challenges Associated with Shutdown Risk when Licensing Advanced Light Water Reactors Marie Pohida a1, Jeffrey Mitman a a United States Nuclear Regulatory Commission, Washington, DC, USA Abstract:

More information

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES D. SONG China Nuclear Power Engineering Co., Ltd. Beijing, China Email: songdy@cnpe.cc J. XING China Nuclear Power Engineering Co., Ltd. Beijing,

More information

Safety Aspects of SMRs: A PRA Perspective

Safety Aspects of SMRs: A PRA Perspective Safety Aspects of SMRs: A PRA Perspective Mohammad Modarres Minta Martin Professor of Engineering Director, Reliability Engineering Program Department of Mechanical Engineering University of Maryland,

More information

Westinghouse s plant for the Nuclear Renaissance : AP1000. AP1000 Advanced Passive Plant

Westinghouse s plant for the Nuclear Renaissance : AP1000. AP1000 Advanced Passive Plant Westinghouse s plant for the Nuclear Renaissance : AP000 Fernando Naredo Milan, January 30, 006 AP000 Advanced Passive Plant Designed to compete with other sources in deregulated power markets - Two loop,

More information

Design of Traditional and Advanced CANDU Plants. Artur J. Faya Systems Engineering Division November 2003

Design of Traditional and Advanced CANDU Plants. Artur J. Faya Systems Engineering Division November 2003 Design of Traditional and Advanced CANDU Plants Artur J. Faya Systems Engineering Division November 2003 Overview Canadian Plants The CANDU Reactor CANDU 600 and ACR-700 Nuclear Steam Supply Systems Fuel

More information

Bhabha Atomic Research Centre

Bhabha Atomic Research Centre Bhabha Atomic Research Centre Department of Atomic Energy Mumbai, INDIA An Acrylic Model of AHWR to Scale 1:50 Threat of climate change and importance of sustainable development has brought nuclear power

More information

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND Risto Sairanen Radiation and Nuclear Safety Authority (STUK) Nuclear Reactor Regulation P.O.Box 14, FI-00881

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme

Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Westinghouse-UK Partnership for Development of a Small Modular Reactor Nuclear Programme Simon Marshall UK Business & Project Development Director Nuclear Power Plants 1 The Westinghouse Small Modular

More information

The Fukushima Daiichi Nuclear Power Station Accident

The Fukushima Daiichi Nuclear Power Station Accident The Fukushima Daiichi Nuclear Power Station Accident Tomomi Matsunaga Kansai Electric Power Company Cooperation with JEPIC (Japan an Electric Power Information Center) Nuclear Power Plants in Japan 2 1

More information

AP1000 European 21. Construction Verification Process Design Control Document

AP1000 European 21. Construction Verification Process Design Control Document 2.5 Instrumentation and Control Systems 2.5.1 Diverse Actuation System Design Description The diverse actuation system (DAS) initiates reactor trip, actuates selected functions, and provides plant information

More information

Small and Modular Reactor Development, Safety and Licensing in Korea

Small and Modular Reactor Development, Safety and Licensing in Korea Small and Modular Reactor Development, Safety and Licensing in Korea IAEA TWG-LWR Vienna, June 18-20, 2013 Presented by Jong-Tae Seo 1 Outline I. SMR Development in Korea II. SMART Development III. SMART

More information

APR1400 Safe, Reliable Technology

APR1400 Safe, Reliable Technology APR1400 Safe, Reliable Technology OECD/NEA Workshop on Innovations in Water-cooled Reactor Technology Paris, Feb 11 12, 2015 Presented by Shin Whan Kim Contents 1. Introduction 2. Major Safety Design Characteristics

More information

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant 8 Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant KOZO TABUCHI *1 MASAYUKI TAKEDA *2 KAZUO TANAKA *2 JUNICHI IMAIZUMI *2 TAKASHI KANAGAWA *3 ATMEA1 TM is a 3-loop 1100

More information

NEW REACTOR DESIGN AND REGULATION

NEW REACTOR DESIGN AND REGULATION NEW REACTOR DESIGN AND REGULATION By ALEJANDRO CHOMAT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING

More information

NuScale Power Modular and Scalable Reactor. NuScale. Integral Pressurized Water Reactor. Light Water. Light Water.

NuScale Power Modular and Scalable Reactor. NuScale. Integral Pressurized Water Reactor. Light Water. Light Water. NuScale Power Modular and Scalable Reactor Overview Full Name NuScale Power Modular and Scalable Reactor Acronym NuScale Reactor type Integral Pressurized Water Reactor Coolant Light Water Moderator Light

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance ATTACHMENT Introduction This paper describes a range of defense-in-depth measures that either currently exist

More information

Lessons learned from Angra 1 & Angra 2 NPP s Outages

Lessons learned from Angra 1 & Angra 2 NPP s Outages Lessons learned from Angra 1 & Angra 2 NPP s Outages DO Diretoria de Operação SM.O Superintendência de Manutenção Preparado por: Luciano Junqueira Calixto Email: lucical@eletronuclear.gov.br Angra 1: Angra

More information

Implementation of Lessons Learned from Fukushima Accident in CANDU Technology

Implementation of Lessons Learned from Fukushima Accident in CANDU Technology e-doc 4395709 Implementation of Lessons Learned from Fukushima Accident in CANDU Technology Greg Rzentkowski Director General, Power Reactor Regulation Canadian Nuclear Safety Commission on behalf of CANDU

