Chernobyl Accident Chernobyl is located in Ukraine, part of the Former Soviet Union. It was the sight of the worst nuclear accident in the history of

Size: px
Start display at page:

Download "Chernobyl Accident Chernobyl is located in Ukraine, part of the Former Soviet Union. It was the sight of the worst nuclear accident in the history of"

Transcription

1 Chernobyl Accident Chernobyl is located in Ukraine, part of the Former Soviet Union. It was the sight of the worst nuclear accident in the history of the world. But before we get into the details of the accident, the question can it happen here should be answered, and the answer is NO. This particular type of reactor was very different in its design from reactors licensed in the rest of the world. It was not actually designed to make electricity. It was designed to make Plutonium for the Soviet Unions nuclear weapons programs. The plutonium needed for weapons is the isotope with a mass of 239, or Pu-239. This material is produced by the capture of a neutron in Uranium-238 which is actually much more abundant in the core than the fissile U-235 that operates the reactor. This production path is very desirable as it takes less Pu-239 to make a weapon compared to the U-235, and because there are few isotopes that require the difficult process of isotope separation to be developed. In order to make Pu-239, the reactor also could not be shutdown for refueling, this lead to a design that did not have a formal containment dome, rather it was essentially located inside of an industrial building that could confine a small scale accident. This was not the case when the accident occurred. An accident in the US at the Three Mile Island nuclear power plant that had a containment dome had a full core meltdown, the worst case accident for a US PWR and it was able to contain the vast majority of the radioactive materials within the containment system. This accident resulted in at most one additional statistical deaths in our country.

2 On 25 April, prior to a routine shut-down, the reactor crew at Chernobyl-4 began preparing for a test to determine how long turbines would spin and supply power following a loss of main electrical power supply. Similar tests had already been carried out at Chernobyl and other plants, despite the fact that these reactors were known to be very unstable at low power settings. A series of operator actions, including the disabling of automatic shutdown mechanisms, preceded the attempted test early on 26 April. As flow of coolant water diminished, power output increased. When the operator moved to shut down the reactor from its unstable condition arising from previous errors, a peculiarity of the design caused a dramatic power surge.

3 The fuel elements ruptured and the resultant explosive force of steam lifted off the cover plate of the reactor, releasing fission products to the atmosphere. A second explosion threw out fragments of burning fuel and graphite from the core and allowed air to rush in, causing the graphite moderator to burst into flames.

4 There is some dispute among experts about the character of this second explosion. The graphite burned for nine days, causing the main release of radioactivity into the environment. A total of about 12 x 1018 Bq of radioactivity was released. Some 5000 tonnes of boron, dolomite, sand, clay and lead were dropped on to the burning core by helicopter in an effort to extinguish the blaze and limit the release of radioactive particles. The timeline of the incident at Chernobyl goes as follows: April 25: Prelude 01:06 The scheduled shutdown of the reactor started. Gradual lowering of the power level began 03:47 Lowering of reactor power halted at 1600 MW(thermal).

5 14:00 The emergency core cooling system (ECCS) was isolated (part of the test procedure) to prevent it from interrupting the test later. The fact that the ECCS was isolated did not contribute to the accident; however, had it been available it might have reduced the impact slightly. 14:00 The power was due to be lowered further; however, the controller of the electricity grid in Kiev requested the reactor operator to keep supplying electricity to enable demand to be met. Consequently, the reactor power level was maintained at 1600 MW(t) and the experiment was delayed. Without this delay, the test would have been conducted during `day shift'. 23:10 Power reduction recommenced. 24:00 Shift change. April 26: Preparation for the test 00:05 Power level had been decreased to 720 MW(t) and continued to be reduced. It is now recognised that the safe operating level for a pre-accident configuration RBMK was about 700 Mwt because of the positive void coefficient. 00:28 Power level was now 500 MW(t). Control was transferred from the local to the automatic regulating system. Either the operator failed to give the `hold power at required level' signal or the regulating system failed to respond to this signal. This led to an unexpected fall in power, which rapidly dropped to 30 MW(t). 00:32 (approximate time). In response, the operator retracted a number of control rods in an attempt to restore the power level. Station safety procedures required that approval of the chief engineer be obtained to operate the reactor with fewer than the effective equivalent of 26 control rods. It is estimated that there were less than this number remaining in the reactor at this time. 01:00 The reactor power had risen to 200 MW(t). 01:03 An additional pump was switched into the left hand cooling circuit in order to increase the water flow to the core (part of the test procedure). 01:07 An additional pump was switched into the right hand cooling circuit (part of the test procedure). Operation of additional pumps removed heat from the core more quickly. This reduced the water level in the steam separator.

