Optimisation of Heat-integrated Distillation Schemes Based on Shortcut Analysis, Pinch Analysis and Rigorous Simulation. Abstract

Size: px
Start display at page:

Download "Optimisation of Heat-integrated Distillation Schemes Based on Shortcut Analysis, Pinch Analysis and Rigorous Simulation. Abstract"

Transcription

1 Optimisation of Heat-integrated Distillation Schemes Based on Shortcut Analysis, Pinch Analysis and Rigorous Simulation Mansour Emtir* and Mansour Khalifa Libyan Petroleum Institute, P.O. Box 6431 Tripoli, Libya * Abstract Conventional and non-conventional distillation schemes for the separation of ternary mixture are investigated and optimized based on shortcut calculations, pinch analysis and rigorous simulation in order to achieve the highest saving values in energy and total annual cost (TAC) as the optimization objective function. The studied chemical system is benzene, toluene and m-xylene with feed composition of (25/50/25) and 99.9 mol % product purity. The optimization parameters are feed compositions. The state of feed condition is considered as the optimization parameters; feed at 20 C, liquid at bubble point and vapor at dew point. The results from shortcut and pinch analysis are found to be very close to rigorous simulation results regarding number of stages, reflux ratios and utilizing trim reboiler or trim condenser in studied distillation schemes. Both shortcut and rigorous optimization results indicate that heat-integrated schemes are consuming less energy compared to nonintegrated distillation schemes, consequently TACs of heat-integrated schemes are attractive compared to non-integrated schemes. The state of feed conditions is playing imprtant role on the percentage of saving and direction of integration. Introduction Distillation units are the most widely used technique for the separation of fluid mixtures in chemical and petrochemical industry. It is known that distillation is used for the separation of about 95% of all fluid separations in the chemical industry, and that around 3% of the total energy consumption in the world is used in distillation units (Hewitt et al 1999). The main disadvantage of the distillation is its high-energy requirement. As a result, new distillation sequences are emerging in order to reduce or improve the use of energy so that, there are several techniques which used to overcome this problem like integration of the distillation column with the overall processes which can give significant energy saving, e.g. Smith and Linnhoff (1988), Mizsey and Fonyo (1990), but these kinds of improvements can be limited. There are different configurations or distillation schemes that can be applied to get more energy saving, like integration of distillation columns with forward or backward heat integration, side-stripper, side-rectifier, fully thermally coupled distillation column (Petlyuk column) or dividing-wall column, heat-integrated of sloppy sequence, and double heat integration sequence. Energy-integrated distillation schemes give a great promise of energy savings up to about 70%. In addition to saving energy, which are accompanied by reduced environmental impact and site utility costs; there is also a possibility for reduction in capital costs. Theoretical studies, e.g. Petlyuk et al. (1965), Stupin and Lockhart (1972), Fonyo et al. (1974), Stichlmair and Stemmer (1989), Annakou and Mizsey (1996), Dunnebier and Pantelides (1999), Emtir et al. (2001), Kolbe and Wenzel (2004) have shown that the column coupling configurations are capable of achieving typically % of energy

2 savings compared with the best conventional scheme. In addition, the coupling configuration can also be achieved with the so-called dividing-wall column (Kaibel 1987). By this arrangement, reduction in capital cost can be expected through the elimination of the prefractionator column shell (but not the column internals). Emtir et al. (2003) compared five different energy integrated schemes, among them the forward and backward integrated prefractionator arrangement, with a non-integrated direct split sequence. The study compared the total annual costs (TAC) and the controllability of the different schemes. In terms of TAC they found that the backward integrated direct split configuration has the maximum savings of 37%. The integrated prefractionator arrangements have similar savings of 34% for the forward-integrated case and 33% for the backward-integrated case. Skogestad et al (2005) had studied four pressure-staged distillation columns to see if multi-effect integration can be applied to any two columns in the sequence based on shortcut equations and Vmin-diagrams have been used for screening purposes to find the columns with the highest potential for energy savings. The results showed that when considering the existing number of stages available the ISF arrangement was the best, however when considering infinite number of stages the PF arrangement was the best. The scope of this work This study is devoted towards separation of benzene/toluene/m-xylene (BTX) ternary mixture by continuous distillation at high product purity of 99.9 mol %. The feed composition to be separated consists of (25/50/25) mixture at atmospheric pressure and total flow rate of 100 kgmol/hr. The aim of this study is to investigate the effect of changing feed conditions on the saving potential of the heat-integrated distillation schemes. The tools which are implemented on the study to investigate the feasibility of energy and TAC savings are shortcut methods based on minimum vapour flow rate at infinite number of stages using shortcut equations, pinch analysis and rigorous simulation by utilizing HYSYS simulation for rigorous modelling with the following assumptions: UNIQUAC thermodynamic model is used, pressure drop across distillation columns is taken 5 Kpa, pumping is not considered in cost calculations, maximum internal flows are at 75% -80% of the flooding, and exchange minimum approach temperature (EMAT) = 10 C. In this study the total cost for each configuration is assumed to be the sum of utility costs (steam and cooling water) and equipment costs (purchase and installation). Detailed utility cost data are extracted from Emtir et al. (2001). Studied distillation schemes Throughout this work A, B, and C denote the light, intermediate, and heavy components, respectively. The impurities are symmetrically distributed in the middle product stream. The studied distillation configuration are showing below: Figure 1; direct sequence without heat integration (DQ), direct sequence with forward heat integration (DQF), direct with backward heat integration (DQB), Figure 2; indirect sequence without heat integration (IQ), indirect sequence with forward heat integration (IQF), indirect with backward heat integration (IQB).