More information

Work Exercises and Case Studies to Write Safety Evaluation Report

Work Exercises and Case Studies to Write Safety Evaluation Report Work Exercises and Case Studies to Write Safety Evaluation Report 2013 Contents Considerations for Writing SER Guideline for Case Study Examples of SAR and Regulatory Review Guide Review Exercise Attachment

More information

Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment

Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment 136 Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment Shoichiro

More information

Design Safety Considerations for Water-cooled Small Modular Reactors As reported in IAEA-TECDOC-1785, published in March 2016

Design Safety Considerations for Water-cooled Small Modular Reactors As reported in IAEA-TECDOC-1785, published in March 2016 International Conference on Topical Issues in Nuclear Installation Safety, Safety Demonstration of Advanced Water Cooled Nuclear Power Plants 6 9 June 2017 Design Safety Considerations for Water-cooled

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

Westinghouse AP1000. Reactor

Westinghouse AP1000. Reactor Westinghouse AP1000 A Third Generation Nuclear Reactor International Council on Systems Engineering (INCOSE) September 18, 2013 Andrew Drake, PMP Director, AP1000 Engineering Completion Engineering, Equipment

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

AP1000 European 9. Auxiliary Systems Design Control Document

AP1000 European 9. Auxiliary Systems Design Control Document 9.2 Water Systems 9.2.1 Service Water System The service water system (SWS) supplies cooling water to remove heat from the nonsafety-related component cooling water system (CCS) heat exchangers in the

More information

SAM strategy&modifications and SA simulator at Paks NPP

SAM strategy&modifications and SA simulator at Paks NPP Technical Meeting on Verification and Validation of SAMGs for Nuclear Power Plants 12-14 December 2016, Vienna, Austria SAM strategy&modifications and SA simulator at Paks NPP Éva Tóth Group Leader Safety

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 Follow up prepared at 4pm of March 23, revised 1pm of March 31 Yoshiaki Oka Waseda university Recovery action is in progress.

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

Westinghouse AP1000 Nuclear Power Plant

Westinghouse AP1000 Nuclear Power Plant Westinghouse AP1000 Nuclear Power Plant Westinghouse AP1000 Nuclear Power Plant AP1000 is a registered trademark in the United States of Westinghouse Electric Company LLC, its subsidiaries and/or its affiliates.

More information

Critical Issues Concerned with the Assessment of Passive System Reliability

Critical Issues Concerned with the Assessment of Passive System Reliability IAEA Technical Meeting on Probabilistic Safety Assessment for New Nuclear Power Plants Design Vienna, October 1-5 2012 Critical Issues Concerned with the Assessment of Passive System Reliability Luciano

More information

CAREM: AN INNOVATIVE-INTEGRATED PWR

CAREM: AN INNOVATIVE-INTEGRATED PWR 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-S01-2 CAREM: AN INNOVATIVE-INTEGRATED PWR Rubén MAZZI INVAP Nuclear Projects

More information

DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC

DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC DETAILED ANALYSIS OF GEOMETRY EFFECT ON TWO PHASE NATURAL CIRCULATION FLOW UNDER IVR-ERVC R. J. Park 1, K. S. Ha 1, and H. Y. Kim 1 Korea Atomic Energy Research Institute 989-111 Daedeok-daero,Yuseong-Gu,

More information

Severe Accident Progression Without Operator Action

Severe Accident Progression Without Operator Action DAA Technical Assessment Review of the Moderator Subcooling Requirements Model Severe Accident Progression Without Operator Action Facility: Darlington Classification: October 2015 Executive summary After

More information

Design of the AP1000 Power Reactor

Design of the AP1000 Power Reactor Key Words: AP1000, Passive, Advantage Abstract Design of the AP1000 Power Reactor Bernd Doehnert Westinghouse Electric Belgium The distinguishing features of Westinghouse s AP1000 advanced passive pressurized

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693R Reactor Design and Analysis Lecture 11 Nuclear Safety Spiritual Thought 2 2 Kings 6:16 And he answered, Fear not: for they that be with us are more than they that be with them.

More information

Pakistan s HWR Activities

Pakistan s HWR Activities 14 th Meeting of the Technical Working Group on Advanced Technologies of Heavy Water Reactors (TWG-HWR) Vienna, Austria 18-20 June 2013 Pakistan s HWR Activities by Shahid Saghir, Senior Manager (Technical)

More information

Oregon State University s Small Modular Nuclear Reactor Experimental Program

Oregon State University s Small Modular Nuclear Reactor Experimental Program Oregon State University s Small Modular Nuclear Reactor Experimental Program IEEE Conference on Technologies for Sustainability August 1, 2013 Portland, Oregon Brian Woods Oregon State University brian.woods@oregonstate.edu,

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

PREVENTION POSSIBILITY OF NUCLEAR POWER REACTOR MELTDOWN BY USE OF HEAT PIPES FOR PASSIVE COOLING OF SPENT FUEL

PREVENTION POSSIBILITY OF NUCLEAR POWER REACTOR MELTDOWN BY USE OF HEAT PIPES FOR PASSIVE COOLING OF SPENT FUEL Frontiers in Heat Pipes Available at www.thermalfluidscentral.org PREVENTION POSSIBILITY OF NUCLEAR POWER REACTOR MELTDOWN BY USE OF HEAT PIPES FOR PASSIVE COOLING OF SPENT FUEL Masataka Mochizuki *, Thang

More information

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS Popov, N.K., Santamaura, P., Shapiro, H. and Snell, V.G Atomic Energy of Canada Limited 2251 Speakman Drive, Mississauga, Ontario, Canada L5K 1B2 1. INTRODUCTION

More information