Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants

Size: px
Start display at page:

Download "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants"

Transcription

1 Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants 5 th World LNG Summit, 1 st to 3 rd December 2004 Katarzyna Cholast and Andrzej Kociemba Process Advisors Ostrów Wielkopolski Poland John Heath Special Projects Research & Development Ebara International Corporation Sparks, Nv, USA. 2PhaseExpander@btconnect.com INTRODUCTION A problem often encountered in the production of natural gas from underground sources is nitrogen contamination. The nitrogen may be naturally occurring and/or may have been injected into the reservoirs as part of an enhanced oil recovery or enhanced gas recovery operation. Natural gases which contain a significant amount of nitrogen may not be saleable since they do not meet minimum heating value requirements. As a result the feed gas will generally undergo processing, wherein heavier components such as heavy hydrocarbons or carbon dioxide are initially removed and the remaining stream containing nitrogen and methane, and also possibly containing lower boiling or more volatile components such as helium, hydrogen and/or neon, is separated cryogenically when passing through a nitrogen rejection unit. The nitrogen rejection unit (NRU) comprises cryogenic rectification columns and Joule-Thomson (J-T) valves. J-T valves are applied to reduce the pressure of streams entering the rectification columns in order to decrease the stream temperature below the temperature of condensation. Low concentration of the more volatile components in the cryogenic separation of nitrogen and methane hinders the efficiency of the cryogenic rectification as it reduces the amount and quality of the available nitrogen reflux and thus the separation of the nitrogen and methane is carried out to lesser extent than is desirable. This results in the loss of some methane with the nitrogen overhead from the nitrogen rejection unit. There are three main aspects associated with the loss of methane : - The environmental impact. - The economic loss. - With depleting gas sources the pressure drop of the feed gas may fall below the limit which assures efficient operation of the NRU and specifically adequate temperature drop before entering cryogenic columns. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 1 of 1

2 With the depleting gas source the feed gas pressure may require expensive investment in a pre-compression step. It would be desirable to improve the efficiency of the NRU operation so that even with the drop of the feed gas pressure there will be still enough energy in the process to run it. BRIEF DESCRIPTION OF THE PROCESS Currently all energy needed for natural gas separation in low temperature units is provided by pressure reduction of the natural gas across Joule-Thomson valves. In the process described, the Joule-Thomson valves are replaced with liquid to two-phase expansion turbines (TPExp), which use the more efficient thermodynamic isentropic depressurisation cycle instead of isenthalpic depressurisation across a Joule-Thomson valve. Turbines take energy out of the process bringing about greater cooling of the streams passing through and increasing efficiency. Figure 1. Simplified Partial NRU Process Schematic "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 2 of 2

3 The processing of the feed gas for the separation of nitrogen and methane employing twophase expansion turbines would involve then the following steps : (a) Pre-cooling the feed gas stream and, as liquid, entering the first two-phase expansion turbine (TPExp) (b) Exiting the TPExp as two-phase feed stream (at reduced pressure and cooled down) to enter the bottom part of high-pressure column (HPC) (c) Within the HPC separation into streams : liquid enriched with methane ( rich liquid ) and liquid enriched with nitrogen ( poor liquid ) (d) Subcooling of the rich liquid leaving the HPC and passing it through the second TPExp; the outgoing two-phase stream at reduced pressure enters low pressure column (LPC) (e) Subcooling of the poor liquid and passing it as reflux to the LPC (f) Within the LPC, separation of streams : LNG with the outlet in the bottom and waste gas with the outlet in the top of the LPC With the reflux greatly cooled down the separation of methane from the waste gas stream is considerably more effective compared to the previous J-T arrangement. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 3 of 3

4 TWO-PHASE EXPANDER DESIGN CONCEPT Figure 2. Ebara Two-Phase Expander Cross Section "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 4 of 4

5 Two-phase expander design concepts fundamentally follow existing single-phase turbine and expander technology. The hydraulic energy of the pressurized fluid is converted by first transforming it into kinetic energy, then into mechanical shaft power and finally to electrical energy through the use of an electrical power generator. The generator is submerged in the cryogenic liquid and mounted integrally with the expander on a common shaft. The cryogenic induction generator uses insulation systems specifically developed for cryogenic service giving submerged windings significantly superior dielectric and life properties. Figure 3. Two-Phase Hydraulic Runner Assembly Figure 2 portrays the cross section of a typical Ebara International Corporation cryogenic two-phase submerged expander. The expander consists of a nozzle ring generating the rotational fluid flow, a radial inflow reaction turbine runner and a two-phase jet exducer. Figure 3 illustrates an enlarged cross section of the two-phase hydraulic runner assembly with inlet nozzle ring. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 5 of 5