6 01:15 Automatic trip systems to the steam separator were deactivated by the operator to permit continued operation of the reactor. 01:18 Operator increased feed water flow in an attempt to address the problems in the cooling system. 01:19 Some manual control rods withdrawn to increase power and raise the temperature and pressure in the steam separator. Operating policy required that a minimum effective equivalent of 15 manual control rods be inserted in the reactor at all times. At this point it is likely that the number of manual rods was reduced to less than this (probably eight). However, automatic control rods were in place, thereby increasing the total number. 01:22:10 Spontaneous generation of steam in the core began. 01:22:45 Indications received by the operator, although abnormal, gave the appearance that the reactor was stable. 01:23:04 Turbine feed valves closed to start turbine coasting. This was the beginning of the actual test. 01:23:10 Automatic control rods withdrawn from the core. An approximately 10 second withdrawal was the normal response to compensate for a decrease in the reactivity following the closing of the turbine feed valves. Usually this decrease is caused by an increase in pressure in the cooling system and a consequent decrease in the quantity of steam in the core. The expected decrease in steam quantity did not occur due to reduced feedwater to the core. 01:23:21 Steam generation increased to a point where, owing to the reactor's positive void coefficient, a further increase of steam generation would lead to a rapid increase in power. 01:23:35 Steam in the core begins to increase uncontrollably. 01:23:40 The emergency button (AZ-5) was pressed by the operator. Control rods started to enter the core. The insertion of the rods from the top concentrated all of the reactivity in the bottom of the core. 01:23:44 Reactor power rose to a peak of about 100 times the design value. 01:23:45 Fuel pellets started to shatter, reacting with the cooling water to produce a pulse of high pressure in the fuel channels. 01:23:49 Fuel channels ruptured. 01:24 Two explosions occurred. One was a steam explosion; the other resulted from the expansion of fuel vapor. The explosions lifted the pile cap, allowing the entry of air. The air reacted with the

7 graphite moderator blocks to form carbon monoxide. This flammable gas ignited and a reactor fire resulted. Thereafter, over nine days: Some 8 of the 140 tones of fuel, which contained plutonium and other highly radioactive materials (fission products), were ejected from the reactor along with a portion of the graphite moderator, which was also radioactive. These materials were scattered around the site. In addition, cesium and iodine vapors were released both by the explosion and during the subsequent fire. Radioactive materials in the environment can enter you body through as wide range of mechanisms. The primary paths are listed below.

8 The picture below depicts the shell of the reactors confinement structure. The lack of a containment lead to the wide scale distribution of radioactive materials throughout the countryside.

9 This image is of the reactors fuel sitting in the basement of the building. It melted its way through several concrete floors to finally end up in this structure known as the elephants foot. The accident site is currently covered in a concrete structure called the Sarcophagus. This structure is slated for replacement in the near future with one that will be the tomb of the reactor for the next hundred years. This accident was a horrific accident that could have been avoided if it were not for the cold war mentality that drove its construction and operation. Reactors of this kind cannot be licensed in our country and the FSU is currently in the process of taking these reactors out of service.

10 Which Nuclear Energy Champion said the following? There is now a great deal of scientific evidence showing nuclear power to be an environmentally sound and safe choice. A doubling of nuclear energy production would make it possible to significantly reduce total [greenhouse gas] emissions nationwide. In order to create a better environmental and energy-secure future, the [United States] must once again renew its leadership in this area." Guess who? The pro-nukes manifesto came from GREENPEACE founder Patrick Moore. The head of Greenspirit Strategies testified before Congress this past April, and he's not the only big-foot environmentalist who's rethinking nuclear power. When Britain's Hugh Montefiore, a longtime trustee of Friends of the Earth was ready to make a pro-nukes pronouncement ("I have now come to the conclusion that the solution [to global warming] is to make more use of nuclear energy"), his colleagues made him resign. Spent Reactor Fuel (high level Nuclear Waste) After several years in the core of a nuclear reactor, the uranium dioxide fuel needs to be replaced to ensure that the safe and effective operation of the reactor. This fuel is highly radioactive when it is removed from the core as it contains all of the fission products that accumulated over the life cycle. When removed from the core, the fuel still retains a higher level of enrichment with the fissile Uranium-235 than naturally occurring uranium 1.4% verse 0.7% for natural uranium. In addition to the U-235 in the fuel, exposure of U-238 to thermal neutrons results in the production of Plutonium-239, a material with fission characteristics similar to those of U-235. In fact, the amount of fuel that is produced in the core of a power reactor from the fission of Pu-239 at the end of a reactors core useful lifetime is close to half.

