Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)

Size: px
Start display at page:

Download "Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)"

Transcription

1 Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)

2 RBMK= Reaktor Bolshoi Moshnosty Kanalny= High Power Channel Reactor

3 RBMK Reactors Lithuania: Ignalina 1 & 2, 1 shut down 2004, 2- shut down 2009 Russia: Bilibino 1-4 built between 1974 and 1977 Kursk 1-4 built between 1977 and 1986 Leningrad 1 4 built between 1974 and 1981 Smolensk 1 3 built between 1983 and 1990 Ukraine: Chernobyl 1-4 (1-3 shut down, 4 destroyed)

4 Basic Design of RBMK Reactors Origin in Soviet weapons program for Pu production Graphite moderated, light water cooled, pressure tube reactor (LWGR or RBMK) Slightly enriched uranium as fuel with on-load refuelling Standardized twin blocks of 1000 MW e each Presently 11 in operation in Russia

5 Location of Chernobyl Distance to Kiew 100 km Minsk 320 km Moskwa 700 km Vienna 1030 km

6 Layout of Units 1 and 2 1. Auxiliary building 123/2. Reactor hall of unit 2 2. Common turbine hall 123/1. Reactor hall of unit 1 3. Intermediate building 392/1. Control room of unit 1 4. Main circulation pump 392/3. Control room of unit 2 5. Generator 392/2. Electrical equipment (SUZ reactor instrumentation 6. Main feed water pump 390/1. Electrical equipment (SKALA computer) 7. Auxiliary feed water pump 390/2. Electrical equipment (SKALA computer) 8. Main transformer 397. Central control room (external grid, fire detection) 9. Auxiliary transformer 10. Start-up transformer 11. NA-pump, service water system 12. Cables to diesel building, unit Cables to diesel building, unit 1

7 Cutaway of the Nuclear Unit 1. Core 2. Piping of water lines 3. Lower biological shielding 4. Distribution headers 5. Side biological shielding 6. Drum-separator 7. Piping of steam-water lines 8. Upper biological shielding 9. Refuelling machine 10. Demountable plating 11. Fuel channel ducts 12. Downcorners 13. Pressure header 14. Suction header 15. Main circulation pump

8 Internal Structures 1. Graphite stack 2. Pressure tubes 3. Reactor cavity 4. Concrete vault 5. Feedwater channels 6. Lower biological shield 7. Upper biological shield 8,9. Lateral shield 10. Reflector cooling channels 11. Feedwater pipes 12.Top cover 13. Top plate 14. Sand fill

9 RBMK Operation Principle

10 Simplified Operation Diagram

11 Top Plate with 1690 Channels for Fuel Loading

12 Fuel Bundle 1. Hanger 2. Guide tailpiece 3. Main support rod 4. Upper fuel bundle 5. Lower fuel bundle 6. End cap

13 Fuel Rod 1. Top plug 2. Cladding (Zircaloy) 3. Spring and fission gas expansion volume 4. Fuel pellet column 5. Lower end plug 6. Bottom plug

14 Fuel Channel 1. Plug of the biological shielding 2. Upper biological shielding 3. Fuel hanger 4. Shielding plate 5. Lower biological shielding 6. Fuel channel 7. Fuel assembly 8. Bellows compensator 9. Coolant inlet pipeline 10.Coolant outlet pipeline

15 Reactions in the fuel and control rods

16 Absorber Rod with Water Displacer 1. Strip 2. Inner cavity of the rod 3. Absorber 4. Aluminium cladding 5. Displacer with graphite filling

17

18 RBMK Control Rod Design Control rod design: totally 211 CR Lower part of CR graphite to displace water when CR are fully out Therefore positive effect on reactivity in lower core volume before absorber part enters core centre Control rod speed:40 cm/s Minimum number of CR in core according to safety rules: 15 Actual number of CR in core: 6

19 Xenon Poisoning Xenon poisoning: Xenon-135 is a fission product with a high fission yield and a very high neutron absorbtion cross section. In steady state reactor operation there is an equilibrium between Xe production and Xe removal Xenon production: Directly through uranium fission and by decay of Iodine-135 (6,2h) Xenon removal: By radioactive decay (9,2 h) or by neutron capture and transmutation into Xe-136 If this equilibrium is disturbed (i.e.by power changes) the Xe-135 concentration increases or decreases in the reactor and disturbes the neutron flux

20 Xenon Production and Removal Xe-135 is produced by decay of I-135 Xe-135 removed by decay or by neutron absorption Half-life of I-135 is shorter than half life of Xe-135 Reactor power up: I-135 production up Xe concentration first down then up Reactor power down: I-135 production down Xe concentration first up then down

21 Xenon Concentration after Reactor Shut Down When a reactor is shut down I-135 decays according to it s half-life to Xe-135. As I-135 decays faster than Xe-135 the Xe-135 concentration increases as there is no removal by neutron absorption because the reactor is shut down!!! The so called Xenon peak is approx. after 10 to 12 hours of shut down. In power reactors it could be strong enough that reactor start-up during Xe-peak is impossible.