6 Symmetrical flow is achieved in the two-phase expander by utilising a vertical rotational axis to stabilize the flow and to minimize flow induced vibrations, with the direction of flow being upward to take advantage of the buoyant forces of the vapour bubbles. ( Expanders with horizontal rotational axis generate asymmetric flow conditions which can result in higher vibration levels. ) The hydraulic assembly is designed for continuously decreasing pressure to avoid any cavitation along the two-phase flow passage. FIELD EXPERIENCE USING TWO-PHASE EXPANDERS To upgrade low-methane natural gas by extracting undesired nitrogen, two Ebara two-phase expanders (TPExps) were installed at the Polish Nitrogen Rejection Unit shown in Figure 4 Figure 4 Nitrogen Rejection Plant in Poland "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 6 of 6

7 Figure 5 Assembling the Expander Figure 6 Expander Installation Briefly, based upon the operational experience the following statements may be made : - The expanders required limited modification of the existing equipment and consequently their installation was easy and quick. - The two-phase expanders have been in stable operation for more than hours now. Throughout that period regular inspections have shown no incipient failures in bearings or materials, vibration levels have been less than 20% of API 610 allowable limits. - The expanders operate surprisingly quietly; they are not heard while working with neighbouring equipment of average noise level below 80dB. - The employed expanders have made the process really flexible in terms of its adjustment to changing mass flows, varying even by 100%. Even with such considerable changes they assure easy and precise regulation of levels in the cryogenic columns, which is of fundamental value for stable running of the process. - Due to the greater obtained temperature difference the heat exchangers operate in a more efficient and flexible way minimizing the danger of so called cold leaving out of cold-box. - The use of two-phase expanders allows the LNG product from the NRU to be at considerably higher outlet pressure, increasing to approximately 2 bars. The benefits have "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 7 of 7

8 appeared as bigger capacity and lower required compression, thus with lower fuel gas consumption per compressed unit at the product s compression stage. - With the expanders operating there is a significant increase in LNG output from the NRU of upto 250% compared to when Joule-Thomson valves were in operation. Of great significance is that the higher pressure of the LNG product from the NRU and the increase of LNG output take place concurrently. Figure 7. Two-Phase Hydraulic Performance. Differential Pressure & Efficiency vs Mass Flow for a Range of Rotational Speeds The two-phase expanders operate at variable speeds in order to adjust to the changing mass flows and pressure conditions of the plant. Figure 7 presents the hydraulic performance of the two-phase expanders as a scatter graph. Efficiency is defined as the ratio of electrical power generated divided by the hydraulic power input. Hydraulic power input is the product of mass flow and differential pressure. The solid vertical red line depicts rated mass flow and the solid horizontal red line indicates rated differential pressure. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 8 of 8

9 Figure 8. Two-Phase Hydraulic Performance. Differential Pressure & Power vs Mass Flow for a Range of Rotational Speeds Figure 8 presents the same data as Figure 7, but plotted as a line chart for differential pressure and power versus mass flow. The solid red lines in Figure 8 indicate the rated differential pressure and the rated mass flow. The volumetric flow increases with increasing differential pressure due to the expansion of the two-phase fluid and is seen here as reducing mass flow. Cooling the LNG stream is significantly more efficient using two-phase expanders rather than single-phase expanders or other devices. Figure 9 presents the LNG temperature drop versus the power output for the previously described two-phase expander and the cooling effect on the LNG stream is seen to be directly related to the power output. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 9 of 9

10 Figure 9. Cooling Effect of Two-Phase Expansion SUMMARY and BENEFITS ANALYSIS - Because of the higher efficiency of the described process employing Ebara liquid twophase expansion turbines the reflux is of better quality (in terms of lower temperature) as well as the other streams being deeply cooled which will compensate for lower concentration of nitrogen in feed gas. Thus the NRU can operate now with lower nitrogen concentration in the feed gas whilst keeping such parameters of the process as the loss of methane at the optimal level. - By the use of the presented method one can run the process of nitrogen and methane separation even with short-term carbon-dioxide increases without having to prepare expensive and extensive additional carbon dioxide removal steps. The employed liquid two-phase expansion turbine can accept short term higher carbon dioxide concentration with no danger of plugging or consequent shut-down of the whole NRU. - The described process, being very efficient, allows for running it at a lower feed gas pressure. In case of reducing pressure of the feed gas from depleting sources one can postpone the decision to install an expensive pre-compression step. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 10 of 10

11 - Due to the high efficiency of the process presented above there is a possibility of taking out of the process considerable amounts of low-pressure or high-pressure liquefied natural gas (LNG) or a liquid nitrogen stream, running the nitrogen methane separation at the same time. The possibility of producing LNG may be useful for the plants where the Peak Shaving concept is going to be applied. If taking out liquid nitrogen is considered, one should be aware of the increased methane content in waste gas and the associated cost of that. - Employing liquid two-phase expansion turbines in the separation of nitrogen and methane will allow generation of energy that can be used in different forms. - The more efficient process employing liquid two-phase expansion turbines requires less energy to be provided to the separation unit to obtain the same final results as with Joule- Thomson valves or alternatively has got more cooling capacity with the same inlet parameters. This makes the process more flexible, easy to operate and controllable with no danger of shut-down even with considerable changes of feed gas parameters.. For more information please 2PhaseExpander@btconnect.com "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 11 of 11