11 Just as the Russian RMBK reactors were designed to make Pu-239 for nuclear weapons production, reactors can be optimized to actually produce more nuclear fuel than they use. This is possible when you once again allow neutrons to interact with U-238 to produce Pu-239. Pu-239 can also be used to operate a nuclear power plant, so reactors that have their cores lined with fertile U-238 can be used to breed new fuel in the form of Pu-239 which is fissile. This type of reactor is often call a breeder reactor. The North Koreans have a reactor that is dedicate to this operations cycle where Pu-239 is being produced. Pu-239 is chemically separable from uranium. This characteristic allows for rogue nations to get their hands on a material that can readily be used to make a nuclear weapon. With this capability in mind, President Jimmy Carter declared it illegal to reprocess fuel. The then president wanted to limit the proliferation of nuclear weapons. If the US did not engage in this technology, it was hoped that we could lead by example, and show the rest of the world that paths leading to the development of nuclear weapons was not required to have an economically viable nuclear power program. The spent nuclear fuel would merely be buried in the ground and left to decay. Note, President Jimmy Carter was a Nuclear Engineer by training. He served as an officer on a nuclear powered submarine prior to becoming president Close to this time, the US government also started taxing nuclear power plant operators for the disposal of their spent fuel. The DOE charged all nuclear power plants several thousandth of a cent per kilowatt hours of power generated. The US government has taken in Millions of dollars for the disposal of these materials, yet they remain on site at the plants where they were produced. It also does not appear that the plants will be shipping the spent fuel for disposal in the near future. The current Senate Leader, Harry Reid of Nevada, has categorically stated that the disposal facility will not be allowed to operate. This is also after Nevada has accepted more than $2 Billion in funds to develop the facility. The government is being sued by the utility companies that have the spent nuclear fuel on site for the storage costs. The materials were initially supposed to be being

12 shipped in the 1990 s. Due to the contractual clauses in the taking of the money associated with this program, the government has also been loosing rather harshly, being required to expend funds to pay for the storage of the fuel at the reactor sites. The spent nuclear fuel is first stored in pools where the energy from the decay of the fission products can safely be removed. It the fuel is not constantly cooled for several years it could potentially melt and release the radioactive materials. This is a picture of a spent fuel element. Each grid position contains a spent fuel assembly or element. The element is composed of a series of rods containing the Uranium oxide fuel pellets.

13 The dry cask storage systems are considered to be an excellent means to store these materials that will be effective in containing the radioactive materials for the next years. Where/What is Yucca Mountain? Aside from the fact the spent nuclear fuel from domestic nuclear power reactors in the United States cannot be reprocessed other solutions to the long term disposal of these highly radioactive materials have led to the application of an underground repository where the materials will be geologically isolated for thousands of years.

14

15

NUCLEAR POWER. Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb

NUCLEAR POWER. Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb NUCLEAR POWER Rahul Edirisinghe, David Levy, Bennett Parmington, Joshua Stillman, Elise Van Pelt, Cainaan Webb What is Nuclear Power? Nuclear Power is the energy, generally electric, that is produced through

More information

Approx 9% US energy from NP. 104 Nuclear Reactors in US

Approx 9% US energy from NP. 104 Nuclear Reactors in US Approx 9% US energy from NP 104 Nuclear Reactors in US World Energy Consumption Terawatts History of Nuclear Power 1934 Enrico Fermi experimentally achieved nuclear fission showering Uranium with neutrons

More information

Nuclear GEOS 24705/ ENST 24705

Nuclear GEOS 24705/ ENST 24705 Nuclear GEOS 24705/ ENST 24705 Copyright E. Moyer 2012 Nuclear power just another way of making steam A nuclear plant is a big tea-kettle driving a steam turbine Nuclear engineering is all about keeping

More information

Going Underground: Safe Disposal of Nuclear Waste

Going Underground: Safe Disposal of Nuclear Waste Going Underground: Safe Disposal of Nuclear Waste Burton Richter Pigott Professor in the Physical Sciences, Emeritus Stanford Energy Seminar January 23, 2012 Nuclear Energy Issues It is too expensive It

More information

Nuclear Accidents. William M. Murphy. Professor of Geological and Environmental Sciences California State University, Chico

Nuclear Accidents. William M. Murphy. Professor of Geological and Environmental Sciences California State University, Chico Nuclear Accidents William M. Murphy Professor of Geological and Environmental Sciences California State University, Chico A Month After the Earth Moved: The Science Behind the Japan Disaster April 11,

More information

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011 D3SJ Talk The Latest on the Thorium Cycle as a Sustainable Energy Source Philip Bangerter 4 May 2011 About the Speaker Philip Bangerter Process Engineer of 30 years experience Mining industry Sustainability