22 Positive Void Coefficient Positive void coefficient: This coefficient describes the feedback of steam bubbles (or empty volumes in the core) on reactivity. For a stable reactor the coefficient should be negative, i.e. if power increases more steam bubbles are produced then reactor power should decrease (=stabilizing effect). This is valid in BWR s where water is both coolant and moderator In RBMK reactors the main moderator is graphite and water is only the coolant. But water is also a neutron absorber, therefore if water evaporates to steam, absorption of neutrons is reduced (less H-nuclei per unit volume) and reactivity (= reactor power) increases. Both effects overlapped at Chernobyl at that night: The reactor core was highly Xenon poisoned due to the 10 hours operation at 1600 MWth, therefore all control rods were removed from the core to reach the desired power level

23 The Test April 25 th 1986: prior to a routine shut-down, the reactor crew at Chernobyl-4 began preparing for a test to determine how long turbines would spin and supply power to the primary pumps following a loss of main electrical power supply. As this test failed before due to automatic reactor shut down several automatic shut down mechanisms were disabled The turbine energy should bridge the electricity gap until the emergency diesel generators reach full power (40 to 60 seconds) The test should be carried out between 700 to 1000 MW th, it was well known that the reactor is extremely unstable at a very low power level

24 Accident Chronology April 25 th, 1 am: the power level was decreased slowly from 3200 MWth to 1600 MW th. One of the two turbine-generators was stopped 13h05: the network distributor in Kiev requested a stop of the power decrease due to electricity demand in the network until 23h10 (important factor for the accident ) 23h10: the power was decreased further but the operators were unable to stabilize the reactor due to Xenon poisoning around 1000 MW th, the power decreased down to 30 MW th The operators tried to bring the reactor back to the necessary power level by removing all but 6 control rods out of the core as far as possible.

25 Accident Chronology , 1:00 am: With more than 200 control rods (CR) (6 CR remain close to core) removed only 200 MWth was reached 1:03 am: Additional coolant pumps switched on, core subcooled by cold water, shut down signals (steam pressure and water level were bridged) 1:23:04 am: Start of experiment: Turbine inlet valve closed, turbine-generator and coolant pumps run down 1:23:31 am: Water starts to evaporate in core and power increases slowly, remaining 6 CR cannot compensate power increase 1:23:40 am: Shift supervisor orders insertion of all CR but insertion speed too slow 1:23:44 am: First a prompt nuclear transient, temperature above 3000 C, followed by a second explosion (steam or hydrogen explosion), 1000 ton reactor cover lifted away and all coolant channels destroyed

26 Operational Power Diagram

27 Steps to the desaster

28 Arial View of the ReactorBuilding

29 Situation after the Accident

30 Model of the destroyed Reactor

31 View of the Reactor Building

32 View of the Reactor Building

33 Sarcophagus

34

35 Shelter construction

36 New Shelter Costs and Time Schedule End of 2010 about 990 M from EBRD available for shelter construction Contributions from 23 countries, the EU and donations from 6 countries (Austria 7,5 M) Scheduled to be moved over the sarcophagus and confine the remains of the plant from the outside world for about 100 years. It is expected to be completed in World Nuclear News

37 Serious Accidents in Military, Research and Commercial Reactors (1) Reactor Windscale-1, UK (military plutoniumproducing pile) SL-1, USA (experimental, military, 3 MWt) Fermi-1 USA (experimental breeder, 66 MWe) Lucens, Switzerland (experimental, 7.5 MWe) 1952 Date 1957 Nil Immediate Deaths NRX, Canada (experimental, 40 MWt) 1961 Three operators Nil 1966 Nil Nil 1969 Nil Environmental effect Widespread contamination. Farms affected Very minor radioactive release Very minor radioactive release Follow-up action Repaired (new core) closed 1992 Entombed (filled with concrete) Decommissioned Repaired, restarted 1972 Decommissioned

38 Serious Accidents in Military, Research and Commercial Reactors (2) Reactor Browns Ferry, USA (commercial, 2 x 1080 MWe^) Three-Mile Island-2, USA (commercial, 880 MWe) Saint Laurent-A2, France (commercial, 450 MWe) Chernobyl-4, Ukraine (commercial, 950 MWe) Date Immediate Deaths Environmental effect 1975 Nil Nil Repaired 1979 Nil 1980 Nil staff and firefighters Minor short-term radiation dose (within ICRP limits) to public, delayed release of 2 x 1014 Bq of Kr-85 Minor radiation release (8 x 1010 Bq) Major radiation release across E.Europe and Scandinavia (11 x 1018 Bq) Follow-up action Clean-up program complete, in monitored storage stage of decommissioning Repaired, (Decomm. 1992) Entombed Fukushima ( 4 BWR ) 2011 None Contamination Cleaning