12 BIBLIOGRAPHY and REFERENCES - Ross, Greg; Davies, Simon; Vislie, Geirmund; Hays, Lance; "Reductions of Greenhouse Gas Emissions in Oil and Gas Production and Processing by Application of Biphase Turbines", 1996, - Hays, Lance, "History and Overview of Two-Phase Turbines", International Conference on Compressors and Their Systems", Institution of Mechanical Engineers, London, Bond, Ted, "Replacement of Joule-Thomson Valves by Two-Phase Flow Turbines in Industrial Refrigeration Application", 2000, - Chiu, Chen-Hwa; Kikkawa, Yoshitsugi; Kimmel, Hans E.; Liu, Yu-Nan; "New Cryogenic Two-Phase Expanders in LNG Production", Third Topical Conference on Natural Gas Utilization, AIChE 2003 Spring National Meeting, New Orleans, Louisiana, USA - Shively, R.A. and Miller, H., Development of a Submerged Winding Induction Generator for Cryogenic Applications, in Proceedings of the IEEE Electrical Insulation Conference, Anaheim, California, Gebhart, Benjamin et al.; "Buoyancy-Induced Flows and Transport" Hemisphere Publishing Corporation, New York, 1988, ISBN Hsu, Peter; Evrensel, Cahit A.; Kimmel, Hans E.; "Cavitation-Free Cryogenic Two- Phase Expanders", CAV 2003, Fifth International Symposium on Cavitation, Osaka, Japan, November Boom, R.W. et al.; "Experimental Investigation of the Helium Two Phase Flow Pressure Drop Characteristics in Vertical Tubes", Proc. ICEC 7, pg , Elliott, D.G.; Weinberg, E; "Acceleration of Liquids in Two-Phase Nozzles", Technical Report no , Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, Filina, N.N.; Weisend II, J.G.; "Cryogenic Two-Phase Flow: Applications to largescale systems", Cambridge University Press, 1996, ISBN Vislie, Geirmund; Davies, Simon; Hays, Lance; "Further Developments of Biphase Rotary Separator Turbine", Paper presented at IBC Separation Systems Conference, May 1997, Oslo, Norway. - Perlmutter, M.J.; Kimmel, H.E.; Chiu, C.H.; Paradowski, H.: "Economic and Environmental Benefits of Two-Phase Expanders", Proceedings LNG 14, March 2004, Doha, Qatar. - Fischer, C; Kimmel, H.E; "Improved LNG Production Process Using Two Phase Expanders", Proceedings 5 th World LNG Summit, 1-3 December 2004, Rome, Italy. "Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants" 5 th World LNG Summit, 1 st to 3 rd December Cholast, Kociemba & Heath 12 of 12

13 Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants Katarzyna Cholast Process Advisor Ostrów w Wielkopolski, Poland Andrzej Kociemba Process Advisor Ostrów w Wielkopolski, Poland John Heath Ebara International Corporation, Sparks, Nevada, USA 2PhaseExpander@btconnect.com Fifth World LNG Summit 1 st st 3rd December 2004, Rome, Italy

14 Natural gas entering Nitrogen Rejection Units obviously contains an undesirable amount of nitrogen. The two-phase cryogenic expander evaporates the nitrogen thus improving the quality and the quantity of the liquefied methane, significantly improving the thermodynamic efficiency.

15 This paper presents the operation of two- phase cryogenic turbine expanders for cryogenic gases, operating at a natural gas liquefaction plant in Poland. Technology is available from Ebara to manufacture and operate reliable cryogenic expanders to expand liquefied gases partially into the vapour phase. The design of the two-phase expander allows operation free of cavitation and with low vibration levels.

16 Krio Polish Oil & Gas Odolanów, Poland Nitrogen Rejection Plant Installation Site for Two-Phase Exducer Turbine 2003

17 Process Technology Diagram

18 Simplified NRU Process Schematic

19 Cryogenic Distillation Columns

20 Hydraulic Assembly Design Concept Expansion across a jet exducer with helical fluid passages for vapour formation.

21 Radial and Axial Converging Nozzle Ring Axial Convergence of Nozzle Ring

22 January 2003 Installation of Two-Phase Expander at Krio Polish Oil & Gas Odolanów, Poland

23 Ebara Two-Phase Expander during assembly at the Krio Polish Oil & Gas Site

24 Screen display

25 Two-Phase Expander Performance

26 Two-Phase Expander Performance

27 Isentropic Temperature Reduction vs. Power Output

28 General View

29 LNG Road Tanker Loading

30 Thank You Katarzyna Cholast Ostrów w Wielkopolski, Poland Andrzej Kociemba Ostrów w Wielkopolski, Poland John Heath Ebara International Corporation

NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND. W.H. Isalski

NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND. W.H. Isalski NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND W.H. Isalski Presentation Overview The history of gas de-nitrogenation in Poland Changes in feed gas Changes in market conditions Expanding market

More information

POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS

POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS Arindom Goswami Senior Principal Engineer M. W. Kellogg Ltd Greenford, UB6 0JA, U.K. arindom.goswami@mwkl.co.uk Hans E. Kimmel Executive Director R&D