More information

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss World Energy Sources, Fossil Fuel Power Production, and Nuclear Power By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss Part 1: World Energy Sources and Fossil Fuel Power Production Different

More information

The Nuclear Power Deception

The Nuclear Power Deception The Nuclear Power Deception Chapter 2: Electricity Production and Nuclear Reactors An energy source cannot be inexhaustible in the economic sense unless it is priced so low that it can be used in essentially

More information

Nuclear Power Reactors. Kaleem Ahmad

Nuclear Power Reactors. Kaleem Ahmad Nuclear Power Reactors Kaleem Ahmad Outline Significance of Nuclear Energy Nuclear Fission Nuclear Fuel Cycle Nuclear Power Reactors Conclusions Kaleem Ahmad, Sustainable Energy Technologies Center Key

More information

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc 1 of 12 1/24/2013 9:01 AM Science Generating electricity Electricity is a convenient source of energy and can be generated in a number of different ways. You will need to weigh up the advantages and disadvantages

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

Useful applications of radioactivity and nuclear energy Power for good... and evil

Useful applications of radioactivity and nuclear energy Power for good... and evil Useful applications of radioactivity and nuclear energy Power for good... and evil Nuclear power: environmental The greatest environmental threat is perceived to be global warming the build-up of greenhouse

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

Interview: The Dual Fluid Reactor

Interview: The Dual Fluid Reactor Interview: The Dual Fluid Reactor The Public is Ready for Nuclear Power Dr. Ahmed Hussein is Professor Emeritus of physics at University of Northern British Columbia currently stationed at TRIUMF, Canada

More information

Jülich, Author: Peter Pohl

Jülich, Author: Peter Pohl Author: Peter Pohl Jülich, 18.08.2005 Pl/pi. OUR HTGR MANIFESTO Motivation In a world of new nuclear concepts, a profusion of ideas, and many newcomers to the HTGR, the author, having been chiefly involved

More information

THE NUCLEAR FUEL CYCLE

THE NUCLEAR FUEL CYCLE Getting to the Core of THE NUCLEAR FUEL CYCLE From the mining of uranium to the disposal of nuclear waste @ Getting to the Core of the Nuclear Fuel Cycle The various activities associated with the production

More information

August 24, 2011 Presentation to Colorado School of Mines

August 24, 2011 Presentation to Colorado School of Mines HEAVY-METAL NUCLEAR POWER: Could Reactors Burn Radioactive Waste to Produce Electric Power and Hydrogen? Eric P. Loewen, Ph.D. President, American Nuclear Society August 24, 2011 Presentation to Colorado

More information

Limerick Power Plant. Click on PA and open the PDF file. 2. How many nuclear power plant locations are in Pennsylvania? How many total reactors?

Limerick Power Plant. Click on PA and open the PDF file. 2. How many nuclear power plant locations are in Pennsylvania? How many total reactors? Name: Nuclear Power: A WebQuest The discovery of the fission chain reaction first lead to the creation of nuclear weapons. More recently, the energy produced in nuclear fission reactions has been used

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

PLUTONIUM UTILIZATION IN REACTOR FUEL

PLUTONIUM UTILIZATION IN REACTOR FUEL Second Moscow International Nonproliferation Conference PLUTONIUM UTILIZATION IN REACTOR FUEL A. Zrodnikov Director General State Scientific Center of the Russian Federation Institute for Physics and Power

More information

Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)

Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Module 12 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)

More information

REACTIVITY EFFECTS OF TEMPERATURE CHANGES THIS SECTION IS NOT REQUIRED FOR MECHANICAL MAINTAINERS

REACTIVITY EFFECTS OF TEMPERATURE CHANGES THIS SECTION IS NOT REQUIRED FOR MECHANICAL MAINTAINERS REACTIVITY EFFECTS OF TEMPERATURE CHANGES THIS SECTION IS NOT REQUIRED FOR MECHANICAL MAINTAINERS OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. Define: a) temperature coefficient

More information

UK Nuclear

UK Nuclear UK Nuclear Industry @NuclearInst www.nuclearinst.com Why Nuclear power? Nuclear power supplies around 11% of the world s electricity, with an average of around 21% in the UK There are currently over 430

More information

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref NUCLEAR ENERGY Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref How is Nuclear Energy Produced? Nuclear energy is produced when an atom's nucleus is split into smaller nuclei by the

More information

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations March 31, 2011 Tokyo Electric Power Company Tohoku Pacific Ocean Earthquake Time: 2:46 pm on Fri, March 11, 2011. Place:

More information

Issues with petroleum

Issues with petroleum Issues with petroleum Limited reserves (near peak in Hubbert curve) Trade deficit (most oil imported) Externalities (military costs, environmental impacts) Environmental pollution (persistent combustion