39 International Nuclear Event Scale INES

40 Energy Related Accidents since Chernobyl (1) Place Year Killed Comments Chernobyl, Ukraine nuclear reactor accident Piper Alpha, North Sea explosion of offshore oil platform Asha-ufa, Siberia LPG pipeline leak and fire Dobrnja, Yugoslavia coal mine Hongton, Shanxi, China coal mine Kozlu, Turkey coal mine methane explosion Cuenca, Equador coal mine Durunkha, Egypt fuel depot hit by lightning Seoul, S.Korea oil fire Minanao, Philippines coal mine Dhanbad, India coal mine Taegu, S.Korea oil & gas explosion Spitsbergen, Russia coal mine Henan, China coal mine methane explosion Datong, China coal mine methane explosion Henan, China coal mine methane explosion

41 Energy Related Accidents since Chernobyl (2) Place Year Killed Comments Spitsbergen, Russia coal mine Henan, China coal mine methane explosion Datong, China coal mine methane explosion Henan, China coal mine methane explosion Kuzbass, Siberia coal mine methane explosion Huainan, China coal mine methane explosion Huainan, China coal mine methane explosion Guizhou, China coal mine methane explosion Donbass, Ukraine coal mine methane explosion Liaoning, China coal mine methane explosion Warri, Nigeria oil pipeline leak and fire Donbass, Ukraine coal mine methane explosion Donbass, Ukraine coal mine methane explosion Shanxi, China coal mine methane explosion Guizhou, China coal mine methane explosion Shanxi, China coal mine methane explosion Sichuan, China coal mine methane explosion Jixi, China coal mine methane explosion

42 Comparison of Accident Statistics in Primary Energy Production Fuel Immediate fatalities Who? Normalised to deaths per TWy* electricity Coal 6400 workers 342 Natural gas 1200 workers & public 85 Hydro 4000 public 883 Nuclear 56 (+4 Fukushima) workers 8 *Electricity generation accounts for about 40% of total primary energy

43 References 15/timeline.shtml

44 What you should remember RBMK is a graphite moderated, light water cooled pressure tube reactor with it s origin in military applictaions (Pu-production) It is refuelled during reactor operation (on-load) The water acts here only as a coolant but not as moderator, in fact water is also an absorber of neutrons If water evaporates the neutron absorption is reduced and reactor power increase (= positive void coefficient) The accident is a combination of unsafe technical design and violation of procedures Two reactor physics reason lead to the accident: Xenon poisoning Positive void coefficient

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

In April 1986, unit 4 of the Chernobyl nuclear

In April 1986, unit 4 of the Chernobyl nuclear Safety of RBMK reactors: Setting the technical framework The IAEA's co-operative programme is consolidating the technical basis for further upgrading the safety of Chernobyl-type reactors by Luis Lederman

More information

NUCLEAR POWER. Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb

NUCLEAR POWER. Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb NUCLEAR POWER Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb What is Nuclear Power? Nuclear Power is the energy, generally electric, that is produced through

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

Module 02 Nuclear Engineering Overview

Module 02 Nuclear Engineering Overview Module 02 Nuclear Engineering Overview Status 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Application of

More information

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref NUCLEAR ENERGY Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref How is Nuclear Energy Produced? Nuclear energy is produced when an atom's nucleus is split into smaller nuclei by the

More information

Reactivity requirements can be broken down into several areas:

Reactivity requirements can be broken down into several areas: Reactivity Control (1) Reactivity Requirements Reactivity requirements can be broken down into several areas: (A) Sufficient initial reactivity should be installed to offset the depletion of U 235 and

More information

NUCLEAR ENERGY MATERIALS AND REACTORS Vol. I - Pressurized Water Reactors - J. Pongpuak

NUCLEAR ENERGY MATERIALS AND REACTORS Vol. I - Pressurized Water Reactors - J. Pongpuak PRESSURIZED WATER REACTORS J. Pongpuak Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Pressurized Water Reactors, Reactor Core, Fuel Elements, Control Rods, Steam Generators

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen ADVANCED GAS COOLED REACTORS Tim McKeen ADI Limited, Fredericton, Canada Keywords: Advanced Gas Cooled Reactors, Reactor Core, Fuel Elements, Control Rods Contents 1. Introduction 1.1. Magnox Reactors

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

Nuclear Fusion / Nuclear Fission

Nuclear Fusion / Nuclear Fission Nuclear Fusion / Nuclear Fission Fission and Fusion are two of methods where atomic scale energy can be acquired in the vast sums needed for commercial power generation. It is primarily based on the Binding

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

Nuclear Power Volume II - Nuclear Power Plants

Nuclear Power Volume II - Nuclear Power Plants PDHonline Course E338 (5 PDH) Nuclear Power Volume II - Nuclear Power Plants Instructor: Lee Layton, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director

Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director Alaska Center for Energy and Power University of Alaska History Overview of of Nuclear Presentation Energy What is nuclear energy?