More information

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Paper 4d Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Liquefied Ammonia, or Liquid NH3, is (like LNG or liquefied natural gas) a cryogenic fluid and production

More information

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT

MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT MOLECULAR GATE TECHNOLOGY FOR (SMALLER SCALE) LNG PRETREATMENT Presented at the 2010 Gas Processors 89 th Annual Convention Austin, TX March, 2010 Michael Mitariten, P.E. Guild Associates, Inc. Dublin,

More information

UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT

UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT Presented at the 81 st Annual Convention of the Gas Processors Association March 11, 2002 Dallas, Texas Joe T. Lynch, P.E. Ortloff Engineers,

More information

NGL NATURAL GAS LIQUIDS TECHNOLOGIES

NGL NATURAL GAS LIQUIDS TECHNOLOGIES NGL NATURAL GAS LIQUIDS TECHNOLOGIES Air Liquide Group Air Liquide Engineering & Construction The world leader in gases, technologies and services for Industry and Health Air Liquide is present in 80 countries

More information

Gastech Singapore October Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology

Gastech Singapore October Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology Gastech Singapore October 2015 Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology Authors: GW Howe, GF Skinner, AD Maunder Presenter: GW Howe Introduction LNG

More information

Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi )

Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi ) Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi ) Email: istadi@undip.ac.id id Instructor s t Background BEng. (1995): Universitas Diponegoro Meng. (2000):

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

GTI Small-Scale Liquefier Technology. March 2013

GTI Small-Scale Liquefier Technology. March 2013 GTI Small-Scale Liquefier Technology March 2013 GTI Liquefier System > Proven technology in use at 13,000-30,000 gpd > Optimized for energy efficiency > System well suited to rapid start-up and frequent

More information

LNG UNIT (ENGINEERING DESIGN GUIDELINE)

LNG UNIT (ENGINEERING DESIGN GUIDELINE) Page : 1 of 60 Guidelines for Processing Plant www.klmtechgroup.com Rev 01 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia (ENGINEERING DESIGN GUIDELINE)

More information

Mobile Nitrogen Vaporizer Skid

Mobile Nitrogen Vaporizer Skid A NEWSLETTER FROM CRYOGENIC INDUSTRIES WINTER 2013 Mobile Nitrogen Vaporizer Skid ryoquip Europe recently C designed and manufactured a mobile nitrogen ISO container vaporizer skid for large flow rate

More information

Natural Gas Processing

Natural Gas Processing Natural Gas Processing Technology and Engineering Design Alireza Bahadori, Ph.D. School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia AMSTERDAM BOSTON HEIDELBERG

More information

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE Bouchebri El-Hadi Senior Process Engineer Benmouley Abdelkader Head of Process Qatar Liquefied Gas Company Limited. Ras Laffan Industrial Area, Doha,

More information

The IIR s global network of universities and companies and its tools for researchers and students in all refrigeration and cryogenics fields

The IIR s global network of universities and companies and its tools for researchers and students in all refrigeration and cryogenics fields The IIR s global network of universities and companies and its tools for researchers and students in all refrigeration and cryogenics fields International Institute of Refrigeration Houston, USA April

More information

LNG Plant Overview. Seminar with Supplier Association Murmanshelf Murmansk, 15 May 2012 Jostein Pettersen

LNG Plant Overview. Seminar with Supplier Association Murmanshelf Murmansk, 15 May 2012 Jostein Pettersen LNG Plant Overview Seminar with Supplier Association Murmanshelf Murmansk, 15 May 2012 Jostein Pettersen Table of Content Part 1 : LNG plant overview (Jostein) Part 2 : Main equipment units (Jostein) Part

More information

Brazed aluminium heat exchangers (BAHXs), also referred to

Brazed aluminium heat exchangers (BAHXs), also referred to Brazed aluminium heat exchangers (BAHXs), also referred to as plate fin heat exchangers, are at the heart of many of the processes used for the liquefaction of natural gas. They are deployed across the

More information

HIGH PUITY CARBON MONOXIDE FROM A FEED GAS ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA

HIGH PUITY CARBON MONOXIDE FROM A FEED GAS ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA THE USE OF COSORB R II TO RECOVER HIGH PUITY CARBON MONOXIDE FROM A FEED GAS BY ARNOLD KELLER AND RONALD SCHENDEL KINETICS TECHNOLOGY INTERNATIONAL CORPORATION MONROVIA, CALIFORNIA PRESENTED AT AICHE SUMMER

More information

Optimising. the LNG process. The rapidly expanding global LNG industry continues. Projects

Optimising. the LNG process. The rapidly expanding global LNG industry continues. Projects Optimising the LNG process John Baguley, Liquefied Natural Gas Ltd, Australia, outlines the benefits of an innovative liquefaction process technology for mid scale LNG projects. The rapidly expanding global

More information

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki)

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki) Chapter 5 1. Hydraulic Pumps (pp. 47 90, Gorla & Khan; Wiki) 1. Two Basic Categories of Pumps Positive Displacement (PD) Pumps A positive displacement pump causes a fluid to move by trapping a fixed amount

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Investigations of N 2 O Transcritical Refrigeration Cycle Using Dedicated Mechanical Subcooling. Sanjeev Kumar 1 and Dr. D.K.