3 DQ DQF DQB Figure 1. direct sequence with possible heat integration IQ IQF IQB Figure 2. Indirect sequences with possible heat integration Rigorous simulation and optimization The investigated schemes are simulated rigorously by HYSYS and design parameters are exported to Microsoft Excel where the final cost calculations for optimization are executed. Moreover, detailed column and heat exchanger costing are calculated using the default column and heat exchanger sizing. The sizing of distillation columns and heat transfer equipments requires the determination of flow rates, temperatures, pressures, and heat duties from the flow sheet of mass and energy balance, and these quantities can then be used to determine the capacities needed for the cost correlation. In addition, the concept of material pressure factor (MPF) is used to evaluate particular instances of equipment beyond a basic configuration. This concept is an empirical factor developed by Biegler et al (1997) as part of the costing process. For each column system, the pressure, number of trays and feed location are considered as the optimization variables and they are manipulated until the optimal design is found. Optimization variables can be more in case of additional feeds, draws or recycle streams are present. In every run, design parameters (optimization variables) are changed, specifications and optimality are checked. The process simulations are stopped when the global optimal system design is achieved. Shortcut analysis In this work, minimum vapour loads are estimated based on shortcut method for conventional and heat-integrated distillation schemes at two different feed conditions, saturated liquid and saturated vapor. Underwood equations are used to find out minimum reflux ratio where reflux ratio was as set 1.1 times minimum reflux ratio, Fenske equations for minimum number of stages, Gilliland equqtion for theoretical number of stages and Kirkbride equation for feed stage location. FORTRAN program is written to solve all

4 shortcut equations where the input data are feed, top and bottom flow rates and their compositions. The effect of pressure is taken into account for calculating average relative volatility of top and bottom streams for integrated and non-integrated configurations. The minimum vapor flow rate in every separation section can be calculated using For saturated liquid feed, the vapor flow at the top is equal the vapour flow in the bottom but in saturated vapour feed vapour flow in the top is given as Where q is zero for saturated vapour. The formulas listed in Table 1 have been used to determine the total minimum vapor flow rates of integrated and non-integrated distillation schemes. Table 1. Total minimum vapor rates for integrated and non-integrated schemes Direct and indirect sequences without heat integration Prefractionator without heat integration Direct with forward and backward Prefractionator with forward and backward Results and discussion The shortcut results are summarized in Tables 2 & 3 for feeds at saturated liquid and saturated vapor conditions. Table 2. Shortcut result of conventional and heat-integrated schemes at saturated liquid feed Sequance DQ IQ DQB DQF Column1 Column2 Column1 Column2 Column1 Column2 Column1 Column2 N min R min R N Feed Stage Vmin kgmol/hr V min total kgmol/hr V min svaving % For conventional direct and indirect sequence, its clear that IQ scheme has been improved from % to % with respect to the base case (DQ), where as in case of heat-integrated cases the maximum savings is achieved in case of DQF with % at saturated liquid feed. The higher savings in minimum vapor load for heat-integrated cases at satured liquid feed is attributed to the energy added inside the system are utilized effecintly by recycling the heat between the integrated columns. (1) (2)

5 Table 3. Shortcut results for conventional and heat-integrated schemes at saturated vapor Sequance DQ IQ DQB DQF Column1 Column2 Column1 Column2 Column1 Column2 Column1 Column2 N min R min R N Feed Stage Vmin kgmol/hr V min total kgmol/hr V min svaving % Pinch analysis has been conducted for the heat-integrated cases by utilizing SPRINT software, results are showing in Figures 3 & 4 for case of DQB. It is obvious from pinch analysis that trim condenser is needed in case of DQB, steam temertaure level can be decided also. Figure 3. Composite curve for DQB case

6 condenser c N: N:7 DT:-0.04 DH: condenser c2 2 N:2 1 N:5 3 N:9 DT: DH: reboiler c N: N:3 3 S:0 A: *Q:846.9 reboiler c N: N:4 4 DT:0.04 DH:1175 Figure 4. Matching between hot and cold streams Rrigorous optimization results are showing similar trend in case of savings in both energy and TAC. DQB shows maximum saving values of % in energy with 25.4 % of TAC saving. IQ, IQF and IQB integrated schemes indicates inferior savings in both of energy and TAC which is attributed to the wide gap in temperatures between heat source and heat sink and use of high pressure steam in distillation system. Energy saving% TAC saving% sat.vapor sat.liquid liquid state Figure 5. Effect of feed conditions on DQB distillation scheme Considering the effect of different feed conditions on DQB savings in energy and TAC are shown in Figure 5 and the results can be summarized as follows:

7 Direct sequence with backward heat integration gives maximum saving values % in energy, and in addition to 25.4 % of TAC saving with respect to direct sequence without heat integration. IQB distillation scheme are showing the highest energy saving of % but lower values in TAC saving (not shown). Conclusions The state of feed conditions plays important role on the ranking and evaluation of distillation schemes from heat integration point of view. DQB heat-integrated scheme is showing higher energy saving for feed entering at liquid state, this due to the recycling of heat added in the system to change the phase of the feed inside the distillation scheme, where as in case of feed entering at vapor phase the recycled heat between the columns is reduced which will effect the saving of the heat-integrated scheme directly. In some case although the saving in energy is high, but due to increasing in preussures of the integrated columns which will lead to utilization of high pressure steam causing its TAC saving to drop down. Shortcut and pinch analysis methods gives priliminary indication regarding energy saving in distillation schemes, rigourous simulation and TAC saving comparison is showing the most rigourous method of selection between heat-integrated schemes. References Annakou, O. and P. Mizsey, 1996, Ind. Engng. Chem., 35, Dimian, A.C., Eds., 2003, Integrated Design and Simulation of Chemical Processes. Elsevier, Amsterdam. Dunnebier, G. and C.C. Pantelides, 1999, Ind. Eng. Chem. Res., 38, 162. Emtir, M., E. Rev, and Z. Fonyo, 2001,. Applied Therm. Eng., 21, Emtir, M., Mizsey, P., E. Rev, and Z. Fonyo, 2003,.Chem. Biochem. Eng. Q., 17(1), Fonyo, Z., J. Szabo, and P. Foldes, 1974, Acta Chimica Academia, 82, 235. Hewitt, G., Quarini, J. and Morell, M., 1999, Chem. Eng, 21 Oct. Kaibel, G., 1987,.Chem. Engng. Technol., 10, 92. Kolbe, B. and S. Wenzel, 2004, Chemical Engineering and Processing, 43, 339. Mizsey, P. and Z. Fonyo, 1990, Computers and Chemical Engineering, 14, Petlyuk, F. B., V. M. Platonov, and D. M. Slavinskii, 1965, Int. Chm. Engng., 5, 561. Smith, R. and B. Linnhoff, 1988, Trans. IChemE., 66, 195. Stichlmair, J. and A. Stemmer, 1989, Chemical Engineering Technology, 12, 163. Stupin, W. J. and F. J. Lockhart, 1972, Chemical Engineering Progress, 68, 71. Biegler, L. T., Grossmann, I. E. and Westerberg, A. W., Eds., 1997, Systematic Methods for Chemical Process Design, Prentice-Hall, NJ.

Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL

Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL Korean J. Chem. Eng., 30(2), 286-294 (2013) DOI: 10.1007/s11814-012-0149-2 INVITED REVIEW PAPER Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

A New Optimisation Based Retrofit Approach for Revamping an Egyptian Crude Oil Distillation Unit

A New Optimisation Based Retrofit Approach for Revamping an Egyptian Crude Oil Distillation Unit Available online at www.sciencedirect.com ScienceDirect Energy Procedia 36 (2013 ) 454 464 TerraGreen 13 International Conference 2013 - Advancements in Renewable Energy and Clean Environment A New Optimisation

More information

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY FUNDAMENTALS OF ENERGY BALANCES 111 pressure is expanded over the throttle value and fed to the condenser, to provide cooling to condense the vapour from the column. The vapour from the condenser is compressed

More information

ProSimPlus Library (Standard version + rate base option)

ProSimPlus Library (Standard version + rate base option) ProSimPlus Library (Standard version + rate base option) Contents UNIT OPERATIONS... 5 Absorber... 5 Absorber with reboiler... 5 Rigorous two-phase distillation (L-V) with partial condenser and decanter...

More information

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares.

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares. HYSYS WORKBOOK 2013 By: Eng. Ahmed Deyab Fares eng.a.deab@gmail.com adeyab@adeyab.com Mobile: 002-01227549943 - Email: adeyab@adeyab.com 1 Flash Separation We have a stream containing 15% ethane, 20% propane,

More information

A crude oil refinery is an industrial process plant where crude oil is processed and refined into different petroleum products (i.e.

A crude oil refinery is an industrial process plant where crude oil is processed and refined into different petroleum products (i.e. A crude oil refinery is an industrial process plant where crude oil is processed and refined into different petroleum products (i.e. gasoline, diesel, kerosene, jet fuel) This figure shows a typical refinery

More information

DESIGN OF MULTICOMPONENT HEAT INTEGRATED DISTILLATION SYSTEMS LIM RERN JERN

DESIGN OF MULTICOMPONENT HEAT INTEGRATED DISTILLATION SYSTEMS LIM RERN JERN DESIGN OF MULTICOMPONENT HEAT INTEGRATED DISTILLATION SYSTEMS LIM RERN JERN A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering (Hons.)

More information

Model predictive control of dividing wall distillation column

Model predictive control of dividing wall distillation column Available online at www.scinzer.com Scinzer Journal of Engineering, Vol 3, Issue 1, (2017): 62-70 DOI: 10.21634/SJE.3.1.6270 ISSN 2415-105X Model predictive control of dividing wall distillation column

More information

Introduction to Distillation. Binous - Introd. to Distillation

Introduction to Distillation. Binous - Introd. to Distillation Introduction to Distillation 1 Exploits differences in boiling point, or volatility Requires the input of energy Handles a wide range of feed flow rates Separates a wide range of feed concentrations Produce

More information

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate GTC Technology White Paper GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column Engineered to Innovate GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column

More information

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Muhammad A. Al-Arfaj * Chemical Engineering Department King Fahd University of Petroleum and Minerals, Dhahran,