More information

CAREM Prototype Construction and Licensing Status

CAREM Prototype Construction and Licensing Status IAEA-CN-164-5S01 CAREM Prototype Construction and Licensing Status H. Boado Magan a, D. F. Delmastro b, M. Markiewicz b, E. Lopasso b, F. Diez, M. Giménez b, A. Rauschert b, S. Halpert a, M. Chocrón c,

More information

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss World Energy Sources, Fossil Fuel Power Production, and Nuclear Power By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss Part 1: World Energy Sources and Fossil Fuel Power Production Different

More information

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc 1 of 12 1/24/2013 9:01 AM Science Generating electricity Electricity is a convenient source of energy and can be generated in a number of different ways. You will need to weigh up the advantages and disadvantages

More information

A Research Reactor Simulator for Operators Training and Teaching. Abstract

A Research Reactor Simulator for Operators Training and Teaching. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 A Research Reactor Simulator for Operators Training and Teaching Ricardo Pinto de Carvalho and José Rubens

More information

CAREM: AN INNOVATIVE-INTEGRATED PWR

CAREM: AN INNOVATIVE-INTEGRATED PWR 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-S01-2 CAREM: AN INNOVATIVE-INTEGRATED PWR Rubén MAZZI INVAP Nuclear Projects

More information

Approx 9% US energy from NP. 104 Nuclear Reactors in US

Approx 9% US energy from NP. 104 Nuclear Reactors in US Approx 9% US energy from NP 104 Nuclear Reactors in US World Energy Consumption Terawatts History of Nuclear Power 1934 Enrico Fermi experimentally achieved nuclear fission showering Uranium with neutrons

More information

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations March 31, 2011 Tokyo Electric Power Company Tohoku Pacific Ocean Earthquake Time: 2:46 pm on Fri, March 11, 2011. Place:

More information

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Yuliang SUN Institute of Nuclear and New Energy Technology, Tsinghua University Beijing 100084, PR China 1 st Workshop on PBMR Coupled

More information

13. PLANT MODIFICATIONS

13. PLANT MODIFICATIONS 13. PLANT MODIFICATIONS This Section summarises the major safety related modifications that have been implemented in the Ignalina NPP. This encompasses the important structural and procedural modifications

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Nuclear Energy. Frontiers of Physics Lecture 2 (F4) Dan Protopopescu

Nuclear Energy. Frontiers of Physics Lecture 2 (F4) Dan Protopopescu Nuclear Energy Frontiers of Physics Lecture 2 (F4) Dan Protopopescu Summary of Lecture I Nuclear power around the world Costs, comparisons, advantages Public perception Radiation and radioactive material

More information

ABSTRACT. 1. Introduction

ABSTRACT. 1. Introduction Improvements in the Determination of Reactivity Coefficients of PARR-1 Reactor R. Khan 1*, Muhammad Rizwan Ali 1, F. Qayyum 1, T. Stummer 2 1. DNE, Pakistan Institute of Engineering and Applied Sciences

More information

Evolution of Nuclear Energy Systems

Evolution of Nuclear Energy Systems ALLEGRO Project 2 Evolution of Nuclear Energy Systems 3 General objectives Gas cooled fast reactors (GFR) represent one of the three European candidate fast reactor types. Allegro Gas Fast Reactor (GFR)

More information

THREE MILE ISLAND ACCIDENT

THREE MILE ISLAND ACCIDENT THREE MILE ISLAND ACCIDENT M. Ragheb 12/4/2015 1. INTRODUCTION The Three Mile Island (TMI) Accident at Harrisburg, Pennsylvania in the USA is a severe and expensive incident that has seriously affected,

More information

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018 DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM Yujie DONG INET, Tsinghua University, China January 24, 2018 Meet the Presenter Dr. Dong is a Professor in Nuclear Engineering at the Tsinghua University, Beijing,

More information

Reactor Technology --- Materials, Fuel and Safety

Reactor Technology --- Materials, Fuel and Safety Reactor Technology --- Materials, Fuel and Safety UCT EEE4101F / EEE4103F April 2015 Emeritus Professor David Aschman Based on lectures by Dr Tony Williams Beznau NPP, Switzerland, 2 x 365 MWe Westinghouse,

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

Nuclear Accidents. William M. Murphy. Professor of Geological and Environmental Sciences California State University, Chico