Investigations of N 2 O Transcritical Refrigeration Cycle Using Dedicated Mechanical Subcooling. Sanjeev Kumar 1 and Dr. D.K. e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 340-344(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

LNG LIQUEFIED NATURAL GAS TECHNOLOGIES

LNG LIQUEFIED NATURAL GAS TECHNOLOGIES LNG LIQUEFIED NATURAL GAS TECHNOLOGIES Air Liquide Group Air Liquide Engineering & Construction The world leader in gases, technologies and services for Industry and Health Air Liquide is present in 80

More information

Modular Oil & Gas Equipment Onshore & Offshore

Modular Oil & Gas Equipment Onshore & Offshore Modular Oil & Gas Equipment Onshore & Offshore Separators & Desalters AI Energy Solutions onshore and offshore oil process solutions offer innovative technologies packaged with global project management

More information

DESIGN AND OPERATING EXPERIENCE FOR ANADARKO S LANCASTER FACILITY

DESIGN AND OPERATING EXPERIENCE FOR ANADARKO S LANCASTER FACILITY DESIGN AND OPERATING EXPERIENCE FOR ANADARKO S LANCASTER FACILITY Presented at the 95 th Annual Convention of the Processors Association April 11, 2016 New Orleans, Louisiana Joe T. Lynch, P.E. Ortloff

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine?

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Dr Frédéric Marcuccilli, Senior Process Engineer Hervé Mathiasin, Sales Engineer Electricity generation from Enhanced Geothermal

More information

The DAΦNE Cryogenic System

The DAΦNE Cryogenic System LABORATORI NAZIONALI DI FRASCATI SIS Pubblicazioni LNF 97/046 (IR) 19 Dicembre 1997 The DAΦNE Cryogenic System M. Modena INFN - Laboratori Nazionali di Frascati, P. O. Box 13, I-00044 Frascati (Roma),

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant International Journal of Engineering and Technology Volume 3 No. 1, January, 2013 Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant Wordu, A. A, Peterside, B Department

More information

Simple Dew Point Control HYSYS v8.6

Simple Dew Point Control HYSYS v8.6 Simple Dew Point Control HYSYS v8.6 Steps to set up a simulation in HYSYS v8.6 to model a simple dew point control system consisting of: Gas chiller Flash separator Liquid stabilizer with gas recycle &

More information

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core 2/22/2017 Qualitative Phase Behavior and Qualitative Phase Behavior Introduction There are three different phases: solid, liquid, and gas (vapor) Energy must be added to melt a solid to form liquid If

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate GTC Technology White Paper GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column Engineered to Innovate GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column

More information

EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS

EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS WHO WE ARE EBARA INTERNATIONAL CORPORATION, CRYODYNAMICS DIVISION (EIC CRYO) For over forty years,

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

NITROGEN REJECTION UNITS NATURAL GAS TREATMENT TECHNOLOGIES

NITROGEN REJECTION UNITS NATURAL GAS TREATMENT TECHNOLOGIES NITROGEN REJECTION UNITS NATURAL GAS TREATMENT TECHNOLOGIES Air Liquide Group Air Liquide Engineering & Construction The world leader in gases, technologies and services for Industry and Health Air Liquide

More information

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares.

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares. HYSYS WORKBOOK 2013 By: Eng. Ahmed Deyab Fares eng.a.deab@gmail.com adeyab@adeyab.com Mobile: 002-01227549943 - Email: adeyab@adeyab.com 1 Flash Separation We have a stream containing 15% ethane, 20% propane,

More information

Chemistry of Petrochemical Processes

Chemistry of Petrochemical Processes Chemistry of Petrochemical Processes ChE 464 Instructor: Dr. Ahmed Arafat, PhD Office: building 45 room 106 E-mail: akhamis@kau.edu.sa www.kau.edu.sa.akhamis files Book Chemistry of Petrochemical Processes

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young Pumps, Turbines, and Pipe Networks, part 2 Ch 11 Young Pump and Turbine Dimensional Analysis (11.5 Young) Say we want to replace turbines on the Hoover Dam Want to have a good design Essentially impossible

More information

Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) Numerical study of a single effect ejector-absorption cooling system

Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) Numerical study of a single effect ejector-absorption cooling system Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) 71-77 Numerical study of a single effect ejector-absorption cooling system D. Sioud 1*, M. Bourouis 2 et A. Bellagi 1 1 Unité de Recherche

More information

Improving Natural Gas Liquefaction Plant Performance with Process Analyzers

Improving Natural Gas Liquefaction Plant Performance with Process Analyzers Process Analytics Improving Natural Gas Liquefaction Plant Performance with Process Analyzers LNG is natural gas in its liquid state with high energy density, which makes it useful for storage and transportation

More information

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY FUNDAMENTALS OF ENERGY BALANCES 111 pressure is expanded over the throttle value and fed to the condenser, to provide cooling to condense the vapour from the column. The vapour from the condenser is compressed