More information

CONTROL OF DISTILLATION COLUMN USING ASPEN DYNAMICS

CONTROL OF DISTILLATION COLUMN USING ASPEN DYNAMICS CONTROL OF DISTILLATION COLUMN USING ASPEN DYNAMICS Abhishankar Kumar*, Basudeb Munshi** *M.Tech. Student, abhiengg05@gmail.com **Associate professor, basudeb@nitrkl.ac.in Department of Chemical Engineering,

More information

Quiz Questions. For Process Integration. Fill in the blanks type Questions

Quiz Questions. For Process Integration. Fill in the blanks type Questions Quiz Questions For Process Integration Fill in the blanks type Questions 1. is the key parameter used in the Pinch Technology. ( T min ) 2. In onion diagram pinch technology in applied at. (the boundary

More information

Model and Optimisation of a Multi-Effect Evaporator of Sugarcane Juice: Energy Consumption and Inversion Losses

Model and Optimisation of a Multi-Effect Evaporator of Sugarcane Juice: Energy Consumption and Inversion Losses Model and Optimisation of a Multi-Effect Evaporator of Sugarcane Juice: Energy Consumption and Inversion Losses Daniela Galatro*, Elisa Verruschi, Roberto Guillen Universidad Nacional Experimental Politécnica

More information

Retrofit for a Gas Separation Plant by Pinch Technology

Retrofit for a Gas Separation Plant by Pinch Technology Retrofit for a Gas Separation Plant by Pinch Technology Napredakul, D. a, Siemanond, K.a, Sornchamni, T.b, Laorrattanasak, S.b a The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok,

More information

Simple Dew Point Control HYSYS v8.6

Simple Dew Point Control HYSYS v8.6 Simple Dew Point Control HYSYS v8.6 Steps to set up a simulation in HYSYS v8.6 to model a simple dew point control system consisting of: Gas chiller Flash separator Liquid stabilizer with gas recycle &

More information

A Simple Application of Murphree Tray Efficiency to Separation Processes

A Simple Application of Murphree Tray Efficiency to Separation Processes Page 1 of 8 A Simple Application of Murphree Tray Efficiency to Separation Processes J.J. VASQUEZ-ESPARRAGOZA, J.C. POLASEK, V.N. HERNANDEZ-VALENCIA, M.W. HLAVINKA, Bryan Research & Engineering, Inc.,

More information

Energy Balances and Numerical Methods Design Project. Production of Methyl Tertiary-Butyl Ether

Energy Balances and Numerical Methods Design Project. Production of Methyl Tertiary-Butyl Ether Energy Balances and Numerical Methods Design Project Production of Methyl Tertiary-Butyl Ether Methyl Tertiary-Butyl Ether () is a gasoline additive used to increase octane number that is produced from

More information

Chapter 2 Reaction Section

Chapter 2 Reaction Section Chapter 2 Reaction Section Abstract The naphtha hydrodesulfurization (HDS) process in the refinery has a reaction section which is a heating and cooling thermal process consisting of a feed-effluent heat

More information

Analysis of Different Pressure Thermally Coupled Extractive Distillation Column

Analysis of Different Pressure Thermally Coupled Extractive Distillation Column Send Orders for Reprints to reprints@benthamscience.net 12 The Open Chemical Engineering Journal, 2014, 8, 12-18 Open Access Analysis of Different Pressure Thermally Coupled Extractive Distillation Column

More information

HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A.

HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A. HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A. Cardona 1 *, O.J. Sánchez 1,2, Gutiérrez L.F. 1 1 Department of Chemical

More information

Steam balance optimisation strategies

Steam balance optimisation strategies Steam balance optimisation strategies Publicado en Chemical Engineering, Noviembre 2002 Background Optimising a steam balance in a plant with several steam mains pressures is not always a simple intuitive

More information

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core 2/22/2017 Qualitative Phase Behavior and Qualitative Phase Behavior Introduction There are three different phases: solid, liquid, and gas (vapor) Energy must be added to melt a solid to form liquid If

More information

Operational and Economic Assessment of Distillation Column from the Performance of Tray

Operational and Economic Assessment of Distillation Column from the Performance of Tray Abstract: Operational and Economic Assessment of Distillation Column from the Performance of Tray Nilesh P. Patil *1, Vilas S. Patil 2 1 Assistant Professor, *2 Professor Department of Chemical Engineering,

More information

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process Department of Energy and Process Engineering - Energy Utilization and in Industrial Plants, or for short: Energy and Process The Objective is to convey Systems Thinking and Systematic Methods for: Analysis

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas

Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas Leonid Tovazhnyansky, Petro Kapustenko, Leonid Ulyev, Stanislav Boldyryev * National Technical University "Kharkiv Polytechnic

More information

Problems at the Cumene Production Facility, Unit 800

Problems at the Cumene Production Facility, Unit 800 Problems at the Cumene Production Facility, Unit 800 Background Cumene (isopropyl benzene) is produced by reacting propylene with benzene. During World War II, cumene was used as an octane enhancer for

More information

The Use of Reduced Models in the Optimisation of Energy Integrated Processes

The Use of Reduced Models in the Optimisation of Energy Integrated Processes A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