Nuclear Accidents. William M. Murphy. Professor of Geological and Environmental Sciences California State University, Chico Nuclear Accidents William M. Murphy Professor of Geological and Environmental Sciences California State University, Chico A Month After the Earth Moved: The Science Behind the Japan Disaster April 11,

More information

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION VIENNA OKTOBER 3-6, 2016 1 ANPP * ANPP is located in the western part of Ararat valley 30 km west of Yerevan close to

More information

PLUTONIUM UTILIZATION IN REACTOR FUEL

PLUTONIUM UTILIZATION IN REACTOR FUEL Second Moscow International Nonproliferation Conference PLUTONIUM UTILIZATION IN REACTOR FUEL A. Zrodnikov Director General State Scientific Center of the Russian Federation Institute for Physics and Power

More information

The Chernobyl shelter industrial site, where the New Safe Confinement will be constructed (Photos: PMU)

The Chernobyl shelter industrial site, where the New Safe Confinement will be constructed (Photos: PMU) The Chernobyl shelter industrial site, where the New Safe Confinement will be constructed (Photos: PMU) Chernobyl 25 years on: Time for a giant leap forward BY DICK KOVAN After 25 years, the construction

More information

The Nuclear Power Deception

The Nuclear Power Deception The Nuclear Power Deception Chapter 2: Electricity Production and Nuclear Reactors An energy source cannot be inexhaustible in the economic sense unless it is priced so low that it can be used in essentially

More information

NUCLEAR REACTORS. Nuclear Fuel Pellet Cost $3 ~ 7 g total, with ~ 0.3 g 235 U Energy equivalent: 1 ton coal

NUCLEAR REACTORS. Nuclear Fuel Pellet Cost $3 ~ 7 g total, with ~ 0.3 g 235 U Energy equivalent: 1 ton coal NUCLEAR REACTORS My use in U City = 200 kwh/mo/person => 0.3 kw continuous (= 3 *100-watt bulbs) per person @38% efficiency, could be supplied by 0.3 g 235 U/y or 1 ton of coal/y Nuclear Fuel Pellet Cost

More information

UK Nuclear

UK Nuclear UK Nuclear Industry @NuclearInst www.nuclearinst.com Why Nuclear power? Nuclear power supplies around 11% of the world s electricity, with an average of around 21% in the UK There are currently over 430

More information

LEAD-COOLED FAST-NEUTRON REACTOR BREST. Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia)

LEAD-COOLED FAST-NEUTRON REACTOR BREST. Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia) LEAD-COOLED FAST-NEUTRON REACTOR BREST Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia) Large-scale nuclear power based on fast-neutron reactors operating in a closed

More information

Corium debris configurations in course of accident

Corium debris configurations in course of accident РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт проблем безопасного развития атомной энергетики RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE) Corium debris configurations in course of accident Valery

More information

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Ade Gafar Abdullah 1,2,*, Zaki Su ud 2, Rizal Kurniadi 2, Neny Kurniasih 2, Yanti Yulianti 2,3 1 Electrical

More information

A Compact Transportable Nuclear Power Reactor

A Compact Transportable Nuclear Power Reactor A Compact Transportable Nuclear Power Reactor Can be rapidly deployed to remote locations to support oil recovery, disaster relief and basic infrastructure Paul Farrell and James Powell 1 Brookhaven Technology

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore NU CL EAR ENERGY For the complete encyclopedic entry with media resources,

More information

Nuclear Power Reactors. Kaleem Ahmad

Nuclear Power Reactors. Kaleem Ahmad Nuclear Power Reactors Kaleem Ahmad Outline Significance of Nuclear Energy Nuclear Fission Nuclear Fuel Cycle Nuclear Power Reactors Conclusions Kaleem Ahmad, Sustainable Energy Technologies Center Key

More information

UKEPR Issue 05

UKEPR Issue 05 Title: PCER Sub-Chapter 6.1 Sources of radioactive materials Total number of pages: 16 Page No.: I / III Chapter Pilot: S. BOUHRIZI Name/Initials Date 06-08-2012 Approved for EDF by: T. MARECHAL Approved

More information

Global Perspectives on SMRs Developing Countries Expectations

Global Perspectives on SMRs Developing Countries Expectations Global Perspectives on SMRs Developing Countries Expectations Dr Atam Rao Head Nuclear Power Technology Development Jun 18, 2010 The 4 th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors

More information

Compact, Deployable Reactors for Power and Fuel in Remote Regions

Compact, Deployable Reactors for Power and Fuel in Remote Regions Compact, Deployable Reactors for Power and Fuel in Remote Regions James R. Powell and J. Paul Farrell Radix Corporation, Long Island, New York Presented by Jerry M. Cuttler Dunedin Energy Systems, LLC