More information

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra CONTROL VOLUME ANALYSIS USING ENERGY 1 By Ertanto Vetra Outlines Mass Balance Energy Balance Steady State and Transient Analysis Applications 2 Conservation of mass Conservation of mass is one of the most

More information

Efficiency improvement of steam power plants in Kuwait

Efficiency improvement of steam power plants in Kuwait Energy and Sustainability V 173 Efficiency improvement of steam power plants in Kuwait H. Hussain, M. Sebzali & B. Ameer Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait

More information

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Thermodynamic Comparison of Linde and Claude Systems for Liquefaction of Gases

Thermodynamic Comparison of Linde and Claude Systems for Liquefaction of Gases Thermodynamic Comparison of Linde and Claude Systems for Liquefaction of Gases Devender Kumar *, R. S. Mishra Department Of Mechanical Engineering, Delhi Technological University, Shahabad, Delhi, India

More information

Steam Turbine Solutions

Steam Turbine Solutions Steam Turbine Solutions Steam Turbine Solutions Unique Turbine Designs Optimized For Energy Efficiency And Power Recovery 03 04 05 06 Unique Turbine Designs Optimized For Energy Efficiency Most innovative

More information

Performance of a counterflow heat exchanger with heat loss through the wall at the cold end

Performance of a counterflow heat exchanger with heat loss through the wall at the cold end Cryogenics 39 (1999) 43 5 Performance of a counterflow heat exchanger with heat loss through the wall at the cold end S. Pradeep Narayanan, G. Venkatarathnam * Department of Mechanical Engineering, Indian

More information

ANALYSIS OF REFRIGERATION CYCLE PERFORMANCE WITH AN EJECTOR

ANALYSIS OF REFRIGERATION CYCLE PERFORMANCE WITH AN EJECTOR 000 (06) DOI:.5/ matecconf/067000 ICMER 05 ANALYSIS OF REFRIGERATION CYCLE PERFORMANCE WITH AN EJECTOR Wani J. R., Aklilu T. Baheta,a, Abraham D. Woldeyohannes, and Suhaimi Hassan Department of Mechanical

More information

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas Chun Hsiang Yang, Cheng Chia Lee and Chiun Hsun Chen Abstract In this study, the effects of biogas s on the performance

More information

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR Gianfranco Rodríguez 1, Fabiana Arias 1, Maria G. Quintas 1, Alessandro Trigilio

More information

700-m 400-MW Class Ultrahigh-head Pump Turbine

700-m 400-MW Class Ultrahigh-head Pump Turbine 7-m 4-MW Class Ultrahigh-head Pump Turbine Hitachi Review Vol. 49 (2), No. 2 81 Kozo Ikeda Morihito Inagaki Kazuo Niikura Katsuhiro Oshima OVERVIEW: The first unit of the world-leading ultrahigh-head pump

More information

Natural Gas Hydrate, an Alternative for Transportation of Natural Gas

Natural Gas Hydrate, an Alternative for Transportation of Natural Gas Page 1 of 6 Þ Natural Gas Hydrate, an Alternative for Transportation of Natural Gas J. Javanmardi 1, Kh. Nasrifar 2, S. H. Najibi 3, M. Moshfeghian 4 1 Chemical Engineering Department, Shiraz University,

More information

DRIVING EXPANDER TECHNOLOGY. Atlas Copco Gas and Process Solutions

DRIVING EXPANDER TECHNOLOGY. Atlas Copco Gas and Process Solutions DRIVING EXPANDER TECHNOLOGY Atlas Copco Gas and Process Solutions Overview Driving Expander Technology Atlas Copco Gas and Process is continuously working to improve and extend the capabilities and performance

More information

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators

More information

HELICAL OIL SEPARATORS

HELICAL OIL SEPARATORS OIL SEPARATORS HELICAL OIL SEPARATORS The function of a Helical Oil Separator is to efficiently remove oil from the discharge gas and return it to the compressor, either directly or indirectly. This helps

More information

Natural Gas. and the Liquefaction Process

Natural Gas. and the Liquefaction Process Natural Gas and the Liquefaction Process Table of Contents Cameron LNG.................... 2 Liquefied Natural Gas................ 4 LNG Safety...................... 5 Environmental Safety................

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES

COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES 19 TH SYMPOSIUM OF THE INDUSTRIAL APPLICATION OF GAS TURBINES COMMITTEE BANFF, ALBERTA, CANADA OCTOBER 17-19, 2011 11-IAGT-204 COMBINED CYCLE OPPORTUNITIES FOR SMALL GAS TURBINES Michael Lucente Found

More information

Linde and Claude System Second Law Comparison for Liquefaction of Air

Linde and Claude System Second Law Comparison for Liquefaction of Air Linde and Claude System Second Law Comparison for Liquefaction of Air Devender Kumar *, R.S Mishra Department Of Mechanical Engineering, Delhi Technological University, Shahabad, Delhi, India Article Info

More information

LCNG-LNG refuelling stations LNG AS A FUEL FOR VEHICLES.