New Configuration of a Distillation Process with Reduced Dimensions

New Configuration of a Distillation Process with Reduced Dimensions New Configuration of a Distillation Process with Reduced Dimensions a Cintia Marangoni, b Ana Paula Meneguelo, c Joel Gustavo Teleken, c Iaçanã George Berté Parisotto, c Leandro Osmar Werle, c Ricardo

More information

ScienceDirect. Improving the efficiency of a chilled ammonia CO 2 capture plant through solid formation: a thermodynamic analysis

ScienceDirect. Improving the efficiency of a chilled ammonia CO 2 capture plant through solid formation: a thermodynamic analysis Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 1084 1090 GHGT-12 Improving the efficiency of a chilled ammonia CO 2 capture plant through solid formation: a thermodynamic

More information

UNFIXED DIVIDING WALL TECHNOLOGY FOR PACKED AND TRAY DISTILLATION COLUMNS

UNFIXED DIVIDING WALL TECHNOLOGY FOR PACKED AND TRAY DISTILLATION COLUMNS UNFIXED DIVIDING WALL TECHNOLOGY FOR PACKED AND TRAY DISTILLATION COLUMNS B. Kaibel 1, H. Jansen 1, E. Zich 1 and Ž. Olujić 2 1 Julius MONTZ GmbH, Hofstrasse 82, 40723 Hilden, Germany, E-mail: b.kaibel@montz.de

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ethylbenzene We continue to investigate the feasibility of constructing a new, grass-roots, 80,000 tonne/y, ethylbenzene facility.

More information

On-line Parameter Estimation and Control for a Pilot Scale Distillation Column

On-line Parameter Estimation and Control for a Pilot Scale Distillation Column On-line Parameter Estimation and Control for a Pilot Scale Distillation Column Lina Rueda, Thomas F. Edgar and R. Bruce Eldridge Department of Chemical Engineering University of Texas at Austin Prepared

More information

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ammonia Your assignment is to continue evaluating the details of a process to produce 50,000 tonne/y of ammonia from a syngas

More information

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers:

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers: Ene-47.5130 Process Integration (3 ECTS credits) P Espoo 2016 EXERCISE 2 SOLUTIONS 1 MER heat exchanger network First we draw the stream-grid and calculate the enthalpy rate change, Q, above and below

More information

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR Gianfranco Rodríguez 1, Fabiana Arias 1, Maria G. Quintas 1, Alessandro Trigilio

More information

Application of combined pinch and exergy analysis in retrofit of an olefin plant for energy conservation

Application of combined pinch and exergy analysis in retrofit of an olefin plant for energy conservation Scientific Research and Essays Vol. 6(12), pp. 2437-2446, 18 June, 2011 Available online at http://www.academicjournals.org/sre DOI: 10.5897/SRE10.726 ISSN 1992-2248 2011 Academic Journals Full Length

More information

The Grid Diagram The Heat-Content Diagram Pinch Subnetworks Minimum Number of Heat-Exchange Units...

The Grid Diagram The Heat-Content Diagram Pinch Subnetworks Minimum Number of Heat-Exchange Units... 3.1 INTRODUCTION... 2 3.2 DESIGN TOOLS: REPRESENTING HEAT -EXCHANGER NETWORKS... 4 3.2.1. The Grid Diagram...4 3.2.2. The Heat-Content Diagram...7 3.3 PRELIMINARY HEAT -EXCHANGER NETWORK DESIGN... 10 3.2.1

More information

Multi Stage Flash Desalination with Direct Mixing Condensation

Multi Stage Flash Desalination with Direct Mixing Condensation Multi Stage Flash Desalination with Direct Mixing Condensation Andrea Cipollina*, Giorgio Micale, Salvatore Noto, Alberto Brucato Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università

More information

TKP4170 PROCESS DESIGN. PROJECT

TKP4170 PROCESS DESIGN. PROJECT NTNU Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Chemical Engineering TKP4170 PROCESS DESIGN. PROJECT - Title: Process Design and Economic Investigation

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information

Influence of Process Operations on VOC and BTEX Emissions from Glycol Dehydration Units

Influence of Process Operations on VOC and BTEX Emissions from Glycol Dehydration Units Page 1 of 12 Influence of Process Operations on VOC and BTEX Emissions from Glycol Dehydration Units MICHAEL W. HLAVINKA, VICENTE N. HERNANDEZ-VALENCIA, JERRY A. BULLIN, Bryan Research & Engineering, Inc.,

More information

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Vipul Gupta vipul.gupta@tecnico.ulisboa.pt Instituto Superior Técnico,Lisboa, Portugal October 2016 Abstract This work describes

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

FIRST-PRINCIPLES INFERENCE MODEL IMPROVES DEISOBUTANIZER COLUMN CONTROL

FIRST-PRINCIPLES INFERENCE MODEL IMPROVES DEISOBUTANIZER COLUMN CONTROL PETROCONTROL Advanced Control and Optimization FIRST-PRINCIPLES INFERENCE MODEL IMPROVES DEISOBUTANIZER COLUMN CONTROL By: Y. Zak Friedman, PhD Petrocontrol, New York, NY, USA Mark Schuler United Refining

More information

Design of Heat Exchanger Network for VCM Distillation Unit Using Pinch Technology

Design of Heat Exchanger Network for VCM Distillation Unit Using Pinch Technology RESEARCH ARTICLE OPEN ACCESS Design of Heat Exchanger Network for VCM Distillation Unit Using Pinch Technology VISHAL G. BOKAN 1, M.U.POPLE 2 1 Student of M.E. chemical, Department of Chemical Engineering,