More information

Current Status and Future Challenges of Innovative Reactors Development in Japan

Current Status and Future Challenges of Innovative Reactors Development in Japan Innovation for Cool Earth Forum 2017, Tokyo, Japan, October 4-5, 2017 Current Status and Future Challenges of Innovative Reactors Development in Japan 5 October, 2017 Yutaka Sagayama Assistant to the President

More information

August 24, 2011 Presentation to Colorado School of Mines

August 24, 2011 Presentation to Colorado School of Mines HEAVY-METAL NUCLEAR POWER: Could Reactors Burn Radioactive Waste to Produce Electric Power and Hydrogen? Eric P. Loewen, Ph.D. President, American Nuclear Society August 24, 2011 Presentation to Colorado

More information

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading ANTARES Application for Cogeneration Oil Recovery from Bitumen and Upgrading Michel Lecomte Houria Younsi (ENSEM) Jérome Gosset (ENSMP) ENC Conference Versailles 11-14 December 2005 1 Presentation Outline

More information

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion Albert Lee PhD IX International School on Nuclear Power, November 14-17, 2017 - Copyright - A world leader Founded in 1911,

More information

Radioactive Materials from U.S. Nuclear Plants

Radioactive Materials from U.S. Nuclear Plants Routine Releases of Radioactive Materials from U.S. Nuclear Plants Dave Lochbaum Union of Concerned Scientists August 2014 Revision i 1 1 The idea for this material came during a November 2013 workshop

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

Neutron Flux Monitoring System in Prototype Fast Breeder Reactor

Neutron Flux Monitoring System in Prototype Fast Breeder Reactor Neutron Flux Monitoring System in Prototype Fast Breeder Reactor M.Sivaramakrishna, C.P. Nagaraj, K. Madhusoodanan, Dr. P. Chellapandi Indira Gandhi Centre For Atomic Research, Kalpakkam, Tamilnadu Abstract

More information

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors Journal of Physics: Conference Series PAPER OPEN ACCESS Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors To cite this article: Zaki Su'ud et al 2017 J. Phys.: Conf. Ser. 799 012013 View

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

ALL-RUSSIAN DESIGNING AND SCIENTIFIC-RESEARCH INSTITUTE FOR COMPREHENSIVE POWER TECHNOLOGY (VNIPIET)

ALL-RUSSIAN DESIGNING AND SCIENTIFIC-RESEARCH INSTITUTE FOR COMPREHENSIVE POWER TECHNOLOGY (VNIPIET) ALL-RUSSIAN DESIGNING AND SCIENTIFIC-RESEARCH INSTITUTE FOR COMPREHENSIVE POWER TECHNOLOGY (VNIPIET) 82, Savushkina str., Saint-Petersburg, 197183, RUSSIA Phone: + 7 (812) 430-01-34 Fax: +7 (812) 430-03-93

More information

NEW POWER REACTOR DESIGNS

NEW POWER REACTOR DESIGNS NUCLEAR ENERGY RENAISSANCE: ADDRESSING THE CHALLENGES OF CLIMATE CHANGE AND SUSTAINABILITY NCSR DEMOKRITOS Athens May 8, 2008 NEW POWER REACTOR DESIGNS Dimitrios Cokinos Brookhaven National Laboratory

More information

CHAPTER 9 Nuclear Plant Operation. Table of Contents

CHAPTER 9 Nuclear Plant Operation. Table of Contents 1 Summary: CHAPTER 9 Nuclear Plant Operation Prepared by Dr. Robin A. Chaplin This chapter deals with the operating concepts of a CANDU nuclear power plant. It combines some theoretical aspects with basic

More information

Radioactive Waste Management at the NCSR Demokritos - Greece

Radioactive Waste Management at the NCSR Demokritos - Greece Radioactive Waste Management at the NCSR Demokritos - Greece Anastasia Savidou Radioactive Materials Management Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National

More information

Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors

Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors Practical Aspects of Liquid-Salt-Cooled Fast-Neutron Reactors Charles Forsberg (ORNL) Per F. Peterson (Univ. of California) David F. Williams (ORNL) Oak Ridge National Laboratory P.O. Box 2008; Oak Ridge,

More information

KIPT ACCELERATOR DRIVEN SYSTEM DESIGN AND PERFORMANCE

KIPT ACCELERATOR DRIVEN SYSTEM DESIGN AND PERFORMANCE KIPT ACCELERATOR DRIVEN SYSTEM DESIGN AND PERFORMANCE Yousry Gohar 1, Igor Bolshinsky 2, Ivan Karnaukhov 3 1 Argonne National Laboratory, USA 2 Idaho National Laboratory, USA 3 Kharkov Institute of Physics

More information

FOURTH GENERATION REACTOR CONCEPTS

FOURTH GENERATION REACTOR CONCEPTS Chapter 6 FOURTH GENERATION REACTOR CONCEPTS M. Ragheb 3/11/2014 6.1 INTRODUCTION Nuclear power plants across the globe are producing about 16 percent of the world s electricity. With the depletion of