More information

Nuclear Fusion / Nuclear Fission

Nuclear Fusion / Nuclear Fission Nuclear Fusion / Nuclear Fission Fission and Fusion are two of methods where atomic scale energy can be acquired in the vast sums needed for commercial power generation. It is primarily based on the Binding

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Chapter 7: Strategic roadmap

Chapter 7: Strategic roadmap Chapter 7: Strategic roadmap Research is to see what everybody else has seen, and to think what nobody else has thought. ~ Albert Szent-Gyorgyi~ Overview A systematic strategic thorium-based fuel implementation

More information

Life Extension of Russian Nuclear Power Plants

Life Extension of Russian Nuclear Power Plants Position Paper, October 2006 Life Extension of Russian Nuclear Power Plants Alexander Nikitin Igor Kudrik www.bellona.org Executive summary Russia is actively implementing a programme to extend the lifetime

More information

Presentation on SOLAR VS NUCLEAR VS WIND ENERGY

Presentation on SOLAR VS NUCLEAR VS WIND ENERGY Presentation on SOLAR VS NUCLEAR VS WIND ENERGY SOLAR ENERGY Solar power is the technology of obtaining usable energy from the sunlight. Technologies : 1) Solar Design:- Solar design can be used to achieve

More information

MEMORANDUM. Background

MEMORANDUM. Background MEMORANDUM TO: DEMOCRATIC MEMBERS, SENATE COMMERCE COMMITTEE FROM: STEPHEN GARDNER AND MELISSA PORTER, DEMOCRATIC PROFESSIONAL STAFF DATE: SEPTEMBER 19, 2008 SUBJECT: FULL COMMITTEE HEARING ON THE SAFETY

More information

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power)

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Alternative Energy 1. Solar 2. Biofuels (biomass) 3. Nuclear a. Fusion b. Fission 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Solar Energy Solar energy uses energy from the

More information

Yucca Mountain. High-level Nuclear Waste Repository

Yucca Mountain. High-level Nuclear Waste Repository Yucca Mountain High-level Nuclear Waste Repository The purpose of the Yucca Mountain Site Characterization Project is to determine if Yucca Mountain, Nevada, is a suitable site for a spent nuclear fuel

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Module 02 Nuclear Engineering Overview

Module 02 Nuclear Engineering Overview Module 02 Nuclear Engineering Overview Status 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Application of

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore NU CL EAR ENERGY For the complete encyclopedic entry with media resources,

More information

Nuclear Power Volume II - Nuclear Power Plants

Nuclear Power Volume II - Nuclear Power Plants PDHonline Course E338 (5 PDH) Nuclear Power Volume II - Nuclear Power Plants Instructor: Lee Layton, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

ICEM DEVELOPMENT OF THE ENVI SIMULATOR TO ESTIMATE KOREAN SNF FLOW AND ITS COST

ICEM DEVELOPMENT OF THE ENVI SIMULATOR TO ESTIMATE KOREAN SNF FLOW AND ITS COST Proceedings of the 12 th International Conference on Environmental Remediation And Radioactive Waste Management ICEM 2009 October 11-15, 2009, Liverpool, England, UK ICEM 2009 16060 DEVELOPMENT OF THE

More information

Nonrenewable Energy. Chapter 15

Nonrenewable Energy. Chapter 15 Nonrenewable Energy Chapter 15 Core Case Study: How Long Will Supplies of Conventional Oil Last? Oil: energy supplier How much is left? When will we run out? Three options Look for more Reduce oil use

More information

The Future of Small and Medium Sized Nuclear Reactors

The Future of Small and Medium Sized Nuclear Reactors The Future of Small and Medium Sized Nuclear Reactors 2009 and Beyond Presentation Outline Distinguish from Large Commercial Reactors History Application Current Presence in the United States and Internationally

More information

Los Alamos National Laboratory

Los Alamos National Laboratory COS Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract w-~~os-eng.~~. TITLE: ELIMINATING THE POSSIBILITY AT CHERNOBYL 4 OF

More information

Compact, Deployable Reactors for Power and Fuel in Remote Regions

Compact, Deployable Reactors for Power and Fuel in Remote Regions Compact, Deployable Reactors for Power and Fuel in Remote Regions James R. Powell and J. Paul Farrell Radix Corporation, Long Island, New York Presented by Jerry M. Cuttler Dunedin Energy Systems, LLC

More information

Criticality Safety in Geological Disposal

Criticality Safety in Geological Disposal Criticality Safety in Geological Disposal RSC Radiochemistry Group, 2 December 2009, Manchester Presented by Peter Wood, RWMD Contents NDA & Geological Disposal Facility (GDF) Fissile Material Inventory