More information

EXERGETIC AND ECONOMIC ANALYSIS OF AN INDUSTRIAL DISTILLATION COLUMN

EXERGETIC AND ECONOMIC ANALYSIS OF AN INDUSTRIAL DISTILLATION COLUMN Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 24, No. 03, pp. 461-469, July - September, 2007 EXERGETIC AND ECONOMIC ANALYSIS OF AN INDUSTRIAL DISTILLATION

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Styrene

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Styrene Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Styrene The feasibility of constructing a new, grass-roots, 100,000 tonne/y, styrene plant is being investigated. As part of

More information

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process Department of Energy and Process Engineering - Energy Utilization and in Industrial Plants, or for short: Energy and Process The Objective is to convey Systems Thinking and Systematic Methods for: Analysis

More information

Modelling of post combustion capture plant flexibility

Modelling of post combustion capture plant flexibility Modelling of post combustion capture plant flexibility Workshop on operating flexibility of power plants with CCS Hanne Kvamsdal London November 11-12, 2009 1 Outline Background and motivation Dynamic

More information

Thermodynamic analysis of a regenerative gas turbine cogeneration plant

Thermodynamic analysis of a regenerative gas turbine cogeneration plant Journal of KUMAR Scientific et al: & Industrial THERMODYNAMIC Research ANALYSIS OF A REGENERATIVE GAS TURBINE COGENERATION PLANT Vol. 69, March 2010, pp. 225-231 225 Thermodynamic analysis of a regenerative

More information

Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project. Production of Ethanol

Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project. Production of Ethanol Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project Production of Ethanol Your assignment is to continue evaluating the details of a process to produce 30,000 tonne/y of ethanol from ethylene.

More information

Synergies between process energy efficiency and relief loads

Synergies between process energy efficiency and relief loads Synergies between process energy efficiency and relief loads Mary Kay O Connor Process Safety Center 2008 Symposium Rob Brendel Jacobs Consultancy Inc. (Chicago) Petroleum, Chemicals & Energy Practice

More information

Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem

Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem Abstract This research involves the design and analysis of pinch-based water/wastewater

More information

Available online at ScienceDirect. Energy Procedia 49 (2014 ) SolarPACES 2013

Available online at  ScienceDirect. Energy Procedia 49 (2014 ) SolarPACES 2013 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 49 (2014 ) 993 1002 SolarPACES 2013 Thermal storage concept for solar thermal power plants with direct steam generation M. Seitz

More information

EXPERIENCE WITH GDS A FIRST PRINCIPLES INFERENTIAL MODEL FOR DISTILLATION COLUMNS

EXPERIENCE WITH GDS A FIRST PRINCIPLES INFERENTIAL MODEL FOR DISTILLATION COLUMNS PETROCONTROL Advanced Control and Optimization EXPERIENCE WITH GDS A FIRST PRINCIPLES INFERENAL MODEL FOR DISLLAON COLUMNS By: Y. Zak Friedman, PhD, New York, NY pertocontrol@earthlink.net Gwilym T. Reedy

More information

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021031 181

More information

Performance Evaluation of Deethanizer Column Using Real Time Optimization

Performance Evaluation of Deethanizer Column Using Real Time Optimization Performance Evaluation of Deethanizer Column Using Real Time Optimization Renanto Handogo, Indra Darmawan, Fadillah Akhbar Marsha, Juwari Department of Chemical Engineering Institut Teknologi Sepuluh Nopember

More information

Fundamentals of Distillation Column Control

Fundamentals of Distillation Column Control Fundamentals of Distillation Column Control by Terry Tolliver Standards Certification Education & Training Publishing Conferences & Exhibits ISA Automation Week 2011 PRESENTER Terry Tolliver Terry is a

More information

Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant

Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant Abstract Zeinab Amrollahi, 1 Ivar S. Ertesvåg, Olav Bolland Department of Energy and Process Engineering, Norwegian

More information

Module 05: Pinch Design Method for HEN synthesis Lecture 27: Rules of Pinch Design Method (PDM) 2 nd Part Key words: PDM, HEN

Module 05: Pinch Design Method for HEN synthesis Lecture 27: Rules of Pinch Design Method (PDM) 2 nd Part Key words: PDM, HEN Module 05: Pinch Design Method for HEN synthesis Lecture 7: Rules of Pinch Design Method (PDM) nd Part Key words: PDM, HEN Some rules for pinch design methods such as Criteria for number of process streams

More information

Increasing Sales Gas Output from Glycol Dehydration Plants Trina Dreher, SPE, Courtney Hocking, Michael Cavill and Adam Geard, Process Group Pty. Ltd.