More information

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES D. SONG China Nuclear Power Engineering Co., Ltd. Beijing, China Email: songdy@cnpe.cc J. XING China Nuclear Power Engineering Co., Ltd. Beijing,

More information

BACKGROUNDER Office of Public Affairs Phone:

BACKGROUNDER Office of Public Affairs Phone: BACKGROUNDER Office of Public Affairs Phone: 301-415-8200 Email: opa.resource@nrc.gov Three Mile Island Accident The accident at the Three Mile Island Unit 2 (TMI-2) nuclear power plant near Middletown,

More information

The "Réacteur Jules Horowitz" : The preliminary design

The Réacteur Jules Horowitz : The preliminary design The "Réacteur Jules Horowitz" : The preliminary design A. BALLAGNY - S. FRACHET CEA Direction des Réacteurs Nucléaires 31, 33 Rue de la Fédération 75752 PARIS Cédex 15 J.L. MINGUET - C. LEYDIER TECHNICATOME

More information

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Journal of Physical Science, Vol. 26(2), 73 87, 2015 Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Badrun Nahar Hamid, 1* Md. Altaf Hossen, 1 Sheikh Md.

More information

Country Presentation. Ukraine

Country Presentation. Ukraine Country Presentation. Ukraine 24th Meeting of the IAEA Technical Working Group on Nuclear Power Plant Instrumеntation and Control (TWG -NPPIC) May 22-24, 2013,, Austria Vladimir Sklyar, RPC Radiy TOP5

More information

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011 D3SJ Talk The Latest on the Thorium Cycle as a Sustainable Energy Source Philip Bangerter 4 May 2011 About the Speaker Philip Bangerter Process Engineer of 30 years experience Mining industry Sustainability

More information

Presentation by: Andrew Murphy Chicago-Kent College of Law

Presentation by: Andrew Murphy Chicago-Kent College of Law Presentation by: Andrew Murphy Chicago-Kent College of Law The concept that things are made up of small particles dates back to ancient Greek philosophers In fact, the term atom comes from the Greek word

More information

Molten Salt Reactors (MSRs)

Molten Salt Reactors (MSRs) Molten Salt Reactors (MSRs) Dr. Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge TN 37830-6179 Tel: (865) 574-6783 Fax: (865) 574-9512 E-mail: forsbergcw@ornl.gov Manuscript

More information

Decommissioning and Site Release Problems for Georgian Nuclear Research Reactor IRT-M

Decommissioning and Site Release Problems for Georgian Nuclear Research Reactor IRT-M Decommissioning and Site Release Problems for Georgian Nuclear Research Reactor IRT-M Giorgi Nabakhtiani Grigol Kiknadze Nuclear and Radiation Safety Service Ministry of Environment Protection and Natural

More information

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants 2016 OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants The company is certified according to three management systems: Certificate stn en iso 9001:2008 Quality management system

More information

Workgroup Thermohydraulics. The thermohydraulic laboratory

Workgroup Thermohydraulics. The thermohydraulic laboratory Faculty of Mechanical Science and Engineering Institute of Power Engineering Professorship of Nuclear Energy and Hydrogen Technology Workgroup Thermohydraulics The thermohydraulic laboratory Dr.-Ing. Christoph

More information

Green Cross Russia Nuclear and Radiation Safety Programme. V. M. Kuznetsov Contemporary state of safety at Russian nuclear installations

Green Cross Russia Nuclear and Radiation Safety Programme. V. M. Kuznetsov Contemporary state of safety at Russian nuclear installations Green Cross Russia Nuclear and Radiation Safety Programme V. M. Kuznetsov Contemporary state of safety at Russian nuclear installations The Russian nuclear complex (1) 213 nuclear installations (industrial

More information

Issues with petroleum

Issues with petroleum Issues with petroleum Limited reserves (near peak in Hubbert curve) Trade deficit (most oil imported) Externalities (military costs, environmental impacts) Environmental pollution (persistent combustion

More information

LEU Conversion of the University of Wisconsin Nuclear Reactor

LEU Conversion of the University of Wisconsin Nuclear Reactor LEU Conversion of the University of Wisconsin Nuclear Reactor Paul Wilson U. Wisconsin-Madison Russian-American Symposium on the Conversion of Research Reactors to Low Enriched Uranium Fuel 8-10 June 2011

More information

Concept and technology status of HTR for industrial nuclear cogeneration

Concept and technology status of HTR for industrial nuclear cogeneration Concept and technology status of HTR for industrial nuclear cogeneration D. Hittner AREVA NP Process heat needs from industry Steam networks In situ heating HTR, GFR 800 C VHTR > 800 C MSR 600 C SFR, LFR,