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

NUCLEAR REACTOR ENGINEERING

NUCLEAR REACTOR ENGINEERING NUCLEAR REACTOR ENGINEERING REACTOR SYSTEMS ENGINEERING FOURTH EDITION VOLUME TWO NUCLEAR REACTOR ENGINEERING REACTOR SYSTEMS ENGINEERING FOURTH EDITION VOLUME TWO SAMUEL GLASSTONE & ALEXANOER SESONSKE

More information

Fusion-Fission Hybrid Systems

Fusion-Fission Hybrid Systems Fusion-Fission Hybrid Systems Yousry Gohar Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 Fusion-Fission Hybrids Workshop Gaithersburg, Maryland September 30 - October 2, 2009 Fusion-Fission

More information

In April 1986, unit 4 of the Chernobyl nuclear

In April 1986, unit 4 of the Chernobyl nuclear Safety of RBMK reactors: Setting the technical framework The IAEA's co-operative programme is consolidating the technical basis for further upgrading the safety of Chernobyl-type reactors by Luis Lederman

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

1 Introduction and object of the statement Request of advice of the BMU Consultations Assessment basis Statement...

1 Introduction and object of the statement Request of advice of the BMU Consultations Assessment basis Statement... Note: This is a translation of the statement entitled Anforderungen an bestrahlte Brennelemente aus entsorgungstechnischer Sicht. In case of discrepancies between the English translation and the German

More information

Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director

Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director Small Scale Nuclear Power: an Option for Alaska? Gwen Holdmann, Director Alaska Center for Energy and Power University of Alaska History Overview of of Nuclear Presentation Energy What is nuclear energy?

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

THREE MILE ISLAND ACCIDENT

THREE MILE ISLAND ACCIDENT THREE MILE ISLAND ACCIDENT M. Ragheb 12/4/2015 1. INTRODUCTION The Three Mile Island (TMI) Accident at Harrisburg, Pennsylvania in the USA is a severe and expensive incident that has seriously affected,

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

DOE/NE-0068 A NSWERS. to Questions NUCLEAR ENERGY. Office of Nuclear Energy, Science, and Technology. U.S. Department of Energy

DOE/NE-0068 A NSWERS. to Questions NUCLEAR ENERGY. Office of Nuclear Energy, Science, and Technology. U.S. Department of Energy DOE/NE-0068 A NSWERS to Questions NUCLEAR ENERGY U.S. Department of Energy Office of Nuclear Energy, Science, and Technology 23 Answers to Questions Table of Contents Nuclear Power Basics What is nuclear

More information

Table 7.1 summarizes the start-up and shut-down dates for China s military uranium enrichment and plutonium production facilities.

Table 7.1 summarizes the start-up and shut-down dates for China s military uranium enrichment and plutonium production facilities. 7 China China launched its nuclear-weapon program in the mid-1950s and began to construct fissile-material production facilities with assistance from the Soviet Union in the late 1950s. Highly enriched

More information

Reactor Technology: Materials, Fuel and Safety. Dr. Tony Williams

Reactor Technology: Materials, Fuel and Safety. Dr. Tony Williams Reactor Technology: Materials, Fuel and Safety Dr. Tony Williams Course Structure Unit 1: Reactor materials Unit 2. Reactor types Unit 3: Health physics, Dosimetry Unit 4: Reactor safety Unit 5: Nuclear

More information

Lecture #17 ER 100/200 Pub Pol 184/284 Oct. 29, The Nuclear Fuel Cycle: Waste, Risk, and Economics

Lecture #17 ER 100/200 Pub Pol 184/284 Oct. 29, The Nuclear Fuel Cycle: Waste, Risk, and Economics Lecture #17 ER 100/200 Pub Pol 184/284 Oct. 29, 2015 The Nuclear Fuel Cycle: Waste, Risk, and Economics The Nuclear Fuel Cycle Economics Radioactive Waste Disposal Safety Security The first nuclear reactors:

More information

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen ADVANCED GAS COOLED REACTORS Tim McKeen ADI Limited, Fredericton, Canada Keywords: Advanced Gas Cooled Reactors, Reactor Core, Fuel Elements, Control Rods Contents 1. Introduction 1.1. Magnox Reactors

More information

Very-High-Temperature Reactor System

Very-High-Temperature Reactor System Atomic Energy Society of Japan Journal of NUCLEAR SCIENCE and TECHNOLOGY (JNST) Very-High-Temperature Reactor System Ing. S. BOUČEK 1, Ing. R. VESECKÝ 2 1 Faculty of Electrical Engineering, Czech Technical