Increasing Sales Gas Output from Glycol Dehydration Plants Trina Dreher, SPE, Courtney Hocking, Michael Cavill and Adam Geard, Process Group Pty. Ltd. SPE-171415-MS Increasing Sales Gas Output from Glycol Dehydration Plants Trina Dreher, SPE, Courtney Hocking, Michael Cavill and Adam Geard, Process Group Pty. Ltd. Copyright 2014, Society of Petroleum

More information

Advanced models in industrial praxis - from process design to process optimization

Advanced models in industrial praxis - from process design to process optimization Advanced models in industrial praxis - from process design to process optimization Georgios K. Folas 1-2011-12-26 Introduction to Statoil We are headquartered in Norway with 30,300 employees worldwide

More information

Process Integration: Unifying Concepts, Industrial Applications and Software Implementation

Process Integration: Unifying Concepts, Industrial Applications and Software Implementation Process Integration: Unifying Concepts, Industrial Applications and Software Implementation by James Gainey Mann, Jr. Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State

More information

WWT Two-Stage Sour Water Stripping

WWT Two-Stage Sour Water Stripping WWT Two-Stage Sour Water Stripping Improve performance of sulfur recovery units ben efits The Chevron WWT Process is a two-stage stripping process which separates ammonia and hydrogen sulfide from sour

More information

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant International Journal of Engineering and Technology Volume 3 No. 1, January, 2013 Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant Wordu, A. A, Peterside, B Department

More information

OPTIMIZATION OF NATURAL GAS GATHERING SYSTEMS AND GAS PLANTS ABSTRACT

OPTIMIZATION OF NATURAL GAS GATHERING SYSTEMS AND GAS PLANTS ABSTRACT OPTIMIZATION OF NATURAL GAS GATHERING SYSTEMS AND GAS PLANTS Keith A. Bullin, P.E. Bryan Research and Engineering, Inc. Bryan, Texas, U.S.A. Jason Chipps Bryan Research and Engineering, Inc. Bryan, Texas,

More information

IDRIST Temporal pinch-point analysis for energy demand reduction in batch production. Thorsten Spillmann

IDRIST Temporal pinch-point analysis for energy demand reduction in batch production. Thorsten Spillmann IDRIST Temporal pinch-point analysis for energy demand reduction in batch production Thorsten Spillmann Content Introduction to IDRIST project Importance of pinch-methodology for energy demand reduction

More information

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on - performance IV International Seminar on ORC Power Systems September 13-15, 2017 Suk Young Yoon,

More information

Brazed aluminium heat exchangers (BAHXs), also referred to

Brazed aluminium heat exchangers (BAHXs), also referred to Brazed aluminium heat exchangers (BAHXs), also referred to as plate fin heat exchangers, are at the heart of many of the processes used for the liquefaction of natural gas. They are deployed across the

More information

ABSTRACT. Christopher Somers, Masters of Science, Dr. Reinhard Radermacher, Mechanical Engineering

ABSTRACT. Christopher Somers, Masters of Science, Dr. Reinhard Radermacher, Mechanical Engineering ABSTRACT Title of Document: SIMULATION OF ABSORPTION CYCLES FOR INTEGRATION INTO REFINING PROCESSES Christopher Somers, Masters of Science, 2009 Directed By: Dr. Reinhard Radermacher, Mechanical Engineering

More information

Pilot Test and Simulation of an Advanced Amine Process for CO 2 Capture

Pilot Test and Simulation of an Advanced Amine Process for CO 2 Capture Pilot Test and Simulation of an Advanced Amine Process for CO 2 Capture Xi Chen, Barath Baburao, Frederic Vitse * Alstom Power, 1409 Centerpoint Blvd, Knoxville, TN 37932 Summary An Advanced Amine Process

More information

ECONOMIC AND SUSTAINABILITY ASPECTS OF CHEMICAL PROCESS INDUSTRIES BY THERMODYNAMICS ANALYSIS

ECONOMIC AND SUSTAINABILITY ASPECTS OF CHEMICAL PROCESS INDUSTRIES BY THERMODYNAMICS ANALYSIS University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research Chemical and Biomolecular Engineering, Department

More information

Removal of CO2 and H2S using Aqueous Alkanolamine Solusions

Removal of CO2 and H2S using Aqueous Alkanolamine Solusions Removal of CO2 and H2S using Aqueous Alkanolamine Solusions Zare Aliabad, H., and Mirzaei, S. Abstract This work presents a theoretical investigation of the simultaneous absorption of CO 2 and H 2 S into

More information

HYDRODYNAMIC AND TRAY EFFICIENCY BEHAVIOR IN PARASTILLATION COLUMN

HYDRODYNAMIC AND TRAY EFFICIENCY BEHAVIOR IN PARASTILLATION COLUMN Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 23, No. 01, pp. 135-146, January - March, 2006 HYDRODYNAMIC AND TRAY EFFICIENCY BEHAVIOR IN PARASTILLATION

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

Equipment Sizing and Capital Cost Estimation

Equipment Sizing and Capital Cost Estimation Equipment Sizing and Capital Cost Estimation Warren D. Seider University of Pennsylvania Philadelphia, Pennsylvania Selection of Topics - depends on previous exposure to process economics Can begin with

More information

Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source

Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source *Corresponding author. mohammed.khennich@ usherbrooke.ca Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source... Mohammed Khennich *, Nicolas Galanis

More information

Process Simulation an efficient and capable tool in environmental technology

Process Simulation an efficient and capable tool in environmental technology Process Simulation an efficient and capable tool in environmental technology Author Dipl.-Ing. Wolfgang Schmidt Chemstations Deutschland GmbH Augustastr. 12 D 46483 Wesel Tel. 0281-33991-0, Fax 0281-33991-33

More information

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant

Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant Reforming Natural Gas for CO 2 pre-combustion capture in Combined Cycle power plant J.-M. Amann 1, M. Kanniche 2, C. Bouallou 1 1 Centre Énergétique et Procédés (CEP), Ecole Nationale Supérieure des Mines