LCNG-LNG refuelling stations LNG AS A FUEL FOR VEHICLES. LCNG-LNG refuelling stations LNG AS A FUEL FOR VEHICLES www.cryostar.com 1 Different refueling technologies CNG: Compressed Natural Gas refueling - Gas coming from a gaseous source (pipeline) - Refueling

More information

GROWTH OF LNG GAS MARKET AS ALTERNATIVE FUEL IN TRANSPORT

GROWTH OF LNG GAS MARKET AS ALTERNATIVE FUEL IN TRANSPORT RESEARCH JOURNAL OF THE UNIVERSITY OF GDAŃSK Transport Economics and Logistics Vol. 71 (2017) DOI 10.5604/01.3001.0010.5727 Adam Bogusz Department of Finance and Management in Bydgoszcz, WSB University

More information

Cryogenic Metal Seated Butterfly Valves

Cryogenic Metal Seated Butterfly Valves Cryogenic Metal Seated Butterfly Valves The Key to Cryogenic Valve Solutions VELAN S.A.S VELAN Inc Group VELAN inc is one of the world's leading independent manufacturer of steel gate, globe, check, butterfly

More information

ELECTROTECHNOLOGIES FOR ENERGY END-USES: APPLICATION OF MVR TO FOOD INDUSTRIES

ELECTROTECHNOLOGIES FOR ENERGY END-USES: APPLICATION OF MVR TO FOOD INDUSTRIES ELECTROTECHNOLOGIES FOR ENERGY END-USES: APPLICATION OF MVR TO FOOD INDUSTRIES W. Grattieri, C. Medich, R. Vanzan CESI S.p.A. Within the scope of the demonstration projects of efficient electrotechnologies

More information

Floating LNG: The Challenges of production systems and well fluids management By: Frederic MOLLARD, TECHNIP France 04/19/2013

Floating LNG: The Challenges of production systems and well fluids management By: Frederic MOLLARD, TECHNIP France 04/19/2013 17 th INTERNATIONAL CONFERENCE & EXHIBITION ON LIQUEFIED NATURAL GAS (LNG 17) Floating LNG: The Challenges of production systems and well fluids management By: Frederic MOLLARD, TECHNIP France 04/19/2013

More information

WWT Two-Stage Sour Water Stripping

WWT Two-Stage Sour Water Stripping WWT Two-Stage Sour Water Stripping Improve performance of sulfur recovery units ben efits The Chevron WWT Process is a two-stage stripping process which separates ammonia and hydrogen sulfide from sour

More information

llilliiiillllllllilllllllllllllllllllllllil CERN AT, (CR, 94'36

llilliiiillllllllilllllllllllllllllllllllil CERN AT, (CR, 94'36 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN LIBRARIES, GENEVA llilliiiillllllllilllllllllllllllllllllllil CERN AT, (CR, 94'36 QERN-AT-94-36 ;.t W4?. Four 12 kw/4.5 K Cryoplants at CERN S. Claudet,

More information

Cryogenic separation of atmospheric air in a typical Air Separation Unit (ASU) using Hampson-Linde cycle

Cryogenic separation of atmospheric air in a typical Air Separation Unit (ASU) using Hampson-Linde cycle International Journal of Engineering and Technical Research (IJETR) Cryogenic separation of atmospheric air in a typical Air Separation Unit (ASU) using Hampson-Linde cycle Archisman Ray Abstract This

More information

HiOx - Emission Free Gas Power A technology developed by Aker Maritime

HiOx - Emission Free Gas Power A technology developed by Aker Maritime Second Nordic Minisymposium on Carbon Dioxide Capture and Storage,. available at http://www.entek.chalmers.se/~anly/symp/symp2001.html HiOx - Emission Free Gas Power A technology developed by Aker Maritime

More information

Connecting Coolers to Superconducting Magnets with a Thermal-Siphon Cooling Loop

Connecting Coolers to Superconducting Magnets with a Thermal-Siphon Cooling Loop C19_062 1 Connecting Coolers to Superconducting Magnets with a Thermal-Siphon Cooling Loop M. A. Green 1,2 1 FRIB Michigan State University, East Lansing, MI, USA 48824 2 Lawrence Berkeley Laboratory,

More information

Small scale boil off gas (BOG) re-liquefaction systems

Small scale boil off gas (BOG) re-liquefaction systems Small scale boil off gas (BOG) re-liquefaction systems As presented by Francesco Dioguardi at the 7 th Gas Fuelled Ships Conference, Hamburg, November 17, 2016 1 DH Industries BV Based in Eindhoven, The

More information

MLNG DUA DEBOTTLENECKING PROJECT

MLNG DUA DEBOTTLENECKING PROJECT MLNG DUA DEBOTTLENECKING PROJECT Yahya Ibrahim Senior General Manager Malaysia LNG Malaysia yahyai@petronas.com.my Tariq Shukri LNG Consultant Foster Wheeler Energy Limited Reading, U.K. Tariq_shukri@fwuk.fwc.com

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ethylbenzene We continue to investigate the feasibility of constructing a new, grass-roots, 80,000 tonne/y, ethylbenzene facility.