More information

Nonrenewable Energy Resources 5.1

Nonrenewable Energy Resources 5.1 Nonrenewable Energy Resources 5.1 I. Energy Some energy resources on Earth are being used faster than nature can replace them these are called nonrenewable energy resources Most of the energy resources

More information

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 Feasibility and Deployment Strategy of Water Cooled Thorium Breeder Reactors Naoyuki Takaki Department of

More information

AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS

AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS Yong-Nam Kim, Hong-Chul Kim, Chi-Young Han and Jong-Kyung Kim Hanyang University, South Korea Won-Seok Park Korea Atomic Energy Research

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

Reactivity requirements can be broken down into several areas:

Reactivity requirements can be broken down into several areas: Reactivity Control (1) Reactivity Requirements Reactivity requirements can be broken down into several areas: (A) Sufficient initial reactivity should be installed to offset the depletion of U 235 and

More information

There would be a lot more. (600 times as much)

There would be a lot more. (600 times as much) 21. If we were able to convert all of the sun s energy that reaches the surface of the US into electricity, would this be more, less or about the same amount of electricity as we currently generate? There

More information

Module 10 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK)

Module 10 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK) Module 10 Light Water Cooled, Graphite Moderated Pressure Tube Reactors (RBMK) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at

More information

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants 2016 OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants The company is certified according to three management systems: Certificate stn en iso 9001:2008 Quality management system

More information

Nuclear Fission & Fusion

Nuclear Fission & Fusion Nuclear Fission & Fusion Binding Energy For energy release in fusion or fission, the products need to have a higher binding energy per nucleon (proton or neutron) than the reactants. As the graph above

More information

Status of Nuclear Fuel Cycle Technology Development

Status of Nuclear Fuel Cycle Technology Development Hitachi Review Vol. 55 (2006), No. 3 99 Status of Nuclear Fuel Cycle Technology Development Tetsuo Fukasawa, Dr. Eng. Shusaku Sawada Kikuo Okada Masashi Shimizu OVERVIEW: The Japan Framework for Nuclear

More information

Dynamic Analysis of Nuclear Energy System Strategies for Electricity and Hydrogen Production in the USA

Dynamic Analysis of Nuclear Energy System Strategies for Electricity and Hydrogen Production in the USA Dynamic Analysis of Nuclear Energy System Strategies for Electricity and Hydrogen Production in the USA L. Van Den Durpel, D. C. Wade, H. Khalil, A. Yacout Nuclear Engineering Division, Argonne National

More information

A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum

A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum Proceeding of the Korean Nuclear Autumn Meeting Yongpyong, Korea, Octorber 2002 A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum Jae-Yong Lim, Myung-Hyun Kim

More information

Thorium for Nuclear Energy a Proliferation Risk?

Thorium for Nuclear Energy a Proliferation Risk? Thorium for Nuclear Energy a Proliferation Risk? Wolfgang Rosenstock and Olaf Schumann Fraunhofer-Institut für Naturwissenschaftlich- Technische Trendanalysen (INT) Euskirchen, Germany Department Nuclear

More information

World Energy Use by Source

World Energy Use by Source US Electricity Production By Source Coal Gas Nuclear Hydro Oil Other 53% 16% 21% 7% 2% 1% World Energy Use by Source In The United States there are 110 commercial reactors in 32 states. Six states rely

More information

Importance of materials for sustainable nuclear energy

Importance of materials for sustainable nuclear energy Common EESC-EERA Event / EUSEW 2012 Brussels, 18 June 2012 Importance of materials for sustainable nuclear energy L. Malerba - SCK CEN Joint Programme Nuclear Materials SubProgramme coordinator (on behalf

More information

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES D. SONG China Nuclear Power Engineering Co., Ltd. Beijing, China Email: songdy@cnpe.cc J. XING China Nuclear Power Engineering Co., Ltd. Beijing,

More information

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion Albert Lee PhD IX International School on Nuclear Power, November 14-17, 2017 - Copyright - A world leader Founded in 1911,

More information

Energy from nuclear fission

Energy from nuclear fission Energy from nuclear fission M. Ripani INFN Genova, Italy Joint EPS-SIF International School on Energy 2014 Plan Figures about nuclear energy worldwide Safety Reaction products Radioactive waste production

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

DECOMMISSIONING OF NUCLEAR FACILITIES IN UKRAINE

DECOMMISSIONING OF NUCLEAR FACILITIES IN UKRAINE DECOMMISSIONING OF NUCLEAR FACILITIES IN UKRAINE Tatiana Kilochytska State Nuclear Regulatory Committee of Ukraine Annual Forum for Regulators and Operators in the Field of Decommissioning International