More information

A Study on Re-liquefaction Process of Boil-off Gas of LCO 2 Transfer Ship

A Study on Re-liquefaction Process of Boil-off Gas of LCO 2 Transfer Ship A Study on Re-liquefaction Process of Boil-off Gas of LCO 2 Transfer Ship Yeongbeom Lee, Sanggyu Lee, Youngsoon Sohn, Kyusang Cha Korea Gas Corporation R&D Division 364, SongDo-Dong, Yeonsu-Gu, Incheon-City,

More information

HIGH PUITY CARBON MONOXIDE FROM A FEED GAS ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA

HIGH PUITY CARBON MONOXIDE FROM A FEED GAS ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA THE USE OF COSORB R II TO RECOVER HIGH PUITY CARBON MONOXIDE FROM A FEED GAS BY ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA PRESENTED AT AICHE SUMMER

More information

CHEMICAL PROCESS OPTIMIZATION FOR DUMMIES. By Troy Mannino. Oxford. May 2015

CHEMICAL PROCESS OPTIMIZATION FOR DUMMIES. By Troy Mannino. Oxford. May 2015 CHEMICAL PROCESS OPTIMIZATION FOR DUMMIES By Troy Mannino A thesis submitted to the faculty of the University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale

More information

Heat Exchangers. Introduction. Classification of heat Exchangers

Heat Exchangers. Introduction. Classification of heat Exchangers Heat Exchangers Introduction Heat Exchanger is an adiabatic steady flow device in which two flowing fluids exchange or transfer heat between themselves due to a temperature difference without losing or

More information

Co-production of Bioethanol and Power

Co-production of Bioethanol and Power 14 Co-production of Bioethanol and Power Atsushi Tsutsumi and Yasuki Kansha Collaborative Research Centre for Energy Engineering, Institute of Industrial Science The University of Tokyo, 4-6-1 Komaba,

More information

I) * PROBLEM GENERAL DATA * 1) * PROBLEM/PROJECT * 'MTBE RECOVERY COLUMN 'APPLICATION TEST CASE

I) * PROBLEM GENERAL DATA * 1) * PROBLEM/PROJECT * 'MTBE RECOVERY COLUMN 'APPLICATION TEST CASE XPSIM, Vers. 1.06... extended Process SIMulation... Page 0001 Cust/User " " - INPUT - Job " " Proj/Problem " " Date SEP 21, 2008 --- Simulation Input File --- -STMT- XPSIM>...generated by XpsimWin v.1.06...

More information

Energy Balances and Numerical Methods Design Project. Production of Cumene

Energy Balances and Numerical Methods Design Project. Production of Cumene Process Description Energy Balances and Numerical Methods Design Project Production of Cumene Figure 1 is a preliminary process flow diagram (PFD) for the cumene production process. The raw materials are

More information

Material Balances. Design Project. Production of Phthalic Anhydride from o-xylene

Material Balances. Design Project. Production of Phthalic Anhydride from o-xylene Material Balances Design Project Production of Phthalic Anhydride from o-xylene The most common method for production of phthalic anhydride is by oxidation of o-xylene. Phthalic anhydride is used in the

More information

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen

More information

ProMax. Use It. Love It. Bryan Research & Engineering, Inc. BR&E. with TSWEET & PROSIM Process Simulation Software

ProMax. Use It. Love It. Bryan Research & Engineering, Inc. BR&E. with TSWEET & PROSIM Process Simulation Software ProMax with TSWEET & PROSIM Process Simulation Software Use It. Love It. ProMax is a powerful Microsoft Windows based process simulation package for use in gas processing, oil refining and chemical facilities.

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Modeling and simulation of main cryogenic heat exchanger in a base-load liquefied natural gas plant

Modeling and simulation of main cryogenic heat exchanger in a base-load liquefied natural gas plant 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Modeling and simulation of main cryogenic heat exchanger

More information

Separations and Reactors. Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene

Separations and Reactors. Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene Separations and Reactors Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene Process Information Background Acrylic acid (AA) is used as a precursor for a wide variety of chemicals

More information

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

More information

Evaporation Technology. Evaporation, Crystallization and Rectification

Evaporation Technology. Evaporation, Crystallization and Rectification Evaporation Technology Evaporation, Crystallization and Rectification About our company GIG Karasek is a leading European supplier of system design and turnkey plant construction in the field of process

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

MODERN COKE OVEN GAS TREATMENT TECHNOLOGY AT A NEW COKE MAKING PLANT IN BRAZIL*

MODERN COKE OVEN GAS TREATMENT TECHNOLOGY AT A NEW COKE MAKING PLANT IN BRAZIL* MODERN COKE OVEN GAS TREATMENT TECHNOLOGY AT A NEW COKE MAKING PLANT IN BRAZIL* Wolfgang Kern 1 Mario Petzsch 2 Antonio Esposito 3 Helênio Resende Silva Júnior 4 Abstract The implementation of the Gas

More information

Process Design For Optimum Energy Efficiency

Process Design For Optimum Energy Efficiency Process Design For Optimum Energy Efficiency Steve Peacock Tongaat Hulett Sugar INTRODUCTION The average SA sugar factory has a bagasse supply capable of supporting a steam on cane of just under 60% Assuming

More information