More information

Life Extension of Russian Nuclear Power Plants

Life Extension of Russian Nuclear Power Plants Position Paper, October 2006 Life Extension of Russian Nuclear Power Plants Alexander Nikitin Igor Kudrik www.bellona.org Executive summary Russia is actively implementing a programme to extend the lifetime

More information

1. INTRODUCTION. Corresponding author. Received December 18, 2008 Accepted for Publication April 9, 2009

1. INTRODUCTION. Corresponding author.   Received December 18, 2008 Accepted for Publication April 9, 2009 DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE SEUNG-HWAN SEONG *, TAE-HO LEE and SEONG-O KIM

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century Presented at the Canon Institute for Global Studies Climate Change Symposium Climate Change and the Role of Nuclear Energy By Dr. Robert W.

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Russia s s efforts to improve safety following the Chernobyl and the Fukushima accidents

Russia s s efforts to improve safety following the Chernobyl and the Fukushima accidents РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт проблем безопасного развития атомной энергетики RUSSIAN ACADEMY OF SCIENCES Nuclear Safety Institute (IBRAE) Russia s s efforts to improve safety following the Chernobyl

More information

Status of the FRM-II Project at Garching. Hans-Jürgen Didier, Gunter Wierheim Siemens AG, Power Generation (KWU), D Erlangen

Status of the FRM-II Project at Garching. Hans-Jürgen Didier, Gunter Wierheim Siemens AG, Power Generation (KWU), D Erlangen IGORR7 7 th Meeting of the International Group on Research Reactors October 26-29, 1999 Bariloche, Argentina Status of the FRM-II Project at Garching Hans-Jürgen Didier, Gunter Wierheim Siemens AG, Power

More information

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1079 Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium Yasunori Ohoka * and Hiroshi

More information

Small Modular Reactors: A Call for Action

Small Modular Reactors: A Call for Action Small Modular Reactors: A Call for Action Overview of Five SMR Designs by Dr. Regis A. Matzie Executive Consultant Adapted May 2015 for the Hoover Institution's Reinventing Nuclear Power project from a

More information

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM Roger Schène Director,Engineering Services 1 Background Late 80: USA Utilities under direction of EPRI and endorsed by NRC : Advanced

More information

Planning for the Decommissioning of the ASTRA-Reactor

Planning for the Decommissioning of the ASTRA-Reactor Planning for the Decommissioning of the ASTRA-Reactor Konrad Mück, Jörg Casta Austrian Research Center Seibersdorf Introduction The ASTRA Reactor, a 10 MW multipurpose MTR research reactor at the Austrian

More information

Nuclear GEOS 24705/ ENST 24705

Nuclear GEOS 24705/ ENST 24705 Nuclear GEOS 24705/ ENST 24705 Copyright E. Moyer 2012 Nuclear power just another way of making steam A nuclear plant is a big tea-kettle driving a steam turbine Nuclear engineering is all about keeping

More information

Useful applications of radioactivity and nuclear energy Power for good... and evil

Useful applications of radioactivity and nuclear energy Power for good... and evil Useful applications of radioactivity and nuclear energy Power for good... and evil Nuclear power: environmental The greatest environmental threat is perceived to be global warming the build-up of greenhouse

More information

COUPLING A HYDROGEN PRODUCTION PROCESS TO A NUCLEAR REACTOR

COUPLING A HYDROGEN PRODUCTION PROCESS TO A NUCLEAR REACTOR COUPLING A HYDROGEN PRODUCTION PROCESS TO A NUCLEAR REACTOR P. Anzieu, P. Aujollet, D. Barbier, A. Bassi, F. Bertrand, A. Le Duigou, J. Leybros, G. Rodriguez CEA, France NEA 3 rd Meeting on Nuclear Production

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea NUCLEAR DESIGN AND SAFETY ANALYSIS OF ACCIDENT TOLERANT FUEL CANDIDATES IN OPR1000 Wang-Kee In 1, Ser-Gi Hong 2, Tae-Wan Kim 3, Tae-Hyun Chun 1, Chang-Hwan Shin 1 1 Korea Atomic Energy Research Institute:

More information

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 Feasibility and Deployment Strategy of Water Cooled Thorium Breeder Reactors Naoyuki Takaki Department of

More information

Nuclear Reactor Types

Nuclear Reactor Types http://www.theiet.org/cpd Nuclear Reactor Types This Factfile summarises the main designs for nuclear reactors around the world. www.theiet.org/factfiles Nuclear Reactor Types Many different reactor systems

More information

Chernobyl 25 years on:

Chernobyl 25 years on: Chernobyl 25 years on: New Safe Confinement and Spent Fuel Storage Facility The New Safe Confinement Scene from Pripyat, town closest to site of accident Reactor 4 after the explosion 26 April 2011 marks

More information