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION VIENNA OKTOBER 3-6, 2016 1 ANPP * ANPP is located in the western part of Ararat valley 30 km west of Yerevan close to

More information

NUCLEAR FISSION. In 1938, Lisa Meitner, Otto Hahn, and her nephew Otto Frisch discovered

NUCLEAR FISSION. In 1938, Lisa Meitner, Otto Hahn, and her nephew Otto Frisch discovered Erin Balduff February 20, 2006 IDS 102 NUCLEAR FISSION What is nuclear fission? In 1938, Lisa Meitner, Otto Hahn, and her nephew Otto Frisch discovered nuclear fission (9). Nuclear fission is when uranium

More information

LEAD-COOLED FAST-NEUTRON REACTOR BREST. Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia)

LEAD-COOLED FAST-NEUTRON REACTOR BREST. Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia) LEAD-COOLED FAST-NEUTRON REACTOR BREST Yu.G. Dragunov, V.V. Lemekhov, A.V. Moiseyev, V.S. Smirnov (NIKIET, Moscow, Russia) Large-scale nuclear power based on fast-neutron reactors operating in a closed

More information

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1079 Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium Yasunori Ohoka * and Hiroshi

More information

Producing Molybdenum-99 in CANDU Reactors. Jerry M Cuttler Cuttler & Associates Inc. Abstract

Producing Molybdenum-99 in CANDU Reactors. Jerry M Cuttler Cuttler & Associates Inc. Abstract 31 st Annual Conference of the Canadian Nuclear Society, Montréal, Québec, 2010 May 24-27 Producing Molybdenum-99 in CANDU Reactors Jerry M Cuttler Cuttler & Associates Inc Abstract This paper discusses

More information

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION NUREG-0800 (Formerly NUREG-75/087) 4.3 NUCLEAR DESIGN REVIEW RESPONSIBILITIES Primary - Core Performance Branch

More information

WM2015 Conference, March 15-19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15-19, 2015, Phoenix, Arizona, USA An Integrated Equipment for Massive Segmentation and Packaging of Control Rod Guide Tubes 15161 Joseph Boucau*, Patrick Gobert** Sébastien Bonne *** * Westinghouse Electric Company, 43 rue de l Industrie,

More information

Position regarding Nuclear Energy 1

Position regarding Nuclear Energy 1 Date: 17 th April 2011 www.worldwithoutwars.org Position regarding Nuclear Energy 1 "Technological progress is like an axe in the hands of a pathological criminal." Albert Einstein The unfolding disaster

More information

New Energies for the Future of Mankind. Carlo Rubbia

New Energies for the Future of Mankind. Carlo Rubbia Nuclear Disarmament, Non-Proliferation and Development Pontifical Academy of Sciences, Scripta Varia 115, Vatican City 2010 www.pas.va/content/dam/accademia/pdf/sv115/sv115-rubbia.pdf New Energies for

More information

Fusion Reactions 3/18/2016. Exam #2 Results. Nuclear Fusion (not Fission) Clicker Question. U n Te Zr n

Fusion Reactions 3/18/2016. Exam #2 Results. Nuclear Fusion (not Fission) Clicker Question. U n Te Zr n Clicker Question What do you think? A) We should increase our nuclear fission energy facilities. B) We should continue to run only the facilities we currently have. C) We should shut down all existing

More information

A Compact Transportable Nuclear Power Reactor

A Compact Transportable Nuclear Power Reactor A Compact Transportable Nuclear Power Reactor Can be rapidly deployed to remote locations to support oil recovery, disaster relief and basic infrastructure Paul Farrell and James Powell 1 Brookhaven Technology

More information

Advanced Reactors Mission, History and Perspectives

Advanced Reactors Mission, History and Perspectives wwwinlgov Advanced Reactors Mission, History and Perspectives Phillip Finck, PhD Idaho National Laboratory Senior Scientific Advisor June 17, 2016 A Brief History 1942 CP1 First Controlled Chain Reaction

More information

Fusion Energy Power for future generations

Fusion Energy Power for future generations Fusion Energy Power for future generations this fraction will increase to 70% in the next twenty years, unless action is taken. The uneven distribution of energy sources around the world holds great potential

More information

Proliferation Risks of Magnetic Fusion Energy

Proliferation Risks of Magnetic Fusion Energy Proliferation Risks of Magnetic Fusion Energy Alexander Glaser* Department of Mechanical and Aerospace Engineering and Woodrow Wilson School of Public and International Affairs Princeton University International

More information

Mixtures in Industry

Mixtures in Industry 3.7 Mixtures in Industry Key Question: How are mixtures separated in industry? Many industries separate mixtures to make pure products. In this section, you will learn about three industries that separate

More information