More information

Maximising LNG revenue by operating at peak performance

Maximising LNG revenue by operating at peak performance Maximising LNG revenue by operating at peak performance Brian Barr, Robin Pearsall, Jim Bronfenbrenner Air Products and Chemicals Inc. 7201 Hamilton Boulevard Allentown, PA 18195-1501 Meshal Hassan Al-Mohannadi

More information

ProSimPlus Library (Standard version + rate base option)

ProSimPlus Library (Standard version + rate base option) ProSimPlus Library (Standard version + rate base option) Contents UNIT OPERATIONS... 5 Absorber... 5 Absorber with reboiler... 5 Rigorous two-phase distillation (L-V) with partial condenser and decanter...

More information

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Vipul Gupta vipul.gupta@tecnico.ulisboa.pt Instituto Superior Técnico,Lisboa, Portugal October 2016 Abstract This work describes

More information

Cavitation measurements on a pump-turbine model

Cavitation measurements on a pump-turbine model Journal of Physics: Conference Series PAPER OPEN ACCESS Cavitation measurements on a pump-turbine model To cite this article: H Schmidt et al 2015 J. Phys.: Conf. Ser. 656 012071 Related content - Nucleation

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

Review Questions for the FE Examination

Review Questions for the FE Examination 110 THE FIRST LAW OF THERMODYNAMICS [CHAP. 4 4.1FE Review Questions for the FE Examination Select a correct statement of the first law if kinetic and potential energy changes are negligible. (A) Heat transfer

More information

Introduction to Distillation. Binous - Introd. to Distillation

Introduction to Distillation. Binous - Introd. to Distillation Introduction to Distillation 1 Exploits differences in boiling point, or volatility Requires the input of energy Handles a wide range of feed flow rates Separates a wide range of feed concentrations Produce

More information

Modern Small-Scale LNG Plant Solutions

Modern Small-Scale LNG Plant Solutions Modern Small-Scale LNG Plant Solutions Clean and Stand-Alone Small Volume High Energy Density Many Possibilities LNG is becoming increasingly important all over the world for optimizing the natural gas

More information

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits POWER-GEN Asia 2011 Kuala-Lumpur, Malaysia September 27-29, 2011 Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits Leonid Moroz, Kirill Grebennik 15 New England Executive Park,

More information

Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle

Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 1180 1186 GHGT-11 Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton

More information

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ammonia Your assignment is to continue evaluating the details of a process to produce 50,000 tonne/y of ammonia from a syngas

More information

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature International Journal of Technology Enhancements and Emerging Engineering Research, VOL 1, ISSUE 1 20 Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature V. Gopinath 1, G. Navaneethakrishnan

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Styrene

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Styrene Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Styrene The feasibility of constructing a new, grass-roots, 100,000 tonne/y, styrene plant is being investigated. As part of

More information

Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants

Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants PREM KRISH, JEREMY MARTIN, JOHN SIENKIEWICZ, ANDREA GAINS-GERMAIN Energy Recovery

More information

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY , Volume 4, Number 1, p.14-23, 2003 DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY K.H. Yang and S.C. Wu Mechanical Engineering Department, National Sun Yat-Sen University, Kaohsiung,

More information

GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS

GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS GAS CONDITIONING FOR GAS STORAGE INSTALLATIONS Grant Johnson, Adrian Finn and Terry Tomlinson, Costain Oil, Gas & Process Ltd., UK, discuss process technology to meet water and hydrocarbon dew point specifications

More information

Removing sulfurcrete from Claus plant sulfur condensers with TubeMaster, the tube cleaning system of mycon

Removing sulfurcrete from Claus plant sulfur condensers with TubeMaster, the tube cleaning system of mycon Removing sulfurcrete from Claus plant sulfur condensers with TubeMaster, the tube cleaning system of mycon Introduction... 1 1. Blasting for removal of sulfurcrete... 2 1.1 Process description... 2 1.2

More information

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS PRINCIPLES: THERMODYNAMICS & ENERGY BALANCES 1 Copyright 2018. All rights reserved. How to use this book The exam specifications in effect

More information

6. PUMPS AND PUMPING SYSTEM

6. PUMPS AND PUMPING SYSTEM 6. PUMPS AND PUMPING SYSTEM Syllabus Pumps and Pumping System: Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities 6.1 Pump Types Pumps

More information

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

More information

A Comparative Study of Propane Recovery Processes

A Comparative Study of Propane Recovery Processes A Comparative Study of Propane Recovery Processes Kent A. Pennybaker, Scott E. Wolverton, Steven W. Chafin, Thomas R. Ruddy River City Engineering, Inc. Lawrence, Kansas ABSTRACT There are many processes

More information

Quenching steels with gas jet arrays

Quenching steels with gas jet arrays Quenching steels with gas jet arrays PAUL F STRATTON ANDREW P RICHARDSON BOC Rother Valley Way, Holbrook, Sheffield UNITED KINGDOM Paul.stratton@boc.com http://www.catweb.boc.com Abstract: - Single components